Littérature scientifique sur le sujet « Multidimensional data mining »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Multidimensional data mining ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Multidimensional data mining"
Jiawei Han, L. V. S. Lakshmanan et R. T. Ng. « Constraint-based, multidimensional data mining ». Computer 32, no 8 (1999) : 46–50. http://dx.doi.org/10.1109/2.781634.
Texte intégralBimonte, Sandro, Lucile Sautot, Ludovic Journaux et Bruno Faivre. « Multidimensional Model Design using Data Mining ». International Journal of Data Warehousing and Mining 13, no 1 (janvier 2017) : 1–35. http://dx.doi.org/10.4018/ijdwm.2017010101.
Texte intégralZhang, Chao, et Jiawei Han. « Multidimensional Mining of Massive Text Data ». Synthesis Lectures on Data Mining and Knowledge Discovery 11, no 2 (21 mars 2019) : 1–198. http://dx.doi.org/10.2200/s00903ed1v01y201902dmk017.
Texte intégralBehnisch, Martin, et Alfred Ultsch. « Urban data-mining : spatiotemporal exploration of multidimensional data ». Building Research & ; Information 37, no 5-6 (novembre 2009) : 520–32. http://dx.doi.org/10.1080/09613210903189343.
Texte intégralKim, Dae-In, Joon Park, Hong-Ki Kim et Bu-Hyun Hwang. « Mining Association Rules in Multidimensional Stream Data ». KIPS Transactions:PartD 13D, no 6 (31 octobre 2006) : 765–74. http://dx.doi.org/10.3745/kipstd.2006.13d.6.765.
Texte intégralChung-Ching Yu et Yen-Liang Chen. « Mining sequential patterns from multidimensional sequence data ». IEEE Transactions on Knowledge and Data Engineering 17, no 1 (janvier 2005) : 136–40. http://dx.doi.org/10.1109/tkde.2005.13.
Texte intégralPawliczek, Piotr, et Witold Dzwinel. « Interactive Data Mining by Using Multidimensional Scaling ». Procedia Computer Science 18 (2013) : 40–49. http://dx.doi.org/10.1016/j.procs.2013.05.167.
Texte intégralGundem, Gunes, Christian Perez-Llamas, Alba Jene-Sanz, Anna Kedzierska, Abul Islam, Jordi Deu-Pons, Simon J. Furney et Nuria Lopez-Bigas. « IntOGen : integration and data mining of multidimensional oncogenomic data ». Nature Methods 7, no 2 (février 2010) : 92–93. http://dx.doi.org/10.1038/nmeth0210-92.
Texte intégralDzemyda, Gintautas, Virginijus Marcinkevičius et Viktor Medvedev. « WEB APPLICATION FOR LARGE-SCALE MULTIDIMENSIONAL DATA VISUALIZATION ». Mathematical Modelling and Analysis 16, no 1 (24 juin 2011) : 273–85. http://dx.doi.org/10.3846/13926292.2011.580381.
Texte intégralkumar, Santhosh, et E. Ramaraj. « A Hybrid Model for Mining Multidimensional Data Sets ». International Journal of Computer Applications Technology and Research 2, no 3 (1 mai 2013) : 214–17. http://dx.doi.org/10.7753/ijcatr0203.1001.
Texte intégralThèses sur le sujet "Multidimensional data mining"
Torre, Fabrizio. « 3D data visualization techniques and applications for visual multidimensional data mining ». Doctoral thesis, Universita degli studi di Salerno, 2014. http://hdl.handle.net/10556/1561.
Texte intégralDespite modern technology provide new tools to measure the world around us, we are quickly generating massive amounts of high-dimensional, spatialtemporal data. In this work, I deal with two types of datasets: one in which the spatial characteristics are relatively dynamic and the data are sampled at different periods of time, and the other where many dimensions prevail, although the spatial characteristics are relatively static. The first dataset refers to a peculiar aspect of uncertainty arising from contractual relationships that regulate a project execution: the dispute management. In recent years there has been a growth in size and complexity of the projects managed by public or private organizations. This leads to increased probability of project failures, frequently due to the difficulty and the ability to achieve the objectives such as on-time delivery, cost containment, expected quality achievement. In particular, one of the most common causes of project failure is the very high degree of uncertainty that affects the expected performance of the project, especially when different stakeholders with divergent aims and goals are involved in the project...[edited by author]
XII n.s.
Nimmagadda, Shastri Lakshman. « Ontology based data warehousing for mining of heterogeneous and multidimensional data sources ». Thesis, Curtin University, 2015. http://hdl.handle.net/20.500.11937/2322.
Texte intégralWu, Hao-cun, et 吳浩存. « A multidimensional data model for monitoring web usage and optimizing website topology ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B29528215.
Texte intégralPeterson, Angela R. « Visual data mining Using parallel coordinate plots with K-means clustering and color to find correlations in a multidimensional dataset / ». Instructions for remote access, 2009. http://www.kutztown.edu/library/services/remote_access.asp.
Texte intégralDing, Guoxiang. « DERIVING ACTIVITY PATTERNS FROM INDIVIDUAL TRAVEL DIARY DATA : A SPATIOTEMPORAL DATA MINING APPROACH ». The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1236777859.
Texte intégralLi, Hsin-Fang. « DATA MINING AND PATTERN DISCOVERY USING EXPLORATORY AND VISUALIZATION METHODS FOR LARGE MULTIDIMENSIONAL DATASETS ». UKnowledge, 2013. http://uknowledge.uky.edu/epb_etds/4.
Texte intégralKucuktunc, Onur. « Result Diversification on Spatial, Multidimensional, Opinion, and Bibliographic Data ». The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1374148621.
Texte intégralFoltýnová, Veronika. « Multidimenzionální analýza dat a zpracování analytického zobrazení ». Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-376922.
Texte intégralNunes, Santiago Augusto. « Análise espaço-temporal de data streams multidimensionais ». Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17102016-152137/.
Texte intégralData streams are usually characterized by large amounts of data generated continuously in synchronous or asynchronous potentially infinite processes, in applications such as: meteorological systems, industrial processes, vehicle traffic, financial transactions, sensor networks, among others. In addition, the behavior of the data tends to change significantly over time, defining evolutionary data streams. These changes may mean temporary events (such as anomalies or extreme events) or relevant changes in the process of generating the stream (that result in changes in the distribution of the data). Furthermore, these data sets can have spatial characteristics such as geographic location of sensors, which can be useful in the analysis process. The detection of these behavioral changes considering aspects of evolution, as well as the spatial characteristics of the data, is relevant for some types of applications, such as monitoring of extreme weather events in Agrometeorology researches. In this context, this project proposes a technique to help spatio-temporal analysis in multidimensional data streams containing spatial and non-spatial information. The adopted approach is based on concepts of the Fractal Theory, used for temporal behavior analysis, as well as techniques for data streams handling also hierarchical data structures, allowing analysis tasks that take into account the spatial and non-spatial aspects simultaneously. The developed technique has been applied to agro-meteorological data to identify different behaviors considering different sub-regions defined by the spatial characteristics of the data. Therefore, results from this work include contribution to data mining area and support research in Agrometeorology.
Nieto, Erick Mauricio Gómez. « Projeção multidimensional aplicada a visualização de resultados de busca textual ». Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122012-105730/.
Texte intégralInternet users are very familiar with the results of a search query displayed as a ranked list of snippets. Each textual snippet shows a content summary of the referred document (or web page) and a link to it. This display has many advantages, e.g., it affords easy navigation and is straightforward to interpret. Nonetheless, any user of search engines could possibly report some experience of disappointment with this metaphor. Indeed, it has limitations in particular situations, as it fails to provide an overview of the document collection retrieved. Moreover, depending on the nature of the query - e.g., it may be too general, or ambiguous, or ill expressed - the desired information may be poorly ranked, or results may contemplate varied topics. Several search tasks would be easier if users were shown an overview of the returned documents, organized so as to reflect how related they are, content-wise. We propose a visualization technique to display the results of web queries aimed at overcoming such limitations. It combines the neighborhood preservation capability of multidimensional projections with the familiar snippet-based representation by employing a multidimensional projection to derive two-dimensional layouts of the query search results that preserve text similarity relations, or neighborhoods. Similarity is computed by applying the cosine similarity over a bag-of-words vector representation of collection built from the snippets. If the snippets are displayed directly according to the derived layout they will overlap considerably, producing a poor visualization. We overcome this problem by defining an energy functional that considers both the overlapping amongst snippets and the preservation of the neighborhood structure as given in vii the projected layout. Minimizing this energy functional provides a neighborhood preserving two-dimensional arrangement of the textual snippets with minimum overlap. The resulting visualization conveys both a global view of the query results and visual groupings that reflect related results, as illustrated in several examples shown
Livres sur le sujet "Multidimensional data mining"
Zhang, Chao, et Jiawei Han. Multidimensional Mining of Massive Text Data. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-031-01914-2.
Texte intégralAdam, Schenker, dir. Graph-theoretic techniques for web content mining. Hackensack, N.J : World Scientific, 2005.
Trouver le texte intégralHan, Jiawei, et Chao Zhang. Multidimensional Mining of Massive Text Data. Springer International Publishing AG, 2019.
Trouver le texte intégralHan, Jiawei, et Chao Zhang. Multidimensional Mining of Massive Text Data. Morgan & Claypool Publishers, 2019.
Trouver le texte intégralHan, Jiawei, et Chao Zhang. Multidimensional Mining of Massive Text Data. Morgan & Claypool Publishers, 2019.
Trouver le texte intégralHan, Jiawei, et Chao Zhang. Multidimensional Mining of Massive Text Data. Morgan & Claypool Publishers, 2019.
Trouver le texte intégralGrouping Multidimensional Data : Recent Advances in Clustering. Springer, 2006.
Trouver le texte intégralNicholas, Charles, Marc Teboulle et Jacob Kogan. Grouping Multidimensional Data : Recent Advances in Clustering. Springer, 2010.
Trouver le texte intégral(Editor), Jacob Kogan, Charles Nicholas (Editor) et Marc Teboulle (Editor), dir. Grouping Multidimensional Data : Recent Advances in Clustering. Springer, 2006.
Trouver le texte intégralHurter, Christophe. Image-Based Visualization : Interactive Multidimensional Data Exploration. Morgan & Claypool Publishers, 2016.
Trouver le texte intégralChapitres de livres sur le sujet "Multidimensional data mining"
Tao, Fangbo. « Multidimensional Summarization ». Dans Multidimensional Mining of Massive Text Data, 91–116. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-031-01914-2_6.
Texte intégralCyganek, Bogusław, et Michał Woźniak. « Efficient Multidimensional Pattern Recognition in Kernel Tensor Subspaces ». Dans Data Mining and Big Data, 529–37. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40973-3_54.
Texte intégralZdunek, Rafał, et Michalina Kotyla. « Extraction of Dynamic Nonnegative Features from Multidimensional Nonstationary Signals ». Dans Data Mining and Big Data, 557–66. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40973-3_57.
Texte intégralGünzel, Holger, Jens Albrecht et Wolfgang Lehner. « Data Mining in a Multidimensional Environment ». Dans Advances in Databases and Information Systems, 191–204. Berlin, Heidelberg : Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48252-0_15.
Texte intégralZhang, Chao, et Jiawei Han. « Introduction ». Dans Multidimensional Mining of Massive Text Data, 1–10. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-031-01914-2_1.
Texte intégralZhang, Chao, et Jiawei Han. « Topic-Level Taxonomy Generation ». Dans Multidimensional Mining of Massive Text Data, 13–30. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-031-01914-2_2.
Texte intégralZhang, Chao, et Jiawei Han. « Cross-Dimension Prediction in Cube Space ». Dans Multidimensional Mining of Massive Text Data, 117–41. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-031-01914-2_7.
Texte intégralZhang, Yihao, Mehmet A. Orgun, Weiqiang Lin et Rohan Baxter. « Mining Multidimensional Data through Element Oriented Analysis ». Dans PRICAI 2008 : Trends in Artificial Intelligence, 556–67. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89197-0_51.
Texte intégralDuan, Jiuding, Jiyi Li, Yukino Baba et Hisashi Kashima. « A Generalized Model for Multidimensional Intransitivity ». Dans Advances in Knowledge Discovery and Data Mining, 840–52. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57529-2_65.
Texte intégralYang, Wen, Hao Wang, Yongfeng Cao et Haijian Zhang. « Classification of Polarimetric SAR Data Based on Multidimensional Watershed Clustering ». Dans Advanced Data Mining and Applications, 157–64. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11811305_17.
Texte intégralActes de conférences sur le sujet "Multidimensional data mining"
Dunstan, N., I. Despi et C. Watson. « Anomalies in multidimensional contexts ». Dans DATA MINING 2009. Southampton, UK : WIT Press, 2009. http://dx.doi.org/10.2495/data090181.
Texte intégralYokobayashi, Ryohei, et Takao Miura. « Multidimensional Data Mining Based on Tensor ». Dans 2018 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2018. http://dx.doi.org/10.1109/icdmw.2018.00164.
Texte intégralPagani, Marco, Gloria Bordogna et Massimiliano Valle. « Mining Multidimensional Data Using Clustering Techniques ». Dans 18th International Conference on Database and Expert Systems Applications (DEXA 2007). IEEE, 2007. http://dx.doi.org/10.1109/dexa.2007.112.
Texte intégralPagani, Marco, Gloria Bordogna et Massimiliano Valle. « Mining Multidimensional Data Using Clustering Techniques ». Dans 18th International Conference on Database and Expert Systems Applications (DEXA 2007). IEEE, 2007. http://dx.doi.org/10.1109/dexa.2007.4312921.
Texte intégralTsumoto, Shusaku, et Shoji Hirano. « Multidimensional temporal mining in clinical data ». Dans the 2nd ACM SIGHIT symposium. New York, New York, USA : ACM Press, 2012. http://dx.doi.org/10.1145/2110363.2110426.
Texte intégralPatil, Pratima R., et Mamta Bhamare. « Multidimensional Data Mining for Anomaly Extraction ». Dans 2013 Third International Conference on Advances in Computing and Communications (ICACC). IEEE, 2013. http://dx.doi.org/10.1109/icacc.2013.8.
Texte intégralCromp, Robert F., et William J. Campbell. « Data mining of multidimensional remotely sensed images ». Dans the second international conference. New York, New York, USA : ACM Press, 1993. http://dx.doi.org/10.1145/170088.170397.
Texte intégralYokobayashi, Ryohei, et Takao Miura. « Multidimensional Data Mining Based on Tensor Model ». Dans 2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). IEEE, 2018. http://dx.doi.org/10.1109/aike.2018.00031.
Texte intégralGoil, S., et A. Choudhary. « High Performance Multidimensional Analysis and Data Mining ». Dans SC98 - High Performance Networking and Computing Conference. IEEE, 1998. http://dx.doi.org/10.1109/sc.1998.10043.
Texte intégralAssent, Ira, Ralph Krieger, Ralph Krieger, Boris Glavic et Thomas Seidl. « Spatial Multidimensional Sequence Clustering ». Dans Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06). IEEE, 2006. http://dx.doi.org/10.1109/icdmw.2006.153.
Texte intégralRapports d'organisations sur le sujet "Multidimensional data mining"
Traina, Agma, Caetano Traina, Spiros Papadimitriou et Christos Faloutsos. Tri-Plots : Scalable Tools for Multidimensional Data Mining. Fort Belvoir, VA : Defense Technical Information Center, janvier 2001. http://dx.doi.org/10.21236/ada459873.
Texte intégral