Articles de revues sur le sujet « Multiaxial fatigue of rubber »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Multiaxial fatigue of rubber.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Multiaxial fatigue of rubber ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Poisson, J. L., S. Méo, F. Lacroix, G. Berton et N. Ranganathan. « MULTIAXIAL FATIGUE CRITERIA APPLIED TO A POLYCHLOROPRENE RUBBER ». Rubber Chemistry and Technology 85, no 1 (1 mars 2012) : 80–91. http://dx.doi.org/10.5254/1.3672431.

Texte intégral
Résumé :
Abstract Due to their interesting mechanical behavior and their diversity, rubber materials are more and more used in industry. Indeed, formulating a multiaxial fatigue criterion to predict fatigue lives of rubber components constitutes an important objective to conceive rubber products. An experimental campaign is developed here to study the multiaxial fatigue behavior of polychloroprene rubber. To reproduce multiaxial solicitations, combined tension–torsion tests were carried out on a dumbbell-type specimen (an axisymmetric rubber part bonded to metal parts with a reduced section at mid-height), with several values of phase angles between tension and torsion. A constitutive model is needed to calculate multiaxial fatigue criteria, and then analyze fatigue results. A large strain viscoelastic model, based on the tension–torsion kinematics, is then used to determine the material's stress–strain law. Dissipated energy density is introduced as a multiaxial fatigue criterion, and compared with those usually used in the literature. A multiaxial Haigh diagram is then built to observe the influence of Rd-ratio (ratio of the axial displacement's minimum to the axial displacement's maximum) on the multiaxial fatigue lives of polychloroprene rubber.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mars, W. V. « Multiaxial Fatigue Crack Initiation in Rubber ». Tire Science and Technology 29, no 3 (1 juillet 2001) : 171–85. http://dx.doi.org/10.2346/1.2135237.

Texte intégral
Résumé :
Abstract This paper describes a new model for predicting multiaxial fatigue crack initiation in rubber. The work is motivated by a need to predict crack initiation life in tires, based on strain histories obtained via finite element analysis. The new model avoids the need to explicitly include cracks in the finite element model, and applies when the cracks are small compared to the strain gradient. The model links the far-field strain state to the energy release rate of an assumed intrinsic flaw. This is accomplished through a new parameter, the cracking energy density. The cracking energy density is the portion of the total elastic strain energy density that is available to be released on a given material plane. The model includes an algorithm to select the material plane which minimizes the life prediction for a given strain history. The consequences of the theory for simple strain histories are presented, as well as predictions for more complicated histories. The theory is compared with published data, and with new results from recent combined axial/torsion fatigue experiments.
Styles APA, Harvard, Vancouver, ISO, etc.
3

ZINE, A., N. BENSEDDIQ, M. NAIT ABDELAZIZ, N. AIT HOCINE et D. BOUAMI. « Prediction of rubber fatigue life under multiaxial loading ». Fatigue Fracture of Engineering Materials and Structures 29, no 3 (mars 2006) : 267–78. http://dx.doi.org/10.1111/j.1460-2695.2005.00989.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

SAINTIER, N., G. CAILLETAUD et R. PIQUES. « Multiaxial fatigue life prediction for a natural rubber ». International Journal of Fatigue 28, no 5-6 (mai 2006) : 530–39. http://dx.doi.org/10.1016/j.ijfatigue.2005.05.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ranganathan, Narayanaswami. « The Energy Based Approach to Fatigue ». Advanced Materials Research 891-892 (mars 2014) : 821–26. http://dx.doi.org/10.4028/www.scientific.net/amr.891-892.821.

Texte intégral
Résumé :
This paper presents the energy based approaches developed to describe different aspects of fatigue. Different topics covered include fatigue crack initiation, crack initiation at a notch, multiaxial fatigue and fatigue crack propagation. Specific examples treated include, crack initiation at a notch, cracking at solder joint in electronic application, fatigue life estimation in a synthetic rubber and fatigue crack propagation in a metallic material.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wang, Y. P., X. Chen et W. W. Yu. « Microscopic mechanism of multiaxial fatigue of vulcanised natural rubber ». Plastics, Rubber and Composites 40, no 10 (décembre 2011) : 491–96. http://dx.doi.org/10.1179/1743289811y.0000000012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tobajas, Rafael, Daniel Elduque, Elena Ibarz, Carlos Javierre et Luis Gracia. « A New Multiparameter Model for Multiaxial Fatigue Life Prediction of Rubber Materials ». Polymers 12, no 5 (23 mai 2020) : 1194. http://dx.doi.org/10.3390/polym12051194.

Texte intégral
Résumé :
Most of the mechanical components manufactured in rubber materials experience fluctuating loads, which cause material fatigue, significantly reducing their life. Different models have been used to approach this problem. However, most of them just provide life prediction only valid for each of the specific studied material and type of specimen used for the experimental testing. This work focuses on the development of a new generalized model of multiaxial fatigue for rubber materials, introducing a multiparameter variable to improve fatigue life prediction by considering simultaneously relevant information concerning stresses, strains, and strain energies. The model is verified through its correlation with several published fatigue tests for different rubber materials. The proposed model has been compared with more than 20 different parameters used in the specialized literature, calculating the value of the R2 coefficient by comparing the predicted values of every model, with the experimental ones. The obtained results show a significant improvement in the fatigue life prediction. The proposed model does not aim to be a universal and definitive approach for elastomer fatigue, but it provides a reliable general tool that can be used for processing data obtained from experimental tests carried out under different conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
8

MARS, W., et A. FATEMI. « Multiaxial stress effects on fatigue behavior of filled natural rubber ». International Journal of Fatigue 28, no 5-6 (mai 2006) : 521–29. http://dx.doi.org/10.1016/j.ijfatigue.2005.07.040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zine, A., N. Benseddiq et M. Naït Abdelaziz. « Rubber fatigue life under multiaxial loading : Numerical and experimental investigations ». International Journal of Fatigue 33, no 10 (octobre 2011) : 1360–68. http://dx.doi.org/10.1016/j.ijfatigue.2011.05.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Poisson, J. L., S. Méo, F. Lacroix, G. Berton, M. Hosséini et N. Ranganathan. « COMPARISON OF FATIGUE CRITERIA UNDER PROPORTIONAL AND NON-PROPORTIONAL MULTIAXIAL LOADING ». Rubber Chemistry and Technology 91, no 2 (1 avril 2018) : 320–38. http://dx.doi.org/10.5254/rct.18.82696.

Texte intégral
Résumé :
ABSTRACTOwing to their interesting mechanical behavior and their diversity, rubberlike materials are more and more used in the industry. Previous works (Poisson et al.) presented an important experimental investigation on the multiaxial fatigue of polychloroprene rubber, with both proportional and non-proportional combinations of tension and torsion loads (with a large range of loads and three different phase angles: 0°; 90°, 180°). A fatigue criterion, based on the dissipated energy density (DED) was introduced. Comparing this parameter to the most important criteria available on literature—which are the strain energy density (SED), the cracking energy density (CED), and the Eshelby tensor—in their accuracy allows one to predict fatigue life of rubberlike material. All the predictors are computed with an analytical viscoelastic model based on the kinematics of a combined tension and torsion loading applied on a cylinder. This cylinder represents the central part of the axisymetric dumbbell specimen, and the model was identified with a polychloroprene rubber. It is finally shown that the DED and CED reach more conclusive results, provided the structure, the material, and the loads investigated.
Styles APA, Harvard, Vancouver, ISO, etc.
11

MARS, W. V., et A. FATEMI. « Multiaxial fatigue of rubber : Part I : equivalence criteria and theoretical aspects ». Fatigue Fracture of Engineering Materials and Structures 28, no 6 (juin 2005) : 515–22. http://dx.doi.org/10.1111/j.1460-2695.2005.00891.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

MARS, W. V., et A. FATEMI. « Multiaxial fatigue of rubber : Part II : experimental observations and life predictions ». Fatigue Fracture of Engineering Materials and Structures 28, no 6 (juin 2005) : 523–38. http://dx.doi.org/10.1111/j.1460-2695.2005.00895.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

SAINTIER, N., G. CAILLETAUD et R. PIQUES. « Crack initiation and propagation under multiaxial fatigue in a natural rubber ». International Journal of Fatigue 28, no 1 (janvier 2006) : 61–72. http://dx.doi.org/10.1016/j.ijfatigue.2005.03.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

VERRON, E., et A. ANDRIYANA. « Definition of a new predictor for multiaxial fatigue crack nucleation in rubber ». Journal of the Mechanics and Physics of Solids 56, no 2 (février 2008) : 417–43. http://dx.doi.org/10.1016/j.jmps.2007.05.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Mars, W. V. « Cracking Energy Density as a Predictor of Fatigue Life under Multiaxial Conditions ». Rubber Chemistry and Technology 75, no 1 (1 mars 2002) : 1–17. http://dx.doi.org/10.5254/1.3547670.

Texte intégral
Résumé :
Abstract Rubber parts in service often experience complex strain histories that can cause mechanical failure. The ability to predict the effects of complex strain histories on fatigue life is therefore a critical need. This paper presents recent results of cyclic, combined tension/torsion fatigue experiments, and compares them with predictions based on a new parameter, the Cracking Energy Density. The Cracking Energy Density is the stored elastic energy density that is available to a crack on a given material plane, and can be calculated for an arbitrarily complex strain history. The ability of Cracking Energy Density to predict the fatigue life and cracking plane is evaluated for both in-phase and out-of-phase histories of combined axial and shear strain.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Rublon, Pierre, Bertrand Huneau, Erwan Verron, Nicolas Saintier, Stéphanie Beurrot, Adrien Leygue, Cristian Mocuta, Dominique Thiaudière et Daniel Berghezan. « Multiaxial deformation and strain-induced crystallization around a fatigue crack in natural rubber ». Engineering Fracture Mechanics 123 (juin 2014) : 59–69. http://dx.doi.org/10.1016/j.engfracmech.2014.04.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Belkhiria, Salma, Adel Hamdi et Raouf Fathallah. « Cracking energy density for rubber materials : Computation and implementation in multiaxial fatigue design ». Polymer Engineering & ; Science 60, no 9 (7 juillet 2020) : 2190–203. http://dx.doi.org/10.1002/pen.25462.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Moon, Seong-In, Chang-Su Woo et Wan-Doo Kim. « Study on the Determination of Fatigue Damage Parameter for Rubber Component under Multiaxial Loading ». Elastomers and Composites 47, no 3 (30 septembre 2012) : 194–200. http://dx.doi.org/10.7473/ec.2012.47.3.194.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Ayoub, G., M. Naït-abdelaziz, F. Zaïri et J. M. Gloaguen. « Multiaxial fatigue life prediction of rubber-like materials using the continuum damage mechanics approach ». Procedia Engineering 2, no 1 (avril 2010) : 985–93. http://dx.doi.org/10.1016/j.proeng.2010.03.107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Luo, Robert Keqi. « Effective stress criterion for rubber multiaxial fatigue under both proportional and non-proportional loadings ». Engineering Failure Analysis 121 (mars 2021) : 105172. http://dx.doi.org/10.1016/j.engfailanal.2020.105172.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Mars, W. V., et A. Fatemi. « Nucleation and growth of small fatigue cracks in filled natural rubber under multiaxial loading ». Journal of Materials Science 41, no 22 (17 octobre 2006) : 7324–32. http://dx.doi.org/10.1007/s10853-006-0962-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Le Cam, Jean-Benoît, Bertrand Huneau et Erwan Verron. « Fatigue damage in carbon black filled natural rubber under uni- and multiaxial loading conditions ». International Journal of Fatigue 52 (juillet 2013) : 82–94. http://dx.doi.org/10.1016/j.ijfatigue.2013.02.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Ebbott, T. G. « An Application of Finite Element-Based Fracture Mechanics Analysis to Cord-Rubber Structures ». Tire Science and Technology 24, no 3 (1 juillet 1996) : 220–35. http://dx.doi.org/10.2346/1.2137520.

Texte intégral
Résumé :
Abstract A finite element-based method to analyze the severity of internal cracks in cord-rubber structures is presented. The method includes materials testing to characterize rubber fatigue behavior, a global-local finite element analysis to provide the detail necessary to model explicitly an internal crack, and use of the J-integral and virtual crack closure techniques for energy release rate evaluation. Analysis of the multiaxial and cyclic fracture situation is carried out by considering the cycle of each mode of fracture separately and then combining the effect of each mode to determine the total effect. Crack growth rates in the structure are assumed to be the same as the crack growth rate in a laboratory specimen at the same level of cyclic energy release rate. Results are presented for a material change in a critical tire region.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Gosar, Ales, Marko Nagode et Simon Oman. « Continuous fatigue damage prediction of a rubber fibre composite structure using multiaxial energy-based approach ». Fatigue & ; Fracture of Engineering Materials & ; Structures 42, no 1 (20 août 2018) : 307–20. http://dx.doi.org/10.1111/ffe.12908.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Mars, W. V., et A. Fatemi. « The Correlation of Fatigue Crack Growth Rates in Rubber Subjected to Multiaxial Loading Using Continuum Mechanical Parameters ». Rubber Chemistry and Technology 80, no 1 (1 mars 2007) : 169–82. http://dx.doi.org/10.5254/1.3548164.

Texte intégral
Résumé :
Abstract Although both the crack nucleation and growth stages of the fatigue failure process in rubber are manifestations of the same characteristic material behavior, the nucleation stage deserves special attention. In this case, continuum mechanical parameters may be used to characterize the driving forces of small cracks, without reference to the geometry of the test piece. The ability to estimate crack driving forces from continuum mechanical parameters during the growth process of small cracks has been investigated by correlating three different parameters (maximum principal strain, strain energy density, and cracking energy density) to rates of crack growth observed photographically during fatigue tests on initially uncracked specimens. Significant scatter in crack growth rates was observed resulting from high crack density and crack interactions. These results are also compared to crack growth measurements made on a pure shear (planar tension) test piece. The difference between continuum parameters that refer to a specific material plane, and those that do not is emphasized. Generally, the maximum principal strain and cracking energy density parameters provided similar levels of correlation. The strain energy density parameter consistently gave the poorest correlation. An advantage of the cracking energy density is that it considers the experiences of specific planes embedded in the material (i.e. it is a plane-specific parameter).
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ayoub, G., M. Naït-Abdelaziz, F. Zaïri, J. M. Gloaguen et P. Charrier. « A continuum damage model for the high-cycle fatigue life prediction of styrene-butadiene rubber under multiaxial loading ». International Journal of Solids and Structures 48, no 18 (septembre 2011) : 2458–66. http://dx.doi.org/10.1016/j.ijsolstr.2011.04.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Mars, William V., Yintao Wei, Wang Hao et Mark A. Bauman. « Computing Tire Component Durability via Critical Plane Analysis ». Tire Science and Technology 47, no 1 (1 mars 2019) : 31–54. http://dx.doi.org/10.2346/tire.19.150090.

Texte intégral
Résumé :
ABSTRACT Tire developers are responsible for designing against the possibility of crack development in each of the various components of a tire. The task requires knowledge of the fatigue behavior of each compound in the tire, as well as adequate accounting for the multiaxial stresses carried by tire materials. The analysis is illustrated here using the Endurica CL fatigue solver for the case of a 1200R20 TBR tire operating at 837 kPa under loads ranging from 66 to 170% of rated load. The fatigue behavior of the tire's materials is described from a fracture mechanical viewpoint, with care taken to specify each of the several phenomena (crack growth rate, crack precursor size, strain crystallization, fatigue threshold) that govern. The analysis of crack development is made by considering how many cycles are required to grow cracks of various potential orientations at each element of the model. The most critical plane is then identified as the plane with the shortest fatigue life. We consider each component of the tire and show that where cracks develop from precursors intrinsic to the rubber compound (sidewall, tread grooves, innerliner) the critical plane analysis provides a comprehensive view of the failure mechanics. For cases where a crack develops near a stress singularity (i.e., belt-edge separation), the critical plane analysis remains advantageous for design guidance, particularly relative to analysis approaches based upon scalar invariant theories (i.e., strain energy density) that neglect to account for crack closure effects.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Ayoub, G., M. Naït-Abdelaziz et F. Zaïri. « Multiaxial fatigue life predictors for rubbers : Application of recent developments to a carbon-filled SBR ». International Journal of Fatigue 66 (septembre 2014) : 168–76. http://dx.doi.org/10.1016/j.ijfatigue.2014.03.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Abrate, S. « The Mechanics of Short Fiber-Reinforced Composites : A Review ». Rubber Chemistry and Technology 59, no 3 (1 juillet 1986) : 384–404. http://dx.doi.org/10.5254/1.3538207.

Texte intégral
Résumé :
Abstract Proper constitutive equations and transformation laws to describe short-fiber-reinforced composites have been reviewed. The mechanisms of load transfer between matrix and fibers have been presented. Micromechanics analyses were discussed in order to predict mechanical properties of the composite given those of the constituents. Such approaches have been used successfully for cord-rubber and particulate-filled elastomeric composites. The use of such methods for short-fiber reinforcement has been limited so far. The problem is more complex in this case, but the need for a reliable method is even stronger in order to evaluate the influence of a parameter change on the various mechanical properties. Elastomeric composites pose a greater change due to the large ratio of fiber-to-matrix moduli, and predictions may not always be accurate. However, the interest of micromechanics approaches is that they allow determination of the effect of a perturbation in the parameters about a given level. Areas for future work include the development of micromechanics methods to determine viscoelastic constants and strength under various loading conditions. The development of a multiaxial strength criterion is needed, and basic fatigue failure mechanisms have to be studied.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Xu, Zongchao, Stephen Jerrams, Hao Guo, Yanfen Zhou, Liang Jiang, Yangyang Gao, Liqun Zhang, Li Liu et Shipeng Wen. « Influence of graphene oxide and carbon nanotubes on the fatigue properties of silica/styrene-butadiene rubber composites under uniaxial and multiaxial cyclic loading ». International Journal of Fatigue 131 (février 2020) : 105388. http://dx.doi.org/10.1016/j.ijfatigue.2019.105388.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Luo, Robert Keqi. « Effective strain criterion under multimode and multiaxial loadings – A rubber S–N curve with the scatter-band factor of 1.6 from 90 fatigue cases ». Express Polymer Letters 16, no 2 (2022) : 130–41. http://dx.doi.org/10.3144/expresspolymlett.2022.11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Ayoub, G., M. Naït-Abdelaziz, F. Zaïri, J. M. Gloaguen et P. Charrier. « Fatigue life prediction of rubber-like materials under multiaxial loading using a continuum damage mechanics approach : Effects of two-blocks loading and R ratio ». Mechanics of Materials 52 (septembre 2012) : 87–102. http://dx.doi.org/10.1016/j.mechmat.2012.03.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Shang, De Guang, Guo Qin Sun, Jing Deng et Chu Liang Yan. « Multiaxial Fatigue Damage Models ». Key Engineering Materials 324-325 (novembre 2006) : 747–50. http://dx.doi.org/10.4028/www.scientific.net/kem.324-325.747.

Texte intégral
Résumé :
Two multiaxial damage parameters are proposed in this paper. The proposed fatigue damage parameters do not include any weight constants, which can be used under either multiaxial proportional loading or non-proportional loading. On the basis of the research on the critical plane approach for the tension-torsion thin tubular multiaxial fatigue specimens, two multiaxial fatigue damage models are proposed by combining the maximum shear strain and the normal strain excursion between adjacent turning points of the maximum shear strain on the critical plane. The proposed multiaxial fatigue damage models are used to predict the fatigue lives of the tension-torsion thin tube, and the results show that a good agreement is demonstrated with experimental data.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Ellyin, Fernand. « Multiaxial Fatigue--A Perspective ». Key Engineering Materials 345-346 (août 2007) : 205–10. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.205.

Texte intégral
Résumé :
Research on the fatigue resistance of mechanical components/structures has been proceeding for nearly a century and a half. Yet, there is no universally agreed upon theory that can predict most aspects of fatigue failure. The reason is the complexity of phenomenon and its dependence on the microstructure. Here, we present a strain energy based damage parameter which has an underlying microscopic basis. A master life curve is subsequently defined which correlates very well with experimental data.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Socie, D. « Multiaxial Fatigue Damage Models ». Journal of Engineering Materials and Technology 109, no 4 (1 octobre 1987) : 293–98. http://dx.doi.org/10.1115/1.3225980.

Texte intégral
Résumé :
Two multiaxial fatigue damage models are proposed: a shear strain model for failures that are primarily mode II crack growth and a tensile strain model for failures that are primarily mode I crack growth. The failure mode is shown to be dependent on material, strain range and hydrostatic stress state. Tests to support these models were conducted with Inconel 718, SAE 1045, and AISI Type 304 stainless steel tubular specimens in strain control. Both proportional and non-proportional loading histories were considered. It is shown that the additional cyclic hardening that accompanies out of phase loading cannot be neglected in the fatigue damage model.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Ellyin, F., et K. Golos. « Multiaxial Fatigue Damage Criterion ». Journal of Engineering Materials and Technology 110, no 1 (1 janvier 1988) : 63–68. http://dx.doi.org/10.1115/1.3226012.

Texte intégral
Résumé :
A multiaxial fatigue failure criterion is proposed based on the strain energy density damage law. The proposed criterion is hydrostatic pressure sensitive; includes the effect of the mean stress, and applies to materials which do not obey the idealized Masing type description. The material constants can be evaluated from two simple test results, e.g., uniaxial tension, and torsion fatigue tests. The predicted results are compared with biaxial tests and the agreement is found to be fairly good. A desirable feature of this criterion is its unifying nature for both short and long cyclic lives. It is also consistent with the crack initiation and propagation phases of the fatigue life, in the sense that both of these phases can be related to the strain energy density either locally or globally.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Chateauminois, Antoine. « Multiaxial fatigue and fracture ». Tribology International 34, no 10 (octobre 2001) : 725–26. http://dx.doi.org/10.1016/s0301-679x(01)00060-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Ainsworth, R. A. « Multiaxial Fatigue and Fracture ». International Journal of Pressure Vessels and Piping 77, no 7 (juin 2000) : 435–36. http://dx.doi.org/10.1016/s0308-0161(00)00039-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Hales, R. « Multiaxial creep-fatigue rules ». Nuclear Engineering and Design 153, no 2-3 (janvier 1995) : 257–64. http://dx.doi.org/10.1016/0029-5493(94)00832-j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Hales, R., et R. A. Ainsworth. « Multiaxial creep–fatigue rules ». Nuclear Engineering and Design 153, no 2-3 (janvier 1995) : 257–64. http://dx.doi.org/10.1016/0029-5493(95)90017-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Radhakrishnan, V. M. « Multiaxial fatigue — An overview ». Sadhana 20, no 1 (février 1995) : 103–22. http://dx.doi.org/10.1007/bf02747286.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Lu, Chun, Jiliang Mo, Ruixue Sun, Yuanke Wu et Zhiyong Fan. « Investigation into Multiaxial Character of Thermomechanical Fatigue Damage on High-Speed Railway Brake Disc ». Vehicles 3, no 2 (1 juin 2021) : 287–99. http://dx.doi.org/10.3390/vehicles3020018.

Texte intégral
Résumé :
The multiaxial character of high-speed railway brake disc thermomechanical fatigue damage is studied in this work. Although the amplitudes and distributions of temperature, strain and stress are similar with uniform and rotating loading methods, the multiaxial behavior and out-of-phase failure status can only be revealed by the latter one. With the help of a multiaxial fatigue model, fatigue damage evaluation and fatigue life prediction are implemented, the contribution of a uniaxial fatigue parameter, multiaxial fatigue parameter and out-of-phase failure parameter to the total damage is discussed, and it is found that using the amplitude and distribution of temperature, stress and strain for fatigue evaluation will lead to an underestimation of brake disc thermomechanical fatigue damage. The results indicate that the brake disc thermomechanical fatigue damage belongs to a type of multiaxial fatigue. Using a uniaxial fatigue parameter causes around 14% underestimation of fatigue damage, while employing a multiaxial fatigue parameter without the consideration of out-of-phase failure will lead to an underestimation of about 5%. This work explains the importance of studying the thermomechanical fatigue damage of the brake disc from the perspective of multiaxial fatigue.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Liu, Jianhui, Xin Lv, Yaobing Wei, Xuemei Pan, Yifan Jin et Youliang Wang. « A novel model for low-cycle multiaxial fatigue life prediction based on the critical plane-damage parameter ». Science Progress 103, no 3 (juillet 2020) : 003685042093622. http://dx.doi.org/10.1177/0036850420936220.

Texte intégral
Résumé :
Multiaxial fatigue of the components is a very complex behavior. This analyzes the multiaxial fatigue failure mechanism, reviews and compares the advantages and disadvantages of the classic model. The fatigue failure mechanism and fatigue life under multiaxial loading are derived through theoretical analysis and formulas, and finally verified with the results of multiaxial fatigue tests. The model of multiaxial fatigue life for low-cycle fatigue life prediction model not only improves the prediction accuracy of the classic model, but also considers the effects of non-proportional additional hardening phenomena and fatigue failure modes. The model is proved to be effective in low-cycle fatigue life prediction under different loading paths and types for different materials. Compared with the other three classical models, the proposed model has higher life prediction accuracy and good engineering applicability.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Li, C. G., et P. S. Steif. « Multiaxial Cyclic Response of Filled Rubber ». Rubber Chemistry and Technology 73, no 2 (1 mai 2000) : 193–204. http://dx.doi.org/10.5254/1.3547584.

Texte intégral
Résumé :
Abstract Cyclic response of filled rubber to simultaneous combinations of shear and extension is studied experimentally. Both in-phase (elastic) and out-of-phase (dissipative) portions of the response are measured for simple shear, uniaxial tension, and combinations of the two. As noted by other researchers, the response is nonlinear, with a strong dependence on strain amplitude. However, it is shown that the response to tension and to combinations of strains can be approximately related to the response to simple shear. Such correlations are useful in predicting the response of rubber-based components subjected to complex strain cycles when only experimental data on shear is available.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Wang, Lei, Wu Zhen Li et Tian Zhong Sui. « Review of Multiaxial Fatigue Life Prediction Technology under Complex Loading ». Advanced Materials Research 118-120 (juin 2010) : 283–88. http://dx.doi.org/10.4028/www.scientific.net/amr.118-120.283.

Texte intégral
Résumé :
The research on multiaxial fatigue life prediction methods is reviewed in the present paper from two aspects of experiment and theory. It is pointed out that the reasonable methods of the critical plane determining, multiaxial cycle counting and multiaxial fatigue damage parameter fixing are necessary if the fatigue life prediction models established under the multiaxial constant amplitude loading were applied to the life prediction of the complex multiaxial load. The shortcomings of existing researches are discussed. In the aspect of experiment, it is devoid of the multiaxial fatigue test that the loading components acted with different frequencies, and in the aspect of theory, the additional hardening effect of the multiaxial out-of-frequency loading is not considered. Both in the theoretical research and practical engineering applications, the problem of the out-of-frequency multiaxial loading is a pressing issue.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Zhao, Er Nian, et Wei Lian Qu. « Multiaxial Fatigue Life Prediction of Metallic Materials Based on Critical Plane Method under Non-Proportional Loading ». Key Engineering Materials 730 (février 2017) : 516–20. http://dx.doi.org/10.4028/www.scientific.net/kem.730.516.

Texte intégral
Résumé :
The critical plane method is widely discussed because of its effectiveness for predicting the multiaxial fatigue life prediction of metallic materials under the non-proportional loading conditions. The aim of the present paper is to give a comparison of the applicability of the critical plane methods on multiaxial fatigue life prediction. A total of 205 multiaxial fatigue test data of nine kinds of metallic materials under various strain paths are adopted for the experimental verification. Results shows that the von Mises effective strain parameter and KBM critical plane parameter can give well predicted fatigue lives for multiaxial proportional loading conditions, but give poor prediction lives evaluation for multiaxial non-proportional loading conditions. However, FS parameter shows better accuracy than the KBM parameter for multiaxial fatigue prediction for both proportional and non-proportional loading conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Karolczuk, Aleksander, et Ewald Macha. « Critical Planes in Multiaxial Fatigue ». Materials Science Forum 482 (avril 2005) : 109–14. http://dx.doi.org/10.4028/www.scientific.net/msf.482.109.

Texte intégral
Résumé :
The paper includes a review of literature on the multiaxial fatigue failure criteria based on the critical plane concept. The criteria were divided into three groups according to the distinguished fatigue damage parameter used in the criterion, i.e. (i) stress, (ii) strain and (iii) strain energy density criteria. Each criterion was described mainly by the applied the critical plane position. The multiaxial fatigue criteria based on two critical planes seem to be the most promising. These two critical planes are determined by different fatigue damage mechanisms (shear and tensile mechanisms).
Styles APA, Harvard, Vancouver, ISO, etc.
48

Alexander Araújo, José, Gabriel Magalhães Juvenal Almeida, Fábio Comes Castro et Raphael Araújo Cardoso. « Multiaxial High Cycle Fretting Fatigue ». MATEC Web of Conferences 300 (2019) : 02002. http://dx.doi.org/10.1051/matecconf/201930002002.

Texte intégral
Résumé :
The aim of this work is to show that multiaxial fatigue can be successfully adpted to model fretting problems. For instance, the paper presents (i) the critical direction method, as an alternative to the critical plane concept, to model the crack initiation path under fretting conditions and (ii) studies on size effects considering the influence of incorporating fretting wear on the life estimation. A wide range of new data generated by a two actuators fretting fatigue rig considering Al 7050-T7451 and of Ti-6Al-4V aeronautical alloys is produced to validate these analyses. It is shown that, the development of appropriate tools and techniques to incorporate the particularities of the fretting phenomenon into the multiaxial fatigue problem allow an accurate estimate of the fretting fatigue resistance/life in the medium high cycle regime. Such tools and techniques can be extended to the design of other mechanical components under similar stress enviroments.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Fernando, U. S., K. J. Miller et M. W. Brown. « COMPUTER AIDED MULTIAXIAL FATIGUE TESTING ». Fatigue & ; Fracture of Engineering Materials and Structures 13, no 4 (juillet 1990) : 387–98. http://dx.doi.org/10.1111/j.1460-2695.1990.tb00609.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Junyi, Feng, Bian Mengxin et Dang Zijou. « THERMAL FATIGUE UNDER MULTIAXIAL STRESSES ». Fatigue & ; Fracture of Engineering Materials and Structures 13, no 5 (septembre 1990) : 525–34. http://dx.doi.org/10.1111/j.1460-2695.1990.tb00622.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie