Articles de revues sur le sujet « Multiferroic Transition Metal Oxides »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Multiferroic Transition Metal Oxides.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Multiferroic Transition Metal Oxides ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Zhao, Li, Maria Teresa Fernández-Díaz, Liu Hao Tjeng et Alexander C. Komarek. « Oxyhalides : A new class of high-TC multiferroic materials ». Science Advances 2, no 5 (mai 2016) : e1600353. http://dx.doi.org/10.1126/sciadv.1600353.

Texte intégral
Résumé :
Magnetoelectric multiferroics have attracted enormous attention in the past years because of their high potential for applications in electronic devices, which arises from the intrinsic coupling between magnetic and ferroelectric ordering parameters. The initial finding in TbMnO3 has triggered the search for other multiferroics with higher ordering temperatures and strong magnetoelectric coupling for applications. To date, spin-driven multiferroicity is found mainly in oxides, as well as in a few halogenides. We report multiferroic properties for synthetic melanothallite Cu2OCl2, which is the first discovery of multiferroicity in a transition metal oxyhalide. Measurements of pyrocurrent and the dielectric constant in Cu2OCl2 reveal ferroelectricity below the Néel temperature of ~70 K. Thus, melanothallite belongs to a new class of multiferroic materials with an exceptionally high critical temperature. Powder neutron diffraction measurements reveal an incommensurate magnetic structure below TN, and all magnetic reflections can be indexed with a propagation vector [0.827(7), 0, 0], thus discarding the claimed pyrochlore-like “all-in–all-out” spin structure for Cu2OCl2, and indicating that this transition metal oxyhalide is, indeed, a spin-induced multiferroic material.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Rodgers, Jennifer A., Anthony J. Williams et J. Paul Attfield. « High-pressure / High-temperature Synthesis of Transition Metal Oxide Perovskites ». Zeitschrift für Naturforschung B 61, no 12 (1 décembre 2006) : 1515–26. http://dx.doi.org/10.1515/znb-2006-1208.

Texte intégral
Résumé :
Perovskite and related Ruddlesden-Popper type transition metal oxides synthesised at high pressures and temperatures during the last decade are reviewed. More than 60 such new materials have been reported since 1995. Important developments have included perovskites with complex cation orderings on A and B sites, multiferroic bismuth-based perovskites, and new manganites showing colossal magnetoresistance (CMR) and charge ordering properties.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hu, Shunbo, Lei Chen, Yabei Wu, Liming Yu, Xinluo Zhao, Shixun Cao, Jincang Zhang et Wei Ren. « Selected multiferroic perovskite oxides containing rare earth and transition metal elements ». Chinese Science Bulletin 59, no 36 (11 octobre 2014) : 5170–79. http://dx.doi.org/10.1007/s11434-014-0643-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Long, Youwen. « High-pressure synthesis and physical properties of A-site ordered perovskites ». Acta Crystallographica Section A Foundations and Advances 70, a1 (5 août 2014) : C755. http://dx.doi.org/10.1107/s2053273314092444.

Texte intégral
Résumé :
ABO3-type perovskite oxides exhibit a wide variety of interesting physical properties such as superconductivity, colossal magnetoresistance, multiferroic behavior etc. For a simple ABO3 perovskite, if three quarters of the A site is replaced by a transition metal A', then the so-called A-site ordered double perovskite with the chemical formula of AA'3B4O12 can form. Since both A' and B sites accommodate transition metal ions, in addition to conventional B-B interaction, the new A'-A' and/or A'-B interaction is possible to show up, giving rise to the presence of many novel physical properties. Here we will show our recent research work on the high-pressure synthesis of several A-site ordered perovskites as well as a series of interesting physical properties like temperature- and pressure-induced intermetallic charge transfer, negative thermal expansion, magnetoelectric coupling multiferroic and so on. [1-3]
Styles APA, Harvard, Vancouver, ISO, etc.
5

Liu, Lei, Hua Y. Geng, Xiaolong Pan, Hong X. Song, Sergey Ivanov, Roland Mathieu, Matthias Weil, Yanchun Li, Xiaodong Li et Peter Lazor. « Irreversible phase transitions of the multiferroic oxide Mn3TeO6 at high pressures ». Applied Physics Letters 121, no 4 (25 juillet 2022) : 044102. http://dx.doi.org/10.1063/5.0100302.

Texte intégral
Résumé :
Due to their large bandgaps, multiferroic oxides, the promising candidates for overcoming the disadvantages of metal-halide perovskites as light absorbers, have so far very limited use in solar cell applications. Previous investigations demonstrate that high pressure represents an efficient tool for tuning the bandgap of multiferroic Mn3TeO6 (MTO). However, the underlying mechanism of the giant bandgap reduction discovered in MTO remains unclear, which critically prevents the design of next-generation light absorbers. In this study, we performed in situ x-ray diffraction analyses on the structure evolution of MTO upon compression and decompression, discovering a sequence of irreversible phase transitions R[Formula: see text]→ C2/c→ P21/n. The experimental results, supported by electronic structure calculations, show the shortening of Mn–O–Mn bonding, and, to a lower extent, the decrease in connectivity of octahedra across the phase transition, explain the giant bandgap reduction of MTO. These findings will facilitate the design and synthesis of next-generation light absorbers in solar cells.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lorenz, Michael. « Pulsed laser deposition of functional oxides - towards a transparent electronics ». Acta Crystallographica Section A Foundations and Advances 70, a1 (5 août 2014) : C1412. http://dx.doi.org/10.1107/s2053273314085878.

Texte intégral
Résumé :
Metal oxides, in particular with transition metals, show strong electronic correlations which determine a huge variety of electronic properties, together with other functionalities. For example, ZnO and Ga2O3 as wide-bandgap semiconductors have a high application potential as transparent functional layers in future oxide electronics [1-2]. Other oxides of current interest are ferrimagnetic spinels of the type MFe2O4 (M=Zn,Co,Ni), see K. Brachwitz et al. Appl. Phys. Lett. 102, 172104 (2013), or highly correlated iridate films, see M. Jenderka et al. Phys. Rev. B 88, 045111 (2013). Furthermore, combinations of ferroelectric and magnetic oxides in multiferroic composites and multilayers show promising magnetoelectric coupling. For the exploratory growth of the above mentioned novel oxides into nm-thin films, pulsed laser deposition (PLD) appears as the method of choice because of its extremely high flexibility in terms of material and growth conditions, high growth rate and excellent structural properties [3]. This talk highlights recent developments of new functional oxides using unique large-area PLD processes running for more than two decades in the lab of the author [3].
Styles APA, Harvard, Vancouver, ISO, etc.
7

Watson, Carla, Tara Peña, Marah Abdin, Tasneem Khan et Stephen M. Wu. « Dynamic adhesion of 2D materials to mixed-phase BiFeO3 structural phase transitions ». Journal of Applied Physics 132, no 4 (28 juillet 2022) : 045301. http://dx.doi.org/10.1063/5.0096686.

Texte intégral
Résumé :
Two-dimensional materials, such as transition metal dichalcogenides, have generated much interest due to their strain-sensitive electronic, optical, magnetic, superconducting, or topological properties. Harnessing control over their strain state may enable new technologies that operate by controlling these materials’ properties in devices such as straintronic transistors. Piezoelectric oxides have been proposed as one method to control such strain states on the device scale. However, there are few studies of how conformal 2D materials remain on oxide materials with respect to dynamic applications of the strain. Non-conformality may lead to non-optimal strain transfer. In this work, we explore this aspect of oxide-2D adhesion in the nanoscale switching of the substrate structural phase in thin 1T′-MoTe2 attached to a mixed-phase thin-film BiFeO3 (BFO), a multiferroic oxide with an electric-field induced structural phase transition that can generate mechanical strains of up to 2%. We observe that flake thickness impacts the conformality of 1T′-MoTe2 to structural changes in BFO, but below four layers, 1T′-MoTe2 fully conforms to the nanoscale BFO structural changes. The conformality of few-layer 1T′-MoTe2 suggests that BFO is an excellent candidate for deterministic, nanoscale strain control for 2D materials.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Jiang, Xingyu, Yiren Liu, Yipeng Zang, Yuwei Liu, Tianyi Gao, Ningchong Zheng, Zhengbin Gu, Yurong Yang, Di Wu et Yuefeng Nie. « Uniaxial strain induced anisotropic bandgap engineering in freestanding BiFeO3 films ». APL Materials 10, no 9 (1 septembre 2022) : 091110. http://dx.doi.org/10.1063/5.0095955.

Texte intégral
Résumé :
Strain engineering has been demonstrated to be an effective knob to tune the bandgap in perovskite oxides, which is highly desired for applications in optics, optoelectronics, and ferroelectric photovoltaics. Multiferroic BiFeO3 exhibits great potential in photovoltaic applications and its bandgap engineering is of great interest. However, the mechanism of strain induced bandgap engineering in BiFeO3 remains elusive to date. Here, we perform in situ ellipsometry measurements to investigate the bandgap evolution as a function of uniaxial strain on freestanding BiFeO3 films. Exotic anisotropic bandgap engineering has been observed, where the bandgap increases (decreases) by applying uniaxial tensile strain along the pseudocubic [100]p ([110]p) direction. First-principles calculations indicate that different O6 octahedral rotations under strain are responsible for this phenomenon. Our work demonstrates that the extreme freedom in tuning the strain and symmetry of freestanding films opens a new fertile playground for novel strain-driven phases in transition metal oxides.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Raveau, Bernard, Vincent Caignaert, Vincent Hardy et Mohammad Motin Seikh. « Transition metal oxides with triangular metallic sublattices : From multiferroics to low-dimensional magnets ». Comptes Rendus Chimie 21, no 10 (octobre 2018) : 952–57. http://dx.doi.org/10.1016/j.crci.2018.07.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

El Housni, I., N. El Mekkaoui, R. Khalladi, S. Idrissi, S. Mtougui, H. Labrim, S. Ziti et L. Bahmad. « The magnetic properties of the multiferroic transition metal oxide perovskite-type Pb(Fe1/2Nb1/2)O3 : Monte Carlo simulations ». Ferroelectrics 568, no 1 (3 novembre 2020) : 191–213. http://dx.doi.org/10.1080/00150193.2020.1834776.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Mun, Eundeok, Jason Wilcox, Jamie L. Manson, Brian Scott, Paul Tobash et Vivien S. Zapf. « The Origin and Coupling Mechanism of the Magnetoelectric Effect inTMCl2-4SC(NH2)2(TM= Ni and Co) ». Advances in Condensed Matter Physics 2014 (2014) : 1–4. http://dx.doi.org/10.1155/2014/512621.

Texte intégral
Résumé :
Most research on multiferroics and magnetoelectric effects to date has focused on inorganic oxides. Molecule-based materials are a relatively new field in which to search for magnetoelectric multiferroics and to explore new coupling mechanisms between electric and magnetic order. We present magnetoelectric behavior in NiCl2-4SC(NH2)2(DTN) and CoCl2-4SC(NH2)2(DTC). These compounds form tetragonal structures where the transition metal ion (Ni or Co) is surrounded by four electrically polar thiourea molecules [SC(NH2)2]. By tracking the magnetic and electric properties of these compounds as a function of magnetic field, we gain insights into the coupling mechanism by observing that, in DTN, the electric polarization tracks the magnetic ordering, whereas in DTC it does not. For DTN, all electrically polar thiourea molecules tilt in the same direction along thec-axis, breaking spatial-inversion symmetry, whereas, for DTC, two thiourea molecules tilt up and two tilt down with respect toc-axis, perfectly canceling the net electrical polarization. Thus, the magnetoelectric coupling mechanism in DTN is likely a magnetostrictive adjustment of the thiourea molecule orientation in response to magnetic order.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Rao, C. N. R. « Transition Metal Oxides ». Annual Review of Physical Chemistry 40, no 1 (octobre 1989) : 291–326. http://dx.doi.org/10.1146/annurev.pc.40.100189.001451.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Greenblatt, Martha. « Transition metal oxides ». Materials Research Bulletin 31, no 4 (avril 1996) : 426–27. http://dx.doi.org/10.1016/0025-5408(96)80020-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Lany, Stephan. « Semiconducting transition metal oxides ». Journal of Physics : Condensed Matter 27, no 28 (30 juin 2015) : 283203. http://dx.doi.org/10.1088/0953-8984/27/28/283203.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

GUO, Xianji. « Pillared layered transition metal oxides ». Chinese Science Bulletin 48, no 2 (2003) : 101. http://dx.doi.org/10.1360/03tb9021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Walia, Sumeet, Sivacarendran Balendhran, Hussein Nili, Serge Zhuiykov, Gary Rosengarten, Qing Hua Wang, Madhu Bhaskaran, Sharath Sriram, Michael S. Strano et Kourosh Kalantar-zadeh. « Transition metal oxides – Thermoelectric properties ». Progress in Materials Science 58, no 8 (octobre 2013) : 1443–89. http://dx.doi.org/10.1016/j.pmatsci.2013.06.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Szotek, Z., W. M. Temmerman, A. Svane, L. Petit, G. M. Stocks et H. Winter. « Half-metallic transition metal oxides ». Journal of Magnetism and Magnetic Materials 272-276 (mai 2004) : 1816–17. http://dx.doi.org/10.1016/j.jmmm.2003.12.818.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Moreo, Adriana. « Complexity in transition metal oxides ». Journal of Physics and Chemistry of Solids 67, no 1-3 (janvier 2006) : 32–36. http://dx.doi.org/10.1016/j.jpcs.2005.10.138.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Zhang, Huigang, Hailong Ning, John Busbee, Zihan Shen, Chadd Kiggins, Yuyan Hua, Janna Eaves et al. « Electroplating lithium transition metal oxides ». Science Advances 3, no 5 (mai 2017) : e1602427. http://dx.doi.org/10.1126/sciadv.1602427.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

He, Tao, et Jian-Nian Yao. « Photochromism in transition-metal oxides ». Research on Chemical Intermediates 30, no 4 (1 juin 2004) : 459–88. http://dx.doi.org/10.1163/1568567041280890.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Cho, Jae-Hyeon, et Wook Jo. « Progress in the Development of Single-Phase Magnetoelectric Multiferroic Oxides ». Ceramist 24, no 3 (30 septembre 2021) : 228–47. http://dx.doi.org/10.31613/ceramist.2021.24.3.03.

Texte intégral
Résumé :
Magnetoelectric (ME) multiferroics manifesting the coexistence and the coupling of ferromagnetic and ferroelectric order are appealing widespread interest owing to their fascinating physical behaviors and possible novel applications. In this review, we highlight the progress in single-phase ME multiferroic oxides research in terms of the classification depending on the physical origins of ferroic properties and the corresponding examples for each case, i.e., material by material, along with their ME multiferroic properties including saturation magnetization, spontaneous polarization, (anti)ferromagnetic/ferroelectric transition temperature, and ME coefficient. The magnetoelectrically-active applications of high expectancy are presented by citing the representative examples such as magnetoelectric random-access-memory and multiferroic photovoltaics. Furthermore, we discuss how the development of ME multiferroic oxides should proceed by considering the current research status in terms of developed materials and designed applications. We believe that this short review will provide a basic introduction for the researchers new to this field.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Wang, Shanmin, Jinlong Zhu, Yi Zhang, Xiaohui Yu, Jianzhong Zhang, Wendan Wang, Ligang Bai et al. « Unusual Mott transition in multiferroic PbCrO3 ». Proceedings of the National Academy of Sciences 112, no 50 (24 novembre 2015) : 15320–25. http://dx.doi.org/10.1073/pnas.1510415112.

Texte intégral
Résumé :
The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. Turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by “bandwidth” control or “band filling.” However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. Here, we report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of ∼3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrent with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at ∼300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid–gas transition. The anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Tokura, Y. « Metal-insulator phenomena in 3d transition metal oxides ». Physica C : Superconductivity 235-240 (décembre 1994) : 138–41. http://dx.doi.org/10.1016/0921-4534(94)91332-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Zhou, Wu Zong. « Mesoporous Crystals of Transition Metal Oxides ». Solid State Phenomena 140 (octobre 2008) : 37–46. http://dx.doi.org/10.4028/www.scientific.net/ssp.140.37.

Texte intégral
Résumé :
Using mesoporous silicas as hard templates and facilitating crystal growth of transition metal oxides inside the pores, some mesoporous crystals can be produced after removing the templates. This paper gives a brief review of the research of mesoporous crystals of transition metal oxides in the last five years, including the technical development and potential applications of the new form of oxides.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Rodenbücher, Christian, et Kristof Szot. « Electronic Phenomena of Transition Metal Oxides ». Crystals 11, no 3 (5 mars 2021) : 256. http://dx.doi.org/10.3390/cryst11030256.

Texte intégral
Résumé :
Transition metal oxides with ABO3 or BO2 structures have become one of the major research fields in solid state science, as they exhibit an impressive variety of unusual and exotic phenomena with potential for their exploitation in real-world applications [...]
Styles APA, Harvard, Vancouver, ISO, etc.
26

Wang, Yan, Jin Guo, Tingfeng Wang, Junfeng Shao, Dong Wang et Ying-Wei Yang. « Mesoporous Transition Metal Oxides for Supercapacitors ». Nanomaterials 5, no 4 (14 octobre 2015) : 1667–89. http://dx.doi.org/10.3390/nano5041667.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Rao, C. N. R., et A. K. Cheetham. « Giant Magnetoresistance in Transition Metal Oxides ». Science 272, no 5260 (19 avril 1996) : 369–70. http://dx.doi.org/10.1126/science.272.5260.369.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Littrell, Donald M., Daniel H. Bowers et Bruce J. Tatarchuk. « Hydrazine reduction of transition-metal oxides ». Journal of the Chemical Society, Faraday Transactions 1 : Physical Chemistry in Condensed Phases 83, no 11 (1987) : 3271. http://dx.doi.org/10.1039/f19878303271.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Nakamura, Keisuke, Yuya Oaki et Hiroaki Imai. « Monolayered Nanodots of Transition Metal Oxides ». Journal of the American Chemical Society 135, no 11 (7 mars 2013) : 4501–8. http://dx.doi.org/10.1021/ja400443a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Sawa, Akihito. « Resistive switching in transition metal oxides ». Materials Today 11, no 6 (juin 2008) : 28–36. http://dx.doi.org/10.1016/s1369-7021(08)70119-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Zhao, Yongbiao, Jun Zhang, Shuwei Liu, Yuan Gao, Xuyong Yang, Kheng Swee Leck, Agus Putu Abiyasa et al. « Transition metal oxides on organic semiconductors ». Organic Electronics 15, no 4 (avril 2014) : 871–77. http://dx.doi.org/10.1016/j.orgel.2014.01.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Attfield, J. Paul. « Charge ordering in transition metal oxides ». Solid State Sciences 8, no 8 (août 2006) : 861–67. http://dx.doi.org/10.1016/j.solidstatesciences.2005.02.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Matsushita, Eiko, et Akifumi Tanase. « Conduction mechanism in transition-metal oxides ». Physica B : Condensed Matter 237-238 (juillet 1997) : 21–23. http://dx.doi.org/10.1016/s0921-4526(97)00029-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Fujimori, Atsushi, et Takashi Mizokawa. « Electronic structure of transition-metal oxides ». Current Opinion in Solid State and Materials Science 2, no 1 (février 1997) : 18–22. http://dx.doi.org/10.1016/s1359-0286(97)80100-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Encheva, G., B. Samuneva, P. Djambaski, E. Kashchieva, D. Paneva et I. Mitov. « Silica gels containing transition metal oxides ». Journal of Non-Crystalline Solids 345-346 (octobre 2004) : 615–19. http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Büttgen, N., H. A. Krug von Nidda, W. Kraetschmer, A. Günther, S. Widmann, S. Riegg, A. Krimmel et A. Loidl. « Quantum Criticality in Transition-Metal Oxides ». Journal of Low Temperature Physics 161, no 1-2 (11 août 2010) : 148–66. http://dx.doi.org/10.1007/s10909-010-0200-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Seike, Tetsuya, et Junichi Nagai. « Electrochromism of 3d transition metal oxides ». Solar Energy Materials 22, no 2-3 (juillet 1991) : 107–17. http://dx.doi.org/10.1016/0165-1633(91)90010-i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Goodenough, John B. « Perspective on Engineering Transition-Metal Oxides ». Chemistry of Materials 26, no 1 (9 septembre 2013) : 820–29. http://dx.doi.org/10.1021/cm402063u.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Yamamoto, Takafumi, et Hiroshi Kageyama. « Hydride Reductions of Transition Metal Oxides ». Chemistry Letters 42, no 9 (5 septembre 2013) : 946–53. http://dx.doi.org/10.1246/cl.130581.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Mayer, B., St Uhlenbrock et M. Neumann. « XPS satellites in transition metal oxides ». Journal of Electron Spectroscopy and Related Phenomena 81, no 1 (juin 1996) : 63–67. http://dx.doi.org/10.1016/0368-2048(96)03030-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Muraoka, Yuji, et Zenji Hiroi. « Photocarrier Injection to Transition Metal Oxides ». Journal of the Physical Society of Japan 72, no 4 (15 avril 2003) : 781–84. http://dx.doi.org/10.1143/jpsj.72.781.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Tokura, Y. « Orbital Physics in Transition-Metal Oxides ». Science 288, no 5465 (21 avril 2000) : 462–68. http://dx.doi.org/10.1126/science.288.5465.462.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Raveau, B. « Transition metal oxides : Promising functional materials ». Journal of the European Ceramic Society 25, no 12 (janvier 2005) : 1965–69. http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.220.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Doumerc, J. P., M. Blangero, M. Pollet, D. Carlier, J. Darriet, R. Berthelot, C. Delmas et R. Decourt. « Transition-Metal Oxides for Thermoelectric Generation ». Journal of Electronic Materials 38, no 7 (10 janvier 2009) : 1078–82. http://dx.doi.org/10.1007/s11664-008-0625-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Krivanek, Ondrej L., et James H. Paterson. « Elnes of 3d transition-metal oxides ». Ultramicroscopy 32, no 4 (mai 1990) : 313–18. http://dx.doi.org/10.1016/0304-3991(90)90077-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Paterson, James H., et Ondrej L. Krivanek. « Elnes of 3d transition-metal oxides ». Ultramicroscopy 32, no 4 (mai 1990) : 319–25. http://dx.doi.org/10.1016/0304-3991(90)90078-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Kumar, Kadakuntla Santhosh, Gulloo Lal Prajapati, Rahul Dagar, Megha Vagadia, Dhanvir Singh Rana et Masayoshi Tonouchi. « Terahertz Electrodynamics in Transition Metal Oxides ». Advanced Optical Materials 8, no 3 (23 décembre 2019) : 1900958. http://dx.doi.org/10.1002/adom.201900958.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Neyestanaki, A. K., et L. E. Lindfors. « Catalytic Combustion Over Transition Metal Oxides and Platinum-Transition Metal Oxides Supported on Knitted Silica Fibre ». Combustion Science and Technology 97, no 1-3 (avril 1994) : 121–36. http://dx.doi.org/10.1080/00102209408935371.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Wu, Menghao, J. D. Burton, Evgeny Y. Tsymbal, Xiao Cheng Zeng et Puru Jena. « Multiferroic Materials Based on Organic Transition-Metal Molecular Nanowires ». Journal of the American Chemical Society 134, no 35 (23 août 2012) : 14423–29. http://dx.doi.org/10.1021/ja304199x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Peng, Bin, Ren-Ci Peng, Yong-Qiang Zhang, Guohua Dong, Ziyao Zhou, Yuqing Zhou, Tao Li et al. « Phase transition enhanced superior elasticity in freestanding single-crystalline multiferroic BiFeO3 membranes ». Science Advances 6, no 34 (août 2020) : eaba5847. http://dx.doi.org/10.1126/sciadv.aba5847.

Texte intégral
Résumé :
The integration of ferroic oxide thin films into advanced flexible electronics will bring multifunctionality beyond organic and metallic materials. However, it is challenging to achieve high flexibility in single-crystalline ferroic oxides that is considerable to organic or metallic materials. Here, we demonstrate the superior flexibility of freestanding single-crystalline BiFeO3 membranes, which are typical multiferroic materials with multifunctionality. They can endure cyclic 180° folding and have good recoverability, with the maximum bending strain up to 5.42% during in situ bending under scanning electron microscopy, far beyond their bulk counterparts. Such superior elasticity mainly originates from reversible rhombohedral-tetragonal phase transition, as revealed by phase-field simulations. This study suggests a general fundamental mechanism for a variety of ferroic oxides to achieve high flexibility and to work as smart materials in flexible electronics.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie