Littérature scientifique sur le sujet « Multicolor emitting »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Multicolor emitting ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Multicolor emitting"

1

Wang, Fuzhi, Ping Wang, Xing Fan, Xiangnan Dang, Changgua Zhen, Dechun Zou, Eun Hwa Kim, Do Nam Lee et Byeong Hyo Kim. « Voltage-controlled multicolor emitting devices ». Applied Physics Letters 89, no 18 (30 octobre 2006) : 183519. http://dx.doi.org/10.1063/1.2382747.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gigli, G., O. Inganäs, M. Anni, M. De Vittorio, R. Cingolani, G. Barbarella et L. Favaretto. « Multicolor oligothiophene-based light-emitting diodes ». Applied Physics Letters 78, no 11 (12 mars 2001) : 1493–95. http://dx.doi.org/10.1063/1.1355991.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Maier-Flaig, Florian, Julia Rinck, Moritz Stephan, Tobias Bocksrocker, Michael Bruns, Christian Kübel, Annie K. Powell, Geoffrey A. Ozin et Uli Lemmer. « Multicolor Silicon Light-Emitting Diodes (SiLEDs) ». Nano Letters 13, no 2 (24 janvier 2013) : 475–80. http://dx.doi.org/10.1021/nl3038689.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sun, Tao, Fei Xiu, Zhe Zhou, Chaoyi Ban, Tengyang Ye, Yamei Ding, Juqing Liu et Wei Huang. « Transient fiber-shaped flexible electronics comprising dissolvable polymer composites toward multicolor lighting ». Journal of Materials Chemistry C 7, no 6 (2019) : 1472–76. http://dx.doi.org/10.1039/c8tc04912b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Jensen, Per Baunegaard With, Jakob Kjelstrup-Hansen et Horst-Günter Rubahn. « Multicolor nanofiber based organic light-emitting transistors ». Organic Electronics 14, no 12 (décembre 2013) : 3324–30. http://dx.doi.org/10.1016/j.orgel.2013.10.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lei, Xiangshan, Dan Li, Yajun Chen, Qingdong Liu, Qifang Yan, Jiao Wang, Bingyan Han, Gaohong He et Baigang An. « RGB-multicolor fluorescent carbon dots by changing the reaction solvent type for white light-emitting diodes ». New Journal of Chemistry 46, no 11 (2022) : 4979–82. http://dx.doi.org/10.1039/d1nj05981e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lei, Nana, Dazhong Shen, Jiao Wang et Xiao Chen. « Flexible and enhanced multicolor-emitting films co-assembled by lanthanide complexes and a polymerizable surfactant in aqueous solution ». Soft Matter 14, no 45 (2018) : 9143–52. http://dx.doi.org/10.1039/c8sm01603h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Tu, Ning, Jeffery C. C. Lo et S. W. Ricky Lee. « Development of Uniform Polydimethylsiloxane Arrays through Inkjet Printing ». Polymers 15, no 2 (16 janvier 2023) : 462. http://dx.doi.org/10.3390/polym15020462.

Texte intégral
Résumé :
The inkjet printing method is a promising method to deposit polymer and functional nanoparticles at the microscale. It can be applied in the fabrication of multicolor polymer light emitting diodes (polyLEDs), polymer base electronics, multicolor color conversion layers, and quantum dot light emitting diodes (QLEDs). One of the main challenges is to print high-resolution polymer dots from dilute polymer solution. In addition, the quality of printed multicolor polyLEDs, QLEDs and multicolor color conversion layers is currently limited by non-uniformity of the printed dots. In this paper, polydimethylsiloxane (PDMS) is selected as the functional polymer, due to its high transparency, good reflective index value, inflammable and flexible properties. The optimal ink to form a uniform PDMS dot array is presented in this paper. Both the solvent and PDMS were tuned to form the uniform PDMS dot array. The uniform PDMS dot array was printed with a diameter of around 50 µm, and the array of closely spaced green quantum dots (QDs) mixed with PDMS ink was also printed on the substrate uniformly. While the green QD-PDMS film was printed at a resolution of 1693 dpi, the uniformity was evaluated using the photoluminescence (PL) spectrum and color coordinate value.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ding, Wenfeng, Jiangman Sun, Guanyu Chen, Liangyu Zhou, Jian Wang, Xinggui Gu, Junming Wan, Xiong Pu, Benzhong Tang et Zhong Lin Wang. « Stretchable multi-luminescent fibers with AIEgens ». Journal of Materials Chemistry C 7, no 35 (2019) : 10769–76. http://dx.doi.org/10.1039/c9tc03461g.

Texte intégral
Résumé :
Stretchable multicolor light-emitting fibers were realized by incorporating an ultralow content of AIEgens in polydimethylsiloxane fibers through a continuous dry–wet spinning process for applications in smart textiles.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lee, Moon-Jae, Nam-Heon Lee, Changhee Lee, Do Hoon Hwang et Young Kwan Kim. « P-80 : Efficient Organic White Light-Emitting Devices with Multicolor Emitting Layers ». SID Symposium Digest of Technical Papers 34, no 1 (2003) : 525. http://dx.doi.org/10.1889/1.1832328.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Multicolor emitting"

1

Lee, Ka Man. « Multicolor organic light-emitting devices based on hydroxyquinoline complexes ». HKBU Institutional Repository, 2001. http://repository.hkbu.edu.hk/etd_ra/336.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gopal, Ashwini. « Multicolor colloidal quantum dot based inorganic light emitting diode on silicon : design, fabrication and biomedical applications ». Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-12-2209.

Texte intégral
Résumé :
Controlled patterning of light emitting diodes on semiconductors enables a vast variety of applications such as structured illumination, large-area flexible displays, integrated optoelectronic systems and micro-total analysis systems for real time biomedical screening. We have demonstrated a series of techniques of creating quantum-based (QD) patterned inorganic light emitting devices at room temperature on silicon (Si) substrate. In particular: (I) A combination of QDs self-assembly and microcontact printing techniques were developed to form the light emission monolayer. We expand the self-assembly method with the traditional Langmuir-Schaeffer technique to rapidly deposit monolayers of core: shell quantum dots on flat substrates. A uniform film of QDs self-assembled on water was transferred using hydrophobic polydimethylsiloxane stamps with various nano/micro-scale patterns, and was subsequently stamped. A metal oxide electron transport layer was co-sputtered onto the QDs. The structure was completed by an e-beam evaporating thin metal cathode. Multicolor light emission was observed on application of voltage across the device. (II) We also demonstrate the photolithographic patterning capability of a metal cathode for top emitting QDLEDs on Si substrates. Lithographic patterning technique enables site-controlled patterning and controlled feature size of the electrode with greater accuracy. The stability of inorganic silicon materials and metal oxide based diode structure offers excellent advantages to the device, with no significant damage observed during the patterning and etching steps. Efficient electrical excitation of QDs was demonstrated by both the methods described above. The technique was translated to create localized QD-based light sources for two applications: (1) Three-dimensional scanning probe tip structures for near field imaging. Combined topographic and optical images were acquired using this new class of “self-illuminating” probe in commercial NSOM. The emission wavelength can be tuned through quantum-size effect of QDs. (2) Multispectral excitation sources integrated with microfluidic channels for tumor cell analyses. We were able to detect the variation of sub-cellular features, such as the nucleus-to-cytoplasm ratio, to quantify the absorption at different wavelength upon the near-field illumination of individual tumor cells towards the determination of cancer developmental stage.
text
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Multicolor emitting"

1

Jaiswal, Vishnu V., et D. Haranath. « Quantum confinement effects and feasible mechanisms of multicolor emitting afterglow nanophosphors ». Dans Quantum Dots, 99–137. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-85278-4.00005-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Multicolor emitting"

1

Chi, Solomon W. S., Tzer-Perng Chen, Chuan-Cheng Tu, Chih-Sung Chang, Tzong-Liang Tsai et Mario C. C. Hsieh. « Multicolor white light-emitting diodes for illumination applications ». Dans Optical Science and Technology, SPIE's 48th Annual Meeting, sous la direction de Ian T. Ferguson, Nadarajah Narendran, Steven P. DenBaars et John C. Carrano. SPIE, 2004. http://dx.doi.org/10.1117/12.504680.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gopal, Ashwini, Kazunori Hoshino, Sunmin Kim et Xiaojing Zhang. « Microcontact Printing of Multicolor Quantum Dots Light Emitting Diode on Silicon ». Dans Conference on Lasers and Electro-Optics. Washington, D.C. : OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cmh3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nakajima, Yoshiki, Tetsuya Uchida, Akira Kojima, Bernard Gelloz et Nobuyoshi Koshida. « A Solid-State Multicolor Light-Emitting Device Based on Ballistic Electron Excitations ». Dans 2003 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2003. http://dx.doi.org/10.7567/ssdm.2003.e-2-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rajeswari, R., S. Surendra Babu et C. K. Jayasankar. « Multicolor upconversion luminescence of rare-earth doped Y2CaZnO5nanophosphors for white lighting-emitting diodes ». Dans SPIE OPTO, sous la direction de Klaus P. Streubel, Heonsu Jeon, Li-Wei Tu et Martin Strassburg. SPIE, 2014. http://dx.doi.org/10.1117/12.2039237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Izmailov, Alexandre M., Evgueni V. Novikov, Irina A. Smirnova et Andrey G. Zhiglinskiy. « Investigation of novel resonators for multicolor dye laser emitting in all-visible spectrum ». Dans OE/LASE '94, sous la direction de Richard Scheps. SPIE, 1994. http://dx.doi.org/10.1117/12.172737.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rahim, Mohd Rozaini Abd, Rozeha A. Rashid, Nur Hija Mahalin et Esther Cheng. « The Development of Computer Controlled Multicolor Illumination Network Using RGB based Light Emitting Diodes ». Dans 2nd Malaysia Conferenced on Photonics (MCP). IEEE, 2008. http://dx.doi.org/10.1109/nctt.2008.4814226.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bhave, Gauri, Youngkyu Lee, Kazunori Hoshino et Xiaojing Zhang. « Multicolor colloidal quantum dot based light emitting diodes using a solution processed electron transporting layer ». Dans 2013 IEEE Sensors. IEEE, 2013. http://dx.doi.org/10.1109/icsens.2013.6688183.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Górny, Agata, Marta Sołtys, Lidia Zur, Maurizio Ferrari, Giancarlo C. Righini, Wojciech A. Pisarski et Joanna Pisarska. « Energy transfer and multicolor emission in germanate glasses containing Ce3+ and Pr3+ for white light-emitting diodes ». Dans Fiber Lasers and Glass Photonics : Materials through Applications, sous la direction de Stefano Taccheo, Maurizio Ferrari et Jacob I. Mackenzie. SPIE, 2018. http://dx.doi.org/10.1117/12.2306786.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Jia-yu, Zhang, Gu Pei-fu, Liu Xu et Tang Jing-fa. « Low–Voltage–Driven Thin Film Electroluminescent Device with Stacked Insulators ». Dans Optical Interference Coatings. Washington, D.C. : Optica Publishing Group, 1995. http://dx.doi.org/10.1364/oic.1995.thc28.

Texte intégral
Résumé :
The phenomenon of electroluminescence is the non-thermal conversion of electrical energy into luminous energy, in which the light is generated by impact excitation of a light emitting center by high energy electrons. AC driven thin film electroluminescant(AC-TFEL) devices are very attractive for use as flat panal display because they have a number of advantages, such as high brightness, high resolution, low power dissipation, complete solid-state multicolor flat-panel display ,and potential for use in large area. However, these devices need a high driving voltage of about 200V. This makes it difficult to use a compact driving circuit composed of available ICs, and as a result, lowering the driving voltage is one of the main keys to fabricate practical TFEL displays (1).
Styles APA, Harvard, Vancouver, ISO, etc.
10

Yuan, Bo, Yanhua Song, Weidong Wang, Haifeng Zou, Li Kong et Chuanbo Dai. « A NEW SINGLE-COMPONENT CA20AL26MG3SI3O68:DY3+, EU3+ POTENTIAL PHOSPHOR FOR WHITE-LIGHT EMITTING DIODES : LUMINESCENCE PROPERTIES, ENERGY TRANSFER AND MULTICOLOR LUMINESCENCE ». Dans International Conference on New Materials and Intelligent Manufacturing. Volkson Press, 2018. http://dx.doi.org/10.26480/icnmim.01.2018.16.20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie