Littérature scientifique sur le sujet « MULTIBAND METAMATERIAL ABSORBER (MMA) »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « MULTIBAND METAMATERIAL ABSORBER (MMA) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "MULTIBAND METAMATERIAL ABSORBER (MMA)"

1

Mohanty, Ayesha, Om Prakash Acharya, Bhargav Appasani, Kriangkrai Sooksood et Sushanta Kumar Mohapatra. « A THz Metamaterial Absorber with Multiple Polarization - Insensitive, Sensitive, and Tunable ». ECTI Transactions on Electrical Engineering, Electronics, and Communications 19, no 2 (1 juin 2021) : 165–73. http://dx.doi.org/10.37936/ecti-eec.2021192.242019.

Texte intégral
Résumé :
Terahertz (THz) absorbers are gaining interest in many applications. In this paper, we present the design and simulation of a multiband metamaterial absorber (MMA) with combined polarization properties and prominent absorption at 2.2 THz and 3.9 THz. The MMA comprises two square split-ring resonators and one square ring resonator placed on top of a polyimide dielectric spacer, offering multiband absorption characteristics with maximum absorptivity of 93.18% and 96.09%, respectively. The most protruding feature of this design is that it displays multiple polarization characteristics, including insensitivity, sensitivity, and tunability, even though the structure is similar to those of conventional absorbers. Firstly, the distinctly visible absorption spectra at 1.8 THz, gradually diminishes with an increase in polarization angle and then completely vanishes for TM polarization. Secondly, the prominent band at 2.2 THz is insensitive to changes in polarization of the incident wave, whereas, at 3.9 THz, the absorption band displays polarization tunability characteristics. Due to the multiple characteristics displayed by the structure, this MMA can be simultaneously used for several applications in the terahertz frequency regime such as imaging, terahertz spectroscopy, sensing, and stealth technology.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Saxena, G., Y. Khanna, Y. K. Awasthi et P. Jain. « Multi-Band Polarization Insensitive Ultra-Thin THz Metamaterial Absorber for Imaging and EMI Shielding Applications ». Advanced Electromagnetics 10, no 3 (12 novembre 2021) : 43–49. http://dx.doi.org/10.7716/aem.v10i3.1759.

Texte intégral
Résumé :
this article, a multi-band polarization-insensitive metamaterial absorber is designed for THz imaging and EMI shielding. A unique oval-shaped structure with three circular ring-shaped resonators is proposed with a unit cell dimension of36×36×19.6μm3. The absorbance of the proposed multiband MMA is 98.57%, 90%and 99.85% at 5.58, 7.98-8.84, 11.45THz frequency respectively. Return loss is nearly the same for the changing incident and polarization angle. Therefore, this metamaterial absorber with a wide range of polarization insensitivity is found and it is also suitable for quantum RADAR Imaging, energy harvesting, and optoelectronic devices.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hakim, Mohammad Lutful, Touhidul Alam, Mohammad Tariqul Islam, Mohd Hafiz Baharuddin, Ahmed Alzamil et Md Shabiul Islam. « Quad-Band Polarization-Insensitive Square Split-Ring Resonator (SSRR) with an Inner Jerusalem Cross Metamaterial Absorber for Ku- and K-Band Sensing Applications ». Sensors 22, no 12 (14 juin 2022) : 4489. http://dx.doi.org/10.3390/s22124489.

Texte intégral
Résumé :
The development of metamaterial absorbers has become attractive for various fields of application, such as sensing, detectors, wireless communication, antenna design, emitters, spatial light modulators, etc. Multiband absorbers with polarization insensitivity have drawn significant attention in microwave absorption and sensing research. In this paper, we propose a quad-band polarization-insensitive metamaterial absorber (MMA) for Ku- and K-band applications. The proposed patch comprises two square split-ring resonators (SSRR), four microstrip lines, and an inner Jerusalem cross to generate four corresponding resonances at 12.62 GHz,14.12 GHz, 17.53 GHz, and 19.91 GHz with 97%, 99.51%, 99%, and 99.5% absorption, respectively. The complex values of permittivity, permeability, refractive index, and impedance of MMA were extracted and discussed. The absorption mechanism of the designed MMA was explored by impedance matching, equivalent circuit model, as well as magnetic field and electric field analysis. The overall patch has a rotational-symmetrical structure, which plays a crucial role in acquiring the polarization-insensitive property. The design also shows stable absorption for both transverse electric (TE) and transverse magnetic (TM) modes. Its near-unity absorption and excellent sensing performance make it a potential candidate for sensing applications.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wang, Wenjie, Mingde Feng, Jun Wang, Zhiqiang Li, Jiafu Wang, Hua Ma et Shaobo Qu. « Quadruple-band metamaterial absorber based on the cuboid dielectric particles ». Journal of Advanced Dielectrics 08, no 04 (août 2018) : 1850023. http://dx.doi.org/10.1142/s2010135x18500236.

Texte intégral
Résumé :
In this work, a quadruple-band dielectric metamaterial absorber (MMA) was proposed and studied, which is composed of eight cuboid dielectric particles and a metallic ground plate. When electromagnetic wave is incident on the dielectric particles, dielectric particles act as resonators and produce abundant resonant modes, which can result in perfect absorption. In simulation, four absorption peaks are observed at 9.13, 9.62, 10.0 and 10.46[Formula: see text]GHz with 88%, 89%, 100% and 96%, respectively. By adjusting geometry parameters of the dielectric particles, dielectric MMAs with different bands can be obtained. Further investigation shows that the absorption peaks can be changed by increasing the permittivity of the dielectric. Based on the designing technique of using simple cuboid dielectric particles directly acting as resonator, this work provides a simple method to construct multiband all-dielectric MMA.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hossain, I., M. Samsuzzaman, M. S. J. Singh, B. B. Bais et M. T. Islam. « Numerical investigation of polarization-insensitive multiband metamaterial for terahertz solar absorber ». Digest Journal of Nanomaterials and Biostructures 16, no 2 (2021) : 593–600. http://dx.doi.org/10.15251/djnb.2021.162.593.

Texte intégral
Résumé :
This study presents a nanostructured multiband metamaterial absorber for the optical regime application. The proposed structure is exhibited 0° to 90° polarization insensitivity and up to 45° angular stability with more than 90% peak absorption in between 300 THz800 THz frequency range. Proposed MMA structure is acquired perfect absorption of 99.99% at 571THz, 99.50% at 488.26 THz, 99.32% at 598 THz frequency by adjusting geometrical parameters. Due to perfect impedance matching with plasmonic resonance characteristics, these structures achieved an average absorption of 95.30%, 91.96%, 97.25%, 97.65%, 91%,90%,90.23% in between (337.5 THz-346.5 THz), (471 THz-478 THz), (497.5 THz-505 THz), (519 THz-530.5 THz), 564.5 THz-577 THz), (604 THz-673 THz), (686 THz-708 THz), respectively. The near field pattern of proposed MMA is used to explain the absorption mechanism at resonance frequency point and the geometric parameters are explored and analyzed to demonstrate the performance of the proposed structure. Moreover, CST-HFSS interference is validated the simulation data with the help of the finite element method (FEM). Polarization insensitivity and wide angular stability in terahertz (THz) frequency regime make this structure suitable for the application of magnetic resonance imaging (MRI), color images, thermal imaging and solar cell applications like exploitation of solar energy.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wu, Han, Shijun Ji, Ji Zhao, Chengxin Jiang et Handa Dai. « Design and Analysis of a Five-Band Polarization-Insensitive Metamaterial Absorber ». International Journal of Antennas and Propagation 2020 (7 décembre 2020) : 1–12. http://dx.doi.org/10.1155/2020/8827517.

Texte intégral
Résumé :
A five-band metamaterial absorber (MMA) is presented. The proposed absorber consists of a three-layer structure of the top metal resonator, intermediate dielectric layer, and bottom metal plane. The top structure takes the centroid as the center and spreads out in a three-pronged shape with an average of 360°, and the ends bifurcate again. The calculation was carried out by the professional software to iteratively optimize the absorption effect of MMA in the microwave range. The results show that the MA has five peaks at resonant frequencies of 5.984 GHz, 12.232 GHz, 18.128 GHz, 18.414 GHz, and 20.592 GHz, with peaks of 0.9925, 0.9968, 0.9783, 0.9754, and 0.9975. By analyzing the electromagnetic field and surface current distribution of the absorber, the absorption mechanism is further verified, and the corresponding influence on the absorption spectrum is studied according to different polarization angles and incident angles. The effects of different resonator structure size and dielectric layer thickness on absorption rate were also discussed, and the distribution of electromagnetic fields is analyzed to reveal the existence of electric dipole resonance and magnetic resonance. Through comparing experiments and simulations, it is found that the peaks of the 1st, 2nd, and 5th have smaller absorption errors and frequency deviation, while the peaks of the 3rd and 4th have large ones. The five-band absorber has potential application in multiband electromagnetic stealth, bionic sensor, thermal radiation measuring instrument, and so on.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hannan, Islam, Hoque, Singh et Almutairi. « Design of a Novel Double Negative Metamaterial Absorber Atom for Ku and K Band Applications ». Electronics 8, no 8 (31 juillet 2019) : 853. http://dx.doi.org/10.3390/electronics8080853.

Texte intégral
Résumé :
This paper presents a multiband metamaterial (MM) absorber based on a novel spiral resonator with continuous, dual, and opposite P-shape. The full wave analysis shows 80.06% to 99.95% absorption at frequencies range for Ku and K bands for several substrate materials of 100 mm2 area. The results indicate that the absorption rate remains similar for different polarizing angles in TEM mode with different substrates. With FR4 (Flame Retardant 4) substrate and 64 mm2 ground plane, the design acts as single negative (SNG) MM absorber in K band resonance frequencies (19.75–21.37 GHz) and acts as double negative (DNG) absorber in Ku band resonance frequencies (15.28–17.07 GHz). However, for Rogers 3035 substrate and 36 mm2 ground plane, it acts as an SNG absorber for Ku band resonance frequency 14.64 GHz with 83.25% absorption and as a DNG absorber for K band frequencies (18.24–16.15 GHz) with 83.69% to 94.43% absorption. With Rogers 4300 substrate and 36 mm2 ground plane, it acts as an SNG absorber for Ku band at 15.04 GHz with 89.77% absorption and as DNG absorber for K band frequencies (22.17–26.88 GHz) with 92.87% to 93.72% absorption. The design was fabricated with all three substrates and showed quite similar results as simulation. In comparison with other broadband absorbers, this proposed MM absorber illustrated broad incidence angles in TEM mode.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gu, Chao, Shao-Bo Qu, Zhi-Bin Pei, Zhuo Xu, Jia Liu et Wei Gu. « Multiband terahertz metamaterial absorber ». Chinese Physics B 20, no 1 (janvier 2011) : 017801. http://dx.doi.org/10.1088/1674-1056/20/1/017801.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Xu, Zong-Cheng, Run-Mei Gao, Chun-Feng Ding, Ya-Ting Zhang et Jian-Quan Yao. « Multiband Metamaterial Absorber at Terahertz Frequencies ». Chinese Physics Letters 31, no 5 (mai 2014) : 054205. http://dx.doi.org/10.1088/0256-307x/31/5/054205.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tian, Yiran, Guangjun Wen et Yongjun Huang. « Multiband Negative Permittivity Metamaterials and Absorbers ». Advances in OptoElectronics 2013 (28 juillet 2013) : 1–7. http://dx.doi.org/10.1155/2013/269170.

Texte intégral
Résumé :
Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "MULTIBAND METAMATERIAL ABSORBER (MMA)"

1

SAXENA, GAURAV. « DESIGN AND ANALYSIS OF MICROWAVE COMPONENTS FOR MIMO COMMUNICATION SYSTEM ». Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2020. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18776.

Texte intégral
Résumé :
Wireless communication demands better channel capacity with a high data rate in the modern era. To fulfill these demands, the MIMO-communication systems are developed that use manifold antennas for transmitter and receiver end. MIMO is a state-of-art technology that improves the reliability of the communication systems by utilizing the diversity technique to mitigate the multi-path fading issues, where signals may come together belligerently at the receiver. Improve spectral efficiency is achieved by the total transmitted power spreading over the antennas. Thus, MIMO can increase channel capacities as well as the reliability of the communication system without sacrificing extra transmitted power or power spectrum. Several MIMO antennas have been designed in the literature to improve their characteristics in terms of impedance bandwidth; miniaturization & isolation improvement. The MIMO-communication systems with THz range are required for high data speed in Terabit/sec (Tbps). Also, it is providing very high throughput per device (from multiple Gbps to several Tera-bps) including per area efficiency (bps/km2). It is also predicted that the world monthly traffic in smartphones will be about 40 Peta-bytes in 2021, so the demand for MIMO antennas will be increased in the future. In this thesis, various microwave components for the MIMO wireless communication system has been analyzed and designed. Three major components designed and analyzed in this thesis are 1. MIMO Antennas 2. Metamaterial Absorber 3. UWB Microwave Filter MIMO Antennas: In this thesis, various MIMO antennas for UWB, SWB, and Multiband applications have been designed. Various decoupling techniques to avoid the v interference between antenna elements are designed which enhancing the diversity parameters with improved channel capacity for modern wireless applications. To mitigate the interference between bands and to improve the reliability of the signals, a notch characteristic has been introduced. SAR analysis also discusses in this thesis with the human head and confirms that proposed MIMO antennas are in the acceptable range with 1g and 10g of bio tissues given by FCC and EU for mobile and other near field applications. All the MIMO antennas with different frequency characteristics are discussed in Chapter-2 to Chapter-6. Metamaterial Absorber: To improve the isolation level in MIMO antennas as well as to minimize the Radar Cross Section (RCS) and Electromagnetic Interference (EMI), a design of multiband metamaterial absorber (MMA) for X-band applications has been suggested. This MMA provides three high absorbance bands at 8.2GHz, 9.45GHz, and 12.45GHz with 99.4%, 96.4%, and 91.25% absorbance respectively. Proposed MMA is polarization insensitive in all three bands with minimum RCS -33.2dBm2. This absorber structure has designed on FR-4 (4.4) substrate having tanδ = 0.02 with unit cell dimension 20×20×1mm3. So the proposed absorber is found appropriate for stealth aircraft, RCS and EMC reduction, isolation in MIMO antenna, imaging, and sensing in the X-band applications, discussed in Chapter-7. UWB Microwave Filter: In this research work, the design of the UWB filter with extended stopband characteristics by using a parallel-coupled line, open-ended line, multimode resonator (MMR), and defected ground structure (DGS) has been presented. This filter provides good return and insertion loss in the passband (3.1-10.6GHz) as well as stopband (10.8-18GHz). The group delay of the filter is almost constant throughout the passband. Detailed analysis of supportive coupled, feeding, and the open-ended line is vi verified with equivalent circuits. The prototype of the filter is compact as 22×20mm2 with a 109% fractional bandwidth. The proposed filter is suited for recent weather reporting Radar, Imaging, and Satellite receiver systems because simulated results have good agreement with measured results as discussed in the Chapter-8. RESEARCH OBJECTIVES: The major objectives of the research work are listed below: 1. To enhance the impedance bandwidth of the MIMO antenna and microstrip filter for various wireless applications. 2. To design and analyze the circularly polarized MIMO antenna for GPS, vehicular and 5G applications. 3. To enhance the isolation between the various elements of the MIMO antenna, to improve the various diversity parameters. 4. To enhance the specific absorption ratio (SAR) performance of the MIMO antenna for a handhold and mobile applications. 5. To design a Metasurface for stealth and isolation improvement in MIMO antenna applications.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "MULTIBAND METAMATERIAL ABSORBER (MMA)"

1

Shruti et Sasmita Pahadsingh. « Multiband Ultrathin Terahertz Metamaterial Absorber for Sensing Application ». Dans Lecture Notes in Electrical Engineering, 525–32. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4866-0_64.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sahu, Arpit, Ravi Yadav, Trivesh Kumar et Ravi Panwar. « Design and Analysis of Triple Split Ring Resonator-Based Polarization-Insensitive, Multiband Metamaterial Absorber ». Dans International Conference on Intelligent Computing and Smart Communication 2019, 523–31. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0633-8_51.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wen, Jingda, Yinpeng Wang et Yuhang Wang. « Advanced Engineering Design of the Metamaterial Absorbers ». Dans Advances in Wireless Technologies and Telecommunication, 136–79. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-8287-2.ch007.

Texte intégral
Résumé :
In this chapter, the authors introduce the concept of MMA through reviewing the development of conventional absorbers. To illustrate the important operating mechanism, design process, and functionalization of the metamaterial absorber, they show the absorption relation of the absorber, impedance matching condition, equivalent circuit model, the evaluation of thickness, and oblique incidence condition in the first part. Then, they show the basic design method of the absorber, including parameter sweep method, equivalent circuit method, and deep learning method. Next, the planar integration strategy, vertical stacking strategy, and dispersive material strategy for broadband absorption bandwidth are discussed. In addition, they illustrate the tunable design of absorber, involving lumped element design method, thermal tunable design method, electrical tunable design method, mechanical tunable method, and reconfigurable tunable method. Finally, they talk about the basic engineering application of the metamaterial absorber in practical engineering application.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "MULTIBAND METAMATERIAL ABSORBER (MMA)"

1

Bouras, Khedidja, Abdelhadi Labiad et Mouloud Bouzouad. « Multiband Frequency Metamaterial Absorber ». Dans 2019 International Conference on Advanced Electrical Engineering (ICAEE). IEEE, 2019. http://dx.doi.org/10.1109/icaee47123.2019.9014769.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yu, Xiebin, Yaoliang Song et Shicheng Fan. « Research on a multiband metamaterial absorber ». Dans 2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, RESOURCE AND ENVIRONMENTAL ENGINEERING (MSREE 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5005304.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mishra, R. K., Ravi Dutt Gupta et Suwarna Datar. « Metamaterial Absorber (MMA) In X-Band, For Stealth Applications ». Dans 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC). IEEE, 2019. http://dx.doi.org/10.23919/ursiap-rasc.2019.8738345.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ayop, O., M. K. A. Rahim, N. A. Murad et N. A. Samsuri. « Dual-directional polarization insensitive multiband metamaterial absorber ». Dans 2015 IEEE International RF and Microwave Conference (RFM). IEEE, 2015. http://dx.doi.org/10.1109/rfm.2015.7587746.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

P., Sathishkannan, Rajesh K. Singh et K. P. Ray. « Multiband Microwave Metamaterial Absorber for EMI Reduction ». Dans 2023 Joint Asia-Pacific International Symposium on Electromagnetic Compatibility and International Conference on ElectroMagnetic Interference & Compatibility (APEMC/INCEMIC). IEEE, 2023. http://dx.doi.org/10.1109/apemc57782.2023.10217664.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Chen, Xu, et Wenhui Fan. « Study on an ultrathin terahertz multiband metamaterial absorber ». Dans International Symposium on Ultrafast Phenomena and Terahertz Waves. Washington, D.C. : OSA, 2014. http://dx.doi.org/10.1364/isuptw.2014.ps_s2s2_p13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jain, Priyanka, et Keshav Bhati. « DESIGN AND ANALYSIS OF RING MULTIBAND METAMATERIAL ABSORBER ». Dans 2021 6th International Conference on Communication and Electronics Systems (ICCES). IEEE, 2021. http://dx.doi.org/10.1109/icces51350.2021.9489035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Dang, Kezheng, Zijian He, Zhigang Li, Lei Miao et Hao Liu. « Design of multiband metamaterial absorber based on artificial magnetic conductor ». Dans Applied Optics and Photonics China (AOPC2015), sous la direction de Haimei Gong, Nanjian Wu, Yang Ni, Weibiao Chen et Jin Lu. SPIE, 2015. http://dx.doi.org/10.1117/12.2202815.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Gill, Baljit Singh, et Parvinder Kaur Gill. « Quad-Band Metamaterial Absorber Based on Coplanar Cu Films for Refractive Index Sensing ». Dans 3D Image Acquisition and Display : Technology, Perception and Applications. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/3d.2022.jw2a.25.

Texte intégral
Résumé :
We proposed gas sensor based on a simple configuration of a quad-band metamaterial absorber (MMA), the unit cell of the proposed sensor is designed with three metallic rods placed inside a square metallic ring, on the top of a grounded dielectric substrate. The proposed sensor has a sensitivity 170GHz/RIU.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Saxena, Gaurav, Shivam Mishra, Shivam Chaurasia, Shrestha Gupta et Mohd Shibly. « Polarization Insensitive Multiband Metamaterial Absorber for ISI reduction in X and Ku Band ». Dans 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE, 2021. http://dx.doi.org/10.1109/icacite51222.2021.9404624.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie