Littérature scientifique sur le sujet « MR Fingerprinting »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « MR Fingerprinting ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "MR Fingerprinting"
Flassbeck, Sebastian, Simon Schmidt, Peter Bachert, Mark E. Ladd et Sebastian Schmitter. « Flow MR fingerprinting ». Magnetic Resonance in Medicine 81, no 4 (2 décembre 2018) : 2536–50. http://dx.doi.org/10.1002/mrm.27588.
Texte intégralPierre, Eric Y., Dan Ma, Yong Chen, Chaitra Badve et Mark A. Griswold. « Multiscale reconstruction for MR fingerprinting ». Magnetic Resonance in Medicine 75, no 6 (30 juin 2015) : 2481–92. http://dx.doi.org/10.1002/mrm.25776.
Texte intégralZhang, Xiaodi, Zechen Zhou, Shiyang Chen, Shuo Chen, Rui Li et Xiaoping Hu. « MR fingerprinting reconstruction with Kalman filter ». Magnetic Resonance Imaging 41 (septembre 2017) : 53–62. http://dx.doi.org/10.1016/j.mri.2017.04.004.
Texte intégralBuonincontri, Guido, et Stephen J. Sawiak. « MR fingerprinting with simultaneous B1 estimation ». Magnetic Resonance in Medicine 76, no 4 (28 octobre 2015) : 1127–35. http://dx.doi.org/10.1002/mrm.26009.
Texte intégralCohen, Ouri, Bo Zhu et Matthew S. Rosen. « MR fingerprinting Deep RecOnstruction NEtwork (DRONE) ». Magnetic Resonance in Medicine 80, no 3 (6 avril 2018) : 885–94. http://dx.doi.org/10.1002/mrm.27198.
Texte intégralBenjamin, Arnold Julian Vinoj, Pedro A. Gómez, Mohammad Golbabaee, Zaid Bin Mahbub, Tim Sprenger, Marion I. Menzel, Michael Davies et Ian Marshall. « Multi-shot Echo Planar Imaging for accelerated Cartesian MR Fingerprinting : An alternative to conventional spiral MR Fingerprinting ». Magnetic Resonance Imaging 61 (septembre 2019) : 20–32. http://dx.doi.org/10.1016/j.mri.2019.04.014.
Texte intégralChen, Yong, Yun Jiang, Shivani Pahwa, Dan Ma, Lan Lu, Michael D. Twieg, Katherine L. Wright, Nicole Seiberlich, Mark A. Griswold et Vikas Gulani. « MR Fingerprinting for Rapid Quantitative Abdominal Imaging ». Radiology 279, no 1 (avril 2016) : 278–86. http://dx.doi.org/10.1148/radiol.2016152037.
Texte intégralCauley, Stephen F., Kawin Setsompop, Dan Ma, Yun Jiang, Huihui Ye, Elfar Adalsteinsson, Mark A. Griswold et Lawrence L. Wald. « Fast group matching for MR fingerprinting reconstruction ». Magnetic Resonance in Medicine 74, no 2 (28 août 2014) : 523–28. http://dx.doi.org/10.1002/mrm.25439.
Texte intégralAnderson, Christian E., Charlie Y. Wang, Yuning Gu, Rebecca Darrah, Mark A. Griswold, Xin Yu et Chris A. Flask. « Regularly incremented phase encoding – MR fingerprinting (RIPE‐MRF) for enhanced motion artifact suppression in preclinical cartesian MR fingerprinting ». Magnetic Resonance in Medicine 79, no 4 (10 août 2017) : 2176–82. http://dx.doi.org/10.1002/mrm.26865.
Texte intégralZou, Lixian, Dong Liang, Huihui Ye, Shi Su, Yanjie Zhu, Xin Liu, Hairong Zheng et Haifeng Wang. « Quantitative MR relaxation using MR fingerprinting with fractional-order signal evolution ». Journal of Magnetic Resonance 330 (septembre 2021) : 107042. http://dx.doi.org/10.1016/j.jmr.2021.107042.
Texte intégralThèses sur le sujet "MR Fingerprinting"
Barbieri, Marco <1991>. « Advances in the Role of Quantitative NMR in Medicine : Deep Learning applied to MR Fingerprinting and Trabecular Bone Volume Fraction Estimation through Single-Sided NMR ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amsdottorato.unibo.it/9236/1/Ph_D_Thesis_Marco_Barbieri.pdf.
Texte intégralCoudert, Thomas. « IRM «fingerprint» et Intelligence Artificielle pour la prise en charge des patients victimes d'un AVC ». Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY044.
Texte intégralStroke, a major cause of mortality and long-term disability worldwide, necessitates rapid and accurate diagnosis to optimize treatment outcomes. Current imaging techniques, particularly MRI, are critical for assessing the extent of brain injury and guiding therapeutic interventions. However, traditional MRI protocols are often time-consuming and may lack the precision required for detailed analysis of ischemic brain tissue, limiting their utility in acute stroke settings where time is of the essence.Magnetic Resonance Fingerprinting (MRF) is a relatively new solution to simultaneously map several brain quantitative parameters from fast, high-resolution acquisitions using a dictionary search approach. However, its extension for microvascular (e.g. cerebral blood volume (CBV) or blood vessel diameter (R)) and brain oxygenation estimates currently relies on the injection of exogenous contrast agents (CA) that limit the clinical application and acquisition speed. In this thesis, we aimed to address these limitations by developing a novel and integrated, artificial intelligence (AI) augmented contrast-free MRF technique tailored for stroke emergencies.First, we developed and adapted standard multiparametric MRF techniques based on spoiled gradient echo MRI sequences. Using scanner artifacts corrections, dictionary compression, and subspace reconstruction, we were able to generate fast relaxometry (T1,T2) maps and standard MRI contrasts from a single MRF sequence. However, the microvascular information provided by our new multi-compartment MRF model in human volunteers suffered from a low signal-to-noise ratio.We thus focused on a new MRF sequence design based on balanced GRE sequences and their remarkable sensitivity to magnetic field inhomogeneities. After a theoretical and textit{in-silico} study on general sequences sensitivities to the Blood Oxygen Level Dependent (BOLD) effect and the impact of MRF acquisition parameters, we designed a new MRF-bSSFP sequence that simultaneously estimate relaxometry (T1,T2,T2*,M0), magnetic fields (B1,B0), and microvascular properties (CBV,R) without the need for CA injection. Using a new pipeline for MRF simulations, the proposed method was tested in a cohort of human volunteers.Our method was further refined by developing advanced reconstruction methods for high dimensional MRF acquisitions relying on low-rank models and deep neural networks. We finally used our simulation framework combined with Recurrent Neural Networks to fasten our computation times by a factor of 800 and allow the inclusion of water-diffusion effects. This approach was tested in retrospective preclinical data including healthy and stroke animals and the results suggested that additional estimates of ADC or blood oxygenation could be measured with our new bSSFP MRF sequence.After careful validation and optimization, this methodological work could provide an efficient imaging solution that aligns with the critical time constraints of acute stroke care. Our general framework for high dimensional MRF acquisitions that include microstructure effects could also be used in various other pathologies
Lin, Te-Ming, et 林德銘. « A method to evaluate the relationship between signal acquisition number and parametric mapping precision in MR fingerprinting ». Thesis, 2015. http://ndltd.ncl.edu.tw/handle/30205508647644523764.
Texte intégral國立臺灣大學
生醫電子與資訊學研究所
103
MR Fingerprinting (MRF) is a novel technique to quantify multiple MR parameters simultaneously. A train of pseudorandomized radiofrequency (RF) excitations are used to generate unique signal evolution for different tissues, followed by matching the measured signals to a pre-established dictionary. The signal acquisition number in MRF is related to the signal length. Longer signals and larger dictionaries increase the scan time and computational complexity. However, as the signal acquisition reduces, the mapping precision also changes. Therefore, for designing an efficient MRF sequence, a method to evaluate the precision change is necessary. In this thesis, we propose a mapping variation index to reflect the mapping precision in MRF. Besides, this index can predict the precision change under different signal acquisition numbers before MRF scans and provide a reference for sequence designers to modify the signal acquisition number.
Chapitres de livres sur le sujet "MR Fingerprinting"
Runge, Val M., et Johannes T. Heverhagen. « MR Fingerprinting ». Dans The Physics of Clinical MR Taught Through Images, 312–13. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85413-3_141.
Texte intégralChen, Yong, Christina J. MacAskill, Sherry Huang, Katherine M. Dell, Sree H. Tirumani, Mark A. Griswold et Chris A. Flask. « MR Fingerprinting for Quantitative Kidney Imaging ». Dans Advanced Clinical MRI of the Kidney, 163–80. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-40169-5_12.
Texte intégralChen, Dongdong, Mike E. Davies et Mohammad Golbabaee. « Compressive MR Fingerprinting Reconstruction with Neural Proximal Gradient Iterations ». Dans Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 13–22. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59713-9_2.
Texte intégralBalsiger, Fabian, Alain Jungo, Olivier Scheidegger, Benjamin Marty et Mauricio Reyes. « Learning Bloch Simulations for MR Fingerprinting by Invertible Neural Networks ». Dans Machine Learning for Medical Image Reconstruction, 60–69. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61598-7_6.
Texte intégralKang, Beomgu, Hye-Young Heo et HyunWook Park. « Only-Train-Once MR Fingerprinting for Magnetization Transfer Contrast Quantification ». Dans Lecture Notes in Computer Science, 387–96. Cham : Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-16446-0_37.
Texte intégralBarrier, Antoine, Thomas Coudert, Aurélien Delphin, Benjamin Lemasson et Thomas Christen. « MARVEL : MR Fingerprinting with Additional micRoVascular Estimates Using Bidirectional LSTMs ». Dans Lecture Notes in Computer Science, 259–69. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72069-7_25.
Texte intégralCheng, Feng, Yong Chen, Xiaopeng Zong, Weili Lin, Dinggang Shen et Pew-Thian Yap. « Acceleration of High-Resolution 3D MR Fingerprinting via a Graph Convolutional Network ». Dans Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 158–66. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59713-9_16.
Texte intégralGómez, Pedro A., Miguel Molina-Romero, Cagdas Ulas, Guido Bounincontri, Jonathan I. Sperl, Derek K. Jones, Marion I. Menzel et Bjoern H. Menze. « Simultaneous Parameter Mapping, Modality Synthesis, and Anatomical Labeling of the Brain with MR Fingerprinting ». Dans Lecture Notes in Computer Science, 579–86. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46726-9_67.
Texte intégralCheng, Feng, Yong Chen, Xiaopeng Zong, Weili Lin, Dinggang Shen et Pew-Thian Yap. « Correction to : Acceleration of High-Resolution 3D MR Fingerprinting via a Graph Convolutional Network ». Dans Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, C1. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59713-9_75.
Texte intégralMa, Dan. « MR fingerprinting : concepts, implementation and applications ». Dans Advances in Magnetic Resonance Technology and Applications, 435–49. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-822479-3.00044-0.
Texte intégralActes de conférences sur le sujet "MR Fingerprinting"
Li, Shizhuo, Huihui Ye et Huafeng Liu. « CRLB-Based Optimization for Combined FISP and PSIF MR Fingerprinting ». Dans 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/isbi56570.2024.10635327.
Texte intégralMa, Dan. « Clinical applications of fast and quantitative MR fingerprinting ». Dans Biomedical Applications in Molecular, Structural, and Functional Imaging, sous la direction de Barjor S. Gimi et Andrzej Krol. SPIE, 2023. http://dx.doi.org/10.1117/12.2664416.
Texte intégralVenglovskyi, Iurii. « Single-Voxel Proton MR-Spectroscopy Signal Analysis by Fingerprinting ». Dans 2021 13th International Conference on Measurement. IEEE, 2021. http://dx.doi.org/10.23919/measurement52780.2021.9446829.
Texte intégralLi, Zehao, Min Li et Zhuo Zhang. « Accelerated MR Fingerprinting Reconstruction Using Dictionary and Local Low-Rank Regularizations ». Dans 2021 7th International Conference on Computer and Communications (ICCC). IEEE, 2021. http://dx.doi.org/10.1109/iccc54389.2021.9674702.
Texte intégralLi, Peng, et Yue Hu. « Mr Fingerprinting Reconstruction Using Structured Low-Rank Matrix Recovery And Subspace Modeling ». Dans 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021. http://dx.doi.org/10.1109/isbi48211.2021.9434120.
Texte intégral« Accurate Dictionary Matching for MR Fingerprinting Using Neural Networks and Feature Extraction ». Dans 2020 28th Signal Processing and Communications Applications Conference (SIU). IEEE, 2020. http://dx.doi.org/10.1109/siu49456.2020.9302455.
Texte intégralLu, Hengfa, Huihui Ye et Bo Zhao. « Improved Balanced Steady-State Free Precession Based MR Fingerprinting with Deep Autoencoders ». Dans 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2022. http://dx.doi.org/10.1109/embc48229.2022.9871003.
Texte intégralHu, Dakun, Huihui Ye et Huafeng Liu. « gSlider RF encoded MR fingerprinting with thin slice thickness, high accuracy and reproducibility ». Dans ICBET 2024 : 2024 14th International Conference on Biomedical Engineering and Technology, 51–57. New York, NY, USA : ACM, 2024. http://dx.doi.org/10.1145/3678935.3678944.
Texte intégralKeil, V., S. Bakoeva, A. Jurcoane, P. Koken, M. Doneva, T. Amthor, B. Mädler, W. Block, H. Schild et E. Hattingen. « MR Fingerprinting : Wie vergleichbar ist die neuartige Mappingtechnik mit konventionellem T1 und T2 Mapping ? » Dans 99. Deutscher Röntgenkongress. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641420.
Texte intégralKeil, V., S. Bakoeva, A. Jurcoane, T. Amthor, M. Doneva, P. Koken, B. Mädler, W. Block, H. Schild et E. Hattingen. « Quantitatives T1 und T2 Mapping mit MR Fingerprinting machen Alterungsprozesse des Gehirns mit geringem Aufwand messbar ». Dans 99. Deutscher Röntgenkongress. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641421.
Texte intégral