Sommaire
Littérature scientifique sur le sujet « Multi-photon polymerization »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Multi-photon polymerization ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Multi-photon polymerization"
Huang, Ying, Yusheng Zhang, Yuming Su, Zhenghao Zhai, Jiawei Chen et Cheng Wang. « Two-photon induced polymerization in a porous polymer film to create multi-layer structures ». Chemical Communications 57, no 37 (2021) : 4516–19. http://dx.doi.org/10.1039/d1cc01383a.
Texte intégralLin, Jieqiong, Peng Liu, Xian Jing, Mingming Lu, Kaixuan Wang et Jie Sun. « Stochastic Multi-Molecular Modeling Method of Organic-Modified Ceramics in Two-Photon Induced Photopolymerization ». Materials 12, no 23 (24 novembre 2019) : 3876. http://dx.doi.org/10.3390/ma12233876.
Texte intégralVerbitsky, Lior, Nir Waiskopf, Shlomo Magdassi et Uri Banin. « A clear solution : semiconductor nanocrystals as photoinitiators in solvent free polymerization ». Nanoscale 11, no 23 (2019) : 11209–16. http://dx.doi.org/10.1039/c9nr03086g.
Texte intégralGlöckler, Felix, Florian Hausladen, Igor Alekseenko, Alexander Gröger, Giancarlo Pedrini et Daniel Claus. « Two-photon-polymerization enabled and enhanced multi-channel fibre switch ». Engineering Research Express 3, no 4 (11 novembre 2021) : 045016. http://dx.doi.org/10.1088/2631-8695/ac34c5.
Texte intégralPisanello, Marco, Di Zheng, Antonio Balena, Filippo Pisano, Massimo De Vittorio et Ferruccio Pisanello. « An open source three-mirror laser scanning holographic two-photon lithography system ». PLOS ONE 17, no 4 (15 avril 2022) : e0265678. http://dx.doi.org/10.1371/journal.pone.0265678.
Texte intégralFilippidis, G., J. Catherine, M. Farsari, V. Zorba et C. Fotakis. « Construction of micron three-dimensional structures employing multi-photon polymerization ». Proceedings of the Institution of Mechanical Engineers, Part N : Journal of Nanoengineering and Nanosystems 219, no 4 (décembre 2005) : 165–68. http://dx.doi.org/10.1243/17403499jnn48.
Texte intégralZhao, Yuxia, Xue Li, Feipeng Wu et Xiangyun Fang. « Novel multi-branched two-photon polymerization initiators of ketocoumarin derivatives ». Journal of Photochemistry and Photobiology A : Chemistry 177, no 1 (janvier 2006) : 12–16. http://dx.doi.org/10.1016/j.jphotochem.2005.05.006.
Texte intégralCui, Hai-Bo, Yan Li, Zhao-Pei Liu, Hong Yang et Qi-Huang Gong. « Controlling aspect ratios of suspended nanorods fabricated by multi-photon polymerization ». Applied Physics A 105, no 4 (19 août 2011) : 897–901. http://dx.doi.org/10.1007/s00339-011-6539-1.
Texte intégralLee, W., S. A. Pruzinsky et P. V. Braun. « Multi-Photon Polymerization of Waveguide Structures Within Three-Dimensional Photonic Crystals ». Advanced Materials 14, no 4 (19 février 2002) : 271–74. http://dx.doi.org/10.1002/1521-4095(20020219)14:4<271 ::aid-adma271>3.0.co;2-y.
Texte intégralParkatzidis, Kostas, Maria Chatzinikolaidou, Eleftherios Koufakis, Maria Kaliva, Maria Farsari et Maria Vamvakaki. « Multi-photon polymerization of bio-inspired, thymol-functionalized hybrid materials with biocompatible and antimicrobial activity ». Polymer Chemistry 11, no 25 (2020) : 4078–83. http://dx.doi.org/10.1039/d0py00281j.
Texte intégralThèses sur le sujet "Multi-photon polymerization"
Müller, Jonathan Benedikt [Verfasser], et M. [Akademischer Betreuer] Wegener. « Exploring the Mechanisms of Three-Dimensional Direct Laser Writing by Multi-Photon Polymerization / Jonathan Benedikt Müller. Betreuer : M. Wegener ». Karlsruhe : KIT-Bibliothek, 2015. http://d-nb.info/1072464608/34.
Texte intégralOgor, Florie. « Microfabrication 3D par polymérisation multiphotonique massivement parallélisée pour des applications photoniques et biomédicales ». Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0413.
Texte intégralSubmicron 3D structures are required in many fields (photonics, optics, biology, etc.). Fabricating such structures is difficult. Multiphoton polymerization is a suitable technique, but current fabrication times are long (one day to fabricate a mm3 structure), making industrial production costly and limiting the development of these structures. We present our contribution to the development and optimization of a massively parallelised multiphoton polymerization fabrication process for these structures. Two parallelization techniques are investigated at IMT Atlantique: one using a diffractive optical element and another, studied in this thesis, using a spatial light modulator in an imaging configuration and an ultra-sensitive TTA resist (Triplet-Triplet Annihilation), enabling writing with 1920 × 1080 beams in parallel. The use of multiple write beams can lead to resolution limiting proximity effects. We present our numerical simulation model of the photochemical process to understand, predict and correct these effects. We present possible improvements based on these simulations and the improved understanding of the optical system. The fabrication method we have developed enables us to fabricate structures with a resolution of around one micrometer in X,Y and several tens of micrometers in height on surfaces of the order of cm2 in just a few minutes. Finally, examples of applications in biology and ophthalmology, adapted to the photoplotter performance are presented
Liang, Wen Ping, et 梁文評. « Fabrication of two- and three-dimensional photonic crystals with defect by combining multiple-exposure of two-beam interference and multi-photon polymerization ». Thesis, 2005. http://ndltd.ncl.edu.tw/handle/39234243665121255414.
Texte intégral國立中正大學
光機電整合工程研究所
93
We demonstrated theoretically and experimentally a simple and easy method using multi-exposure of two-beam interference technique for fabrication of large-area two- and three-dimensional photonic crystals. Multi-exposure of two-beam interference pattern of a He-Cd laser or an argon laser into a negative SU8 or a positive AZ photopolymerizable photoresist is used to pattern square, rectangular, and hexagonal two- and three-dimensional periodic structures. The type of periodic structures depends on the orientation of photoresist with respect to the laser beam and the number of exposure. The lattice constants of three-dimensional periodic structures obtained by this technique are close in three dimensions, which is difficult to be obtained by one-exposure of multi-beam interference. In particular, we proposed a new ideal to fabricate two- and three-dimensional photonic crystals with well-defined defects by using the combination of interference and multi-photon polymerization techniques. Desired defects are introduced in the photonic crystals (fabricated by multi-exposure of two-beam interference technique) by tightly focused 100 femto-second duration pulses at 830nm-wavelength through an objective lens (numerical aperture = 0.85) to generate multi-photon absorption effect. A 6mm ´ 6mm photonic crystal with the lattice constant as small as 650nm embedding several kinds of defects, such as bending waveguides, numbers or letters defects, is obtained by employing this combination technique. Our new fabrication technique using multi-exposure of two-beam interference and its combination with multi-photon polymerization should be useful for mass production of photonic crystals and optoelectronics devices.
Actes de conférences sur le sujet "Multi-photon polymerization"
Tkaczyk, Tomasz S., Jiawei Lu et Haimu Cao. « Imaging Snapshot Spectrometers enabled with 2-Photon Polymerization based Additive Manufacturing ». Dans Imaging Systems and Applications, IM1G.7. Washington, D.C. : Optica Publishing Group, 2024. http://dx.doi.org/10.1364/isa.2024.im1g.7.
Texte intégralShahriar, Shaimum, Javier J. Pazos, Robin Howell, Tyrone Morales, Desiree Aguilar, Stephen M. Kuebler et Jimmy Touma. « Morpho Butterfly-Inspired Sensors Created by Multi-Photon Polymerization ». Dans 2022 IEEE Research and Applications of Photonics in Defense Conference (RAPID). IEEE, 2022. http://dx.doi.org/10.1109/rapid54472.2022.9911536.
Texte intégralGregory, Serge L. H. F., et Elijah Kannatey-Asibu. « Analysis of Voxel Size During Two-Photon Polymerization ». Dans ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/msec2012-7374.
Texte intégralObata, Kotaro, Jürgen Koch et Boris N. Chichkov. « Individually controlled multi-focus laser processing for two-photon polymerization ». Dans SPIE LASE, sous la direction de Hiroyuki Niino, Michel Meunier, Bo Gu et Guido Hennig. SPIE, 2010. http://dx.doi.org/10.1117/12.842117.
Texte intégralSomers, Paul, Xiaolong He et Xianfan Xu. « Numerical modeling of multi-photon polymerization by ultrafast laser (Conference Presentation) ». Dans Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXIII, sous la direction de Beat Neuenschwander, Gediminas Račiukaitis, Tetsuya Makimura et Costas P. Grigoropoulos. SPIE, 2018. http://dx.doi.org/10.1117/12.2290612.
Texte intégralObata, Kotaro, Sven Passinger, Andreas Ostendorf et Boris Chichkov. « Multi-focus system for two-photon polymerization using phase modulated holographic technique ». Dans ICALEO® 2007 : 26th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2007. http://dx.doi.org/10.2351/1.5061168.
Texte intégralZhang, Qianyi, Antoine Boniface, Virendra Kumar Parashar et Christophe Moser. « Multi-Photon Polymerization with Upconversion Nanoparticles for Adaptive Feature-Size 3D Printing ». Dans 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2023. http://dx.doi.org/10.1109/cleo/europe-eqec57999.2023.10232766.
Texte intégralTsunemitsu, Kaneto, Ryo Sano, Akira Watanabe, Hiroaki Onoe et Mitsuhiro Terakawa. « Microfabrication of double-network hydrogel with enhanced mechanical properties by multi-photon polymerization ». Dans Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVI, sous la direction de Carlos Molpeceres, Aiko Narazaki et Jie Qiao. SPIE, 2021. http://dx.doi.org/10.1117/12.2576707.
Texte intégralKurth, Daniel, et Alexander Verl. « Kinematic multi-axis two-photon polymerization printer concept for the manufacturing of micro optics ». Dans 3D Printing for Lighting, sous la direction de Nadarajah Narendran, Samuel T. Mills et Govi Rao. SPIE, 2023. http://dx.doi.org/10.1117/12.2675889.
Texte intégralObata, Kotaro, Francesc Caballero Lucas et Koji Sugioka. « Multi-photon polymerization by GHz burst mode femtosecond laser pulses for improvement of process resolution ». Dans Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVII, sous la direction de Laura Gemini, Aiko Narazaki et Jie Qiao. SPIE, 2022. http://dx.doi.org/10.1117/12.2610529.
Texte intégral