Littérature scientifique sur le sujet « Multi-Robot task allocation (MRTA) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Multi-Robot task allocation (MRTA) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Multi-Robot task allocation (MRTA)"
Li, Ping, et Jun Yan Zhu. « The Application of Game Theory in RoboCup Soccer Game ». Applied Mechanics and Materials 530-531 (février 2014) : 1053–57. http://dx.doi.org/10.4028/www.scientific.net/amm.530-531.1053.
Texte intégralGul, Omer Melih. « Energy Harvesting and Task-Aware Multi-Robot Task Allocation in Robotic Wireless Sensor Networks ». Sensors 23, no 6 (20 mars 2023) : 3284. http://dx.doi.org/10.3390/s23063284.
Texte intégralArif, Muhammad Usman, et Sajjad Haider. « A Flexible Framework for Diverse Multi-Robot Task Allocation Scenarios Including Multi-Tasking ». ACM Transactions on Autonomous and Adaptive Systems 16, no 1 (31 mars 2021) : 1–23. http://dx.doi.org/10.1145/3502200.
Texte intégralYuan, Ruiping, Jiangtao Dou, Juntao Li, Wei Wang et Yingfan Jiang. « Multi-robot task allocation in e-commerce RMFS based on deep reinforcement learning ». Mathematical Biosciences and Engineering 20, no 2 (2022) : 1903–18. http://dx.doi.org/10.3934/mbe.2023087.
Texte intégralMartin, J. G., J. R. D. Frejo, R. A. García et E. F. Camacho. « Multi-robot task allocation problem with multiple nonlinear criteria using branch and bound and genetic algorithms ». Intelligent Service Robotics 14, no 5 (novembre 2021) : 707–27. http://dx.doi.org/10.1007/s11370-021-00393-4.
Texte intégralZhao, Donghui, Chenhao Yang, Tianqi Zhang, Junyou Yang et Yokoi Hiroshi. « A Task Allocation Approach of Multi-Heterogeneous Robot System for Elderly Care ». Machines 10, no 8 (28 juillet 2022) : 622. http://dx.doi.org/10.3390/machines10080622.
Texte intégralElfakharany, Ahmed, et Zool Hilmi Ismail. « End-to-End Deep Reinforcement Learning for Decentralized Task Allocation and Navigation for a Multi-Robot System ». Applied Sciences 11, no 7 (24 mars 2021) : 2895. http://dx.doi.org/10.3390/app11072895.
Texte intégralHong, Le, Weicheng Cui et Hao Chen. « A Novel Multi-Robot Task Allocation Model in Marine Plastics Cleaning Based on Replicator Dynamics ». Journal of Marine Science and Engineering 9, no 8 (14 août 2021) : 879. http://dx.doi.org/10.3390/jmse9080879.
Texte intégralZhang, Zhenqiang, Sile Ma et Xiangyuan Jiang. « Research on Multi-Objective Multi-Robot Task Allocation by Lin–Kernighan–Helsgaun Guided Evolutionary Algorithms ». Mathematics 10, no 24 (12 décembre 2022) : 4714. http://dx.doi.org/10.3390/math10244714.
Texte intégralGautier, Paul, et Johann Laurent. « DQN as an alternative to Market-based approaches for Multi-Robot processing Task Allocation (MRpTA) ». International Journal of Robotic Computing 3, no 1 (1 mai 2021) : 69–98. http://dx.doi.org/10.35708/rc1870-126266.
Texte intégralThèses sur le sujet "Multi-Robot task allocation (MRTA)"
Chakraa, Hamza. « Οptimisatiοn techniques fοr mοnitοring a high-risk industrial area by a team οf autοnοmοus mοbile rοbοts ». Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH29.
Texte intégralThis thesis explores the development and implementation of optimisation algorithms for monitoring industrial areas using a team of autonomous mobile robots. The research focuses on Multi-Robot Task Allocation (MRTA), where a near-optimal mission plan must be generated. A novel model considering heterogeneous robots and tasks is proposed, using Genetic Algorithms (GA) and 2-Opt local search methods to solve the problem. The thesis also integrates collision avoidance strategies, which become necessary when there are many robots and tasks. A low-level local solution handles many conflict situations during the mission, which can cause delays. Therefore, a solution for this case was proposed using clustering. Furthermore, we evaluate the proposed solutions through real-world experiments including a navigation-based algorithm that addresses collision issues. The results demonstrate the value of these algorithms in optimising task allocation and path planning for autonomous mobile robots in industrial settings, paving the way for more efficient mission planning and enhanced safety in industrial environments
Sarker, Md Omar Faruque. « Self-regulated multi-robot task allocation ». Thesis, University of South Wales, 2010. https://pure.southwales.ac.uk/en/studentthesis/selfregulated-multirobot-task-allocation(4b92f28f-c712-4e75-955f-97b4e5bf12dd).html.
Texte intégralGage, Aaron. « Multi-robot task allocation using affect ». [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000465.
Texte intégralSchneider, E. « Mechanism selection for multi-robot task allocation ». Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3018369/.
Texte intégralDas, Gautham Panamoottil. « Task allocation strategies for multi-robot systems ». Thesis, Ulster University, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667759.
Texte intégralSung, Cynthia Rueyi. « Data-driven task allocation for multi-robot deliveries ». Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84717.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 93-97).
In this thesis, we present a distributed task allocation system for a team of robots serving queues of tasks in an environment. We consider how historical information about such a system's performance could be used to improve future allocations. Our model is representative of a multi-robot mail delivery service, in which teams of robots would have to cooperate to pick up and deliver packages in an environment. We provide a framework for task allocation, planning, and control of the system and analyze task switching as a method for improving a task allocation as the system is running. We first treat a system where robots exchange tasks as they encounter each other in the environment. We consider both cases where the number of robots matches the number of task queues being served and where it does not. Most importantly, for situations where an optimal task switching policy would be too computationally expensive, we provide heuristics that nonetheless guarantee task completion. Our simulations show that our heuristics also generally lower the costs of task completion. We incorporate historical data about system performance by looking at a spatial allocation of tasks to robots in the system. We propose an algorithm for partitioning the environment into regions of equal workload for the robots. In order to overcome communication constraints, we introduce hubs, locations where robots can pass tasks to each other. We simulate the system with this additional infrastructure and compare its performance to that without hubs. We find that hubs can significantly improve performance when the task queues themselves follow some spatial structure.
by Cynthia Rueyi Sung.
S.M.
AL-Buraiki, Omar S. M. « Specialized Agents Task Allocation in Autonomous Multi-Robot Systems ». Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41504.
Texte intégralKARAMI, HOSSEIN. « Task planning and allocation for multi-agent collaborative robot systems ». Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1083925.
Texte intégralSun, Dali [Verfasser], et Bernhard [Akademischer Betreuer] Nebel. « Adaptive task allocation, localization and motion planning for the multi-robot system ». Freiburg : Universität, 2017. http://d-nb.info/114157571X/34.
Texte intégralDutia, Dharini. « Multi-Robot Task Allocation and Scheduling with Spatio-Temporal and Energy Constraints ». Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-theses/1298.
Texte intégralChapitres de livres sur le sujet "Multi-Robot task allocation (MRTA)"
Zitouni, Farouq, et Ramdane Maamri. « FA-SETPOWER-MRTA : A Solution for Solving the Multi-Robot Task Allocation Problem ». Dans Computational Intelligence and Its Applications, 317–28. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89743-1_28.
Texte intégralÖztürk, Savaş, et Ahmet Emin Kuzucuoğlu. « Building a Generic Simulation Model for Analyzing the Feasibility of Multi-Robot Task Allocation (MRTA) Problems ». Dans Modelling and Simulation for Autonomous Systems, 71–87. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43890-6_6.
Texte intégralKoubaa, Anis, Hachemi Bennaceur, Imen Chaari, Sahar Trigui, Adel Ammar, Mohamed-Foued Sriti, Maram Alajlan, Omar Cheikhrouhou et Yasir Javed. « General Background on Multi-robot Task Allocation ». Dans Robot Path Planning and Cooperation, 129–44. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77042-0_6.
Texte intégralJanati, Farzam, Farzaneh Abdollahi, Saeed Shiry Ghidary, Masoumeh Jannatifar, Jacky Baltes et Soroush Sadeghnejad. « Multi-robot Task Allocation Using Clustering Method ». Dans Advances in Intelligent Systems and Computing, 233–47. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31293-4_19.
Texte intégralSchneider, Eric, Elizabeth I. Sklar et Simon Parsons. « Mechanism Selection for Multi-Robot Task Allocation ». Dans Towards Autonomous Robotic Systems, 421–35. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64107-2_33.
Texte intégralHuang, Chuang, Hao Zhang et Zhuping Wang. « Task Allocation of Multi-robot Coalition Formation ». Dans Proceedings of 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control, 221–30. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3998-3_22.
Texte intégralTuck, Victoria Marie, Pei-Wei Chen, Georgios Fainekos, Bardh Hoxha, Hideki Okamoto, S. Shankar Sastry et Sanjit A. Seshia. « SMT-Based Dynamic Multi-Robot Task Allocation ». Dans Lecture Notes in Computer Science, 331–51. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-60698-4_20.
Texte intégralHawley, John, et Zack Butler. « Hierarchical Distributed Task Allocation for Multi-robot Exploration ». Dans Springer Tracts in Advanced Robotics, 445–58. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32723-0_32.
Texte intégralMunoz, Francisco, Ashutosh Nayak et Seokcheon Lee. « Task Allocation in Multi-robot Systems—Resource Welfare ». Dans Engineering Applications of Social Welfare Functions, 55–67. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20545-3_5.
Texte intégralAşık, Okan, et H. Levent Akın. « Effective Multi-robot Spatial Task Allocation Using Model Approximations ». Dans RoboCup 2016 : Robot World Cup XX, 243–55. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68792-6_20.
Texte intégralActes de conférences sur le sujet "Multi-Robot task allocation (MRTA)"
Kashid, Sujeet, et Ashwin Dharmesh Kumat. « Hierarchically Decentralized Heterogeneous Multi-Robot Task Allocation System ». Dans 2024 7th International Conference on Intelligent Robotics and Control Engineering (IRCE), 143–48. IEEE, 2024. http://dx.doi.org/10.1109/irce62232.2024.10739829.
Texte intégralDhanaraj, Neel, Jeon Ho Kang, Anirban Mukherjee, Heramb Nemlekar, Stefanos Nikolaidis et Satyandra K. Gupta. « Multi-Robot Task Allocation Under Uncertainty Via Hindsight Optimization ». Dans 2024 IEEE International Conference on Robotics and Automation (ICRA), 16574–80. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10611370.
Texte intégralChing-Wei, Chuang, et Lin Wei-Yu. « Task Decomposition and Multi-Robot Task Allocation in Exploration With Bayesian Networks ». Dans 2024 Eighth IEEE International Conference on Robotic Computing (IRC), 80–83. IEEE, 2024. https://doi.org/10.1109/irc63610.2024.00018.
Texte intégralLee, Goeun, Donggil Lee et Yoonseob Lim. « Task Allocation for Heterogeneous Multi-Robot Systems with Diverse Capabilities ». Dans 2024 24th International Conference on Control, Automation and Systems (ICCAS), 1599–600. IEEE, 2024. https://doi.org/10.23919/iccas63016.2024.10773254.
Texte intégralHeppner, Georg, David Oberacker, Arne Roennau et Rüdiger Dillmann. « Behavior Tree Capabilities for Dynamic Multi-Robot Task Allocation with Heterogeneous Robot Teams ». Dans 2024 IEEE International Conference on Robotics and Automation (ICRA), 4826–33. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610515.
Texte intégralCalvo, Álvaro, et Jesús Capitán. « Optimal Task Allocation for Heterogeneous Multi-robot Teams with Battery Constraints ». Dans 2024 IEEE International Conference on Robotics and Automation (ICRA), 7243–49. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10611147.
Texte intégralBaccouche, Chaima, Imen Iben Ammar, Dimitri Lefebvre et Achraf Jabeur Telmoudi. « A preliminary study about multi-robot task allocation with energy constraints ». Dans 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), 3057–62. IEEE, 2024. http://dx.doi.org/10.1109/case59546.2024.10711402.
Texte intégralDe La Rochefoucauld, Virgile, Simon Lacroix, Photchara Ratsamee et Haruo Takemura. « Solving Multi-Robot Task Allocation and Planning in Trans-media Scenarios ». Dans 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 5764–69. IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10801394.
Texte intégralYan, Fuhan, et Kai Di. « Multi-robot Task Allocation in the Environment with Functional Tasks ». Dans Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California : International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/653.
Texte intégralChuang, Ching-Wei, et Harry H. Cheng. « A Novel Approach With Bayesian Networks to Multi-Robot Task Allocation in Dynamic Environments ». Dans ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-66902.
Texte intégralRapports d'organisations sur le sujet "Multi-Robot task allocation (MRTA)"
Lerman, Kristina, Chris Jones, Aram Galstyan et Maja J. Mataric. Analysis of Dynamic Task Allocation in Multi-Robot Systems. Fort Belvoir, VA : Defense Technical Information Center, janvier 2006. http://dx.doi.org/10.21236/ada459067.
Texte intégral