Littérature scientifique sur le sujet « Moving planes method »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Moving planes method ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Moving planes method"
Dancer, E. N. « Some notes on the method of moving planes ». Bulletin of the Australian Mathematical Society 46, no 3 (décembre 1992) : 425–34. http://dx.doi.org/10.1017/s0004972700012089.
Texte intégralLi, Yan Yan. « Harnack Type Inequality : the Method of Moving Planes ». Communications in Mathematical Physics 200, no 2 (1 février 1999) : 421–44. http://dx.doi.org/10.1007/s002200050536.
Texte intégralBerestycki, H., et L. Nirenberg. « On the method of moving planes and the sliding method ». Boletim da Sociedade Brasileira de Matem�tica 22, no 1 (mars 1991) : 1–37. http://dx.doi.org/10.1007/bf01244896.
Texte intégralChen, Wenxiong, Pengyan Wang, Yahui Niu et Yunyun Hu. « Asymptotic method of moving planes for fractional parabolic equations ». Advances in Mathematics 377 (janvier 2021) : 107463. http://dx.doi.org/10.1016/j.aim.2020.107463.
Texte intégralZhang, Lihong, et Xiaofeng Nie. « A direct method of moving planes for the Logarithmic Laplacian ». Applied Mathematics Letters 118 (août 2021) : 107141. http://dx.doi.org/10.1016/j.aml.2021.107141.
Texte intégralChen, Wenxiong, Congming Li et Yan Li. « A direct method of moving planes for the fractional Laplacian ». Advances in Mathematics 308 (février 2017) : 404–37. http://dx.doi.org/10.1016/j.aim.2016.11.038.
Texte intégralLin, Chang-Shou, et Juncheng Wei. « Uniqueness of Multiple-spike Solutions via the Method of Moving Planes ». Pure and Applied Mathematics Quarterly 3, no 3 (2007) : 689–735. http://dx.doi.org/10.4310/pamq.2007.v3.n3.a3.
Texte intégralGuan, Pengfei, Chang-Shou Lin et Guofang Wang. « Application of the method of moving planes to conformally invariant equations ». Mathematische Zeitschrift 247, no 1 (1 mai 2004) : 1–19. http://dx.doi.org/10.1007/s00209-003-0608-x.
Texte intégralДудукало, Д., D. Dudukalo, М. Чепчуров, M. Chepchurov, М. Вагнер et M. Vagner. « METHOD FOR PRODUCING PLANES PARALLEL TO THE AXIS ROTATION AXIS ON LATHES ». Bulletin of Belgorod State Technological University named after. V. G. Shukhov 4, no 10 (7 novembre 2019) : 142–48. http://dx.doi.org/10.34031/article_5db43fa622b135.74427811.
Texte intégralWang, Pengyan, et Pengcheng Niu. « A direct method of moving planes for a fully nonlinear nonlocal system ». Communications on Pure & ; Applied Analysis 16, no 5 (2017) : 1707–18. http://dx.doi.org/10.3934/cpaa.2017082.
Texte intégralThèses sur le sujet "Moving planes method"
Barboza, Eudes Mendes. « Classificação de soluções de algumas equações elípticas não lineraes ». Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/8027.
Texte intégralMade available in DSpace on 2016-03-22T11:11:05Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1833639 bytes, checksum: aaa2e895cd2ba1edb07718225c7443ba (MD5) Previous issue date: 2013-07-26
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq
In this work, we classify the solutions of the equation u + fue = 0 in R2 or R2 +. For this, we use basically the Moving Planes Method and and Moving Spheres Method. These methods ensure monotonicity and radial symmetry of the solution under certain conditions. The first method was used to study the case f 1 in R2 when RR2 eu is finite. The other was used to verify that the equation has no solution when f is a continuous function and radially symmetric, monotone in the region which has positive image and not constant. The latter method was also applied to the study of the problem ( u + eu = 0 em R2 +; @u @t = ceu=2 sobre @R2 +; for = 1; = 1 or = 0, modifying the conditions under the finiteness of RR2 + eu and R@R2 + eu=2. In most cases, when the equation has the solution, it was verified that the radially symmetrical. From this symmetry, we transform our Partial Differential Equations for Ordinary Differential Equations and we classify their solutions.
Neste trabalho, classificamos as soluções da equação u + feu = 0 em R2 ou R2 +. Para isso, utilizamos basicamente o Método dos Planos Móveis e o Método das Esferas Móveis, garantindo, sob certas condições a monotonicidade e a simetria radial da solução. O primeiro método foi usado para estudarmos o caso f 1, em R2 com RR2 eu finito. O outro foi utilizado para verificar que a equação não tem solução quando f é uma função contínua, radialmente simétrica e monótona na região em que tem imagem positiva e não constante. Este último método também foi aplicado no estudo do problema ( u + eu = 0 em R2 +; @u @t = ceu=2 sobre @R2 +; para = 1; = 1 ou = 0, modificando as condições em relação a finitude das integrais RR2 + eu e R@R2 + eu=2. Na maioria dos casos em que a equação tem solução, verificamos que esta era a radialmente simétrica. A partir dessa simetria, transformamos nas equações diferenciais parciais em equações diferenciais ordinárias e podemos classificar suas soluções.
Costa, Ricardo Pinheiro da. « Propriedades de simetria para soluções de equações elípticas quase lineares em modelos riemannianos ». Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/7436.
Texte intégralCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work we investigate monotonicity and symmetry properties of of solutions to equations involving the p-Laplace-Beltrami operator in hyperbolic space and sphere. The main tools used to obtain the result is a variant of the method of moving planes and a careful use of the maximum and comparison principles
Neste trabalho investigamos propriedades de simetria e monotonicidade de soluções para equações envolvendo o operador de p-Laplace-Beltrami no espaço hiperbólico e na esfera. As principais ferramentas empregadas para obtenção do resultado é uma variante do método dos planos móveis e um cuidadoso uso de princípios do máximo e de comparação
SOAVE, NICOLA. « Variational and geometric methods for nonlinear differential equations ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/49889.
Texte intégralNugroho, Widijanto Satyo. « Waves generated by a load moving on an ice sheet over water ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ32720.pdf.
Texte intégral« The method of moving planes and its applications ». 1998. http://library.cuhk.edu.hk/record=b5889650.
Texte intégralThesis (M.Phil.)--Chinese University of Hong Kong, 1998.
Includes bibliographical references (leaves 56-58).
Abstract also in Chinese.
Chapter 1 --- Radial symmetry for solutions of a semilinear el- liptic equation on a bounded domain --- p.6
Chapter 2 --- Asymptotic symmetry of singular solutions to a semilinear elliptic equation --- p.12
Chapter 2.1 --- Introduction --- p.12
Chapter 2.2 --- Some preliminary analysis --- p.14
Chapter 2.3 --- Proof of Theorem 2.1 --- p.20
Chapter 3 --- Classification of non-negative solutions to Yamabe type equations --- p.32
Chapter 3.1 --- Introduction --- p.32
Chapter 3.2 --- The Proof of Theorem 3.1 for k > 0 --- p.38
Chapter 3.3 --- Case k <0 --- p.48
Bibliography
Tsai, Ya-Ju, et 蔡雅如. « The Method of Moving Planes and Sliding Method Applied to Elliptic Partial Differential Equations ». Thesis, 2000. http://ndltd.ncl.edu.tw/handle/22288269777198354145.
Texte intégral國立臺灣大學
數學研究所
88
The Method of Moving Planes and the Sliding Method are simple and powerful techniques in proving the symmetry and monotonicity in, say, the $x_1$ direction for a solution of an elliptic equation. They rely on the "Maximum Principle in Small Domain." Following a discussion similar to that in "On the method of moving planes and the sliding mehtod" by Beresycki and Nirenberg, we apply the methods to $u \in W_{loc}^{2,n+1}(\Omega ) \cap C^0(\overline{\Omega})$ which satisfies the nonlinear elliptic equation $F(x, u, Du, D^2u) = 0$ in an arbitrary bounded domain $\Omega$ in $\mathbf{R}^n$. However, Berestycki and Nirenberg assumed that $u \in C^2(\Omega ) \cap C^0(\overline{\Omega})$ and $\Omega$ is convex in the $x_1$-direction. We have successfully loosen the later assumption, but while dealing with the former, some interesting type of Maximum Principle was required and had yet to be proved. We also applied the methods on some simple system elliptic equations which contains much more to be discussed.
Yen-ChunMiao et 苗延鈞. « Analysis of Plates by the Moving Least Work Method ». Thesis, 2018. http://ndltd.ncl.edu.tw/handle/fudr48.
Texte intégral國立成功大學
土木工程學系
106
In this thesis, the Moving Least Work (MLW) method is used to model the mechanical behaviors of Mindlin Plates. This method uses the Moving Least Work approach to establish approximating functions. In the weight-residual problem precess, the residual value is multiplied by the weight function and multiplied by the conjugate residual value, so that it contains the conception of the least work. Finally we used the point collocation method to get the solutions of displacement fields and stress resultant fields. The simply supported Mindlin plate is modeled under the sinusoidal load, and the boundary-value problems are solved by polynomial-analytic solutions. Using different basis functions and changing the numbers of the uniform-distributed points, we compared the numerical solutions with analytic solutions to validate the feasibility and convergence of the present method.
Chang-ChingLiu et 劉昶慶. « Analysis of Mindlin Plates by the Moving Trefftz Method ». Thesis, 2018. http://ndltd.ncl.edu.tw/handle/gqehtv.
Texte intégral國立成功大學
土木工程學系
106
In this thesis, we derive a numerical method named Moving Trefftz Method to simulate the mechanical behavior of Mindlin Plates. In order to incorporate the essential and natural boundary conditions into the variational principle, we adopt the Hellinger-Reissner variational principle. The characteristic of this method is adopting the concept of the Trefftz Method. We choose the functions that satisfy the differential equations as the basis of the local approximation function. By using the moving approximation of the Meshless Method in the modified H-R variational principle, we set nodes to construct the relationship between variables. Then, we can use the relationship to form simultaneous equations and solve the displacement field and the resultant stress field. In view of the convenience of using polynomial expressions in numerical analysis, we use the computational properties of polynomials to establish a systematic method to obtain the particular solutions and the bases required in the moving approximation. In numerical examples, we simulate the responses of the plate with different loads and boundary conditions. By changing the number of nodes and the order of bases, we compare the numerical solutions with the analytical solutions to validate the accuracy and the convergence of this method.
Hao-ChunChuang et 莊皓鈞. « Buckling Analysis of Plates by the Moving Least Square Method ». Thesis, 2012. http://ndltd.ncl.edu.tw/handle/06024890717604809632.
Texte intégral國立成功大學
土木工程學系碩博士班
100
In this paper, we use Moving Least Square Method and shear deformation theory of plates to analyze the buckling of plates. Using the moving least square technique, we attempt to reduce the residuals that results from the approximation to the field variables, the governing equations and the boundary conditions. The process lead to a numerical method to analyze the buckling of plates. In numerical example, we calculate the buckling lead of a plate with simply supported or clamped edges, and the plate size with aspect ratio of 0.5 to 3,and thickness ratio of 0.05 to 0.15. The buckling coefficient and the corresponding buckling shapes are compared with the analytic solution to validate the accuracy of this method. The numerical examples show that when the order of base functions, the aspect ratio and thickness ratio increase, the numerical results converge to the analytical solution.Thus, present method can accurately predict the buckling load of a thick plate.
闕國賢. « Implicit Virtual Boundary Method for Moving Flat Plates of Zero Thickness ». Thesis, 2014. http://ndltd.ncl.edu.tw/handle/15326129747149750219.
Texte intégral國立清華大學
動力機械工程學系
102
We apply an implicit virtual boundary method with non-staggered coordinate grid system to zero thickness flat plate. Also we use a patch grid to reduce the calculating time and keep the accuracy at the same time. This method can solve the immersed boundary problem for a zero thickness flat plate accurately, no matter it is vertical or with arbitrary angle. We also apply a method to calculate a flying dragonfly, which we won’t need to assume the wings as elliptical geometries with thin thickness, but directly solve them as a zero thickness problem and successfully get the answer of flow and pressure field instead. Also, we may get the drag and lift coefficients. Due to the simulation in this case, we can gain many ideas different from the past. Consequently, the implicit virtual boundary method can successfully applied to many different problems.
Livres sur le sujet "Moving planes method"
G, Lee Nancy, et Institute of Andean Studies (Berkeley, Calif.). Meeting, dir. The Sisyphus Project : Moving big rocks up steep hills and into small places : wherein a method is proposed to account for the huge monoliths moved in antiquity and found today in situations too constricted to accommodate the large gangs of pullers traditionally assumed necessary to move them. [Wilson, Wyo.] : Sixpac Manco Publications, 1998.
Trouver le texte intégralBollig, Ben. Moving Verses. Liverpool University Press, 2021. http://dx.doi.org/10.3828/liverpool/9781800859784.001.0001.
Texte intégralLivermore, Roy. Plate Tectonics by Jerks. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198717867.003.0005.
Texte intégralVachharajani, Tushar J., Richard K. S. Phoon et David C. H. Harris. A global curriculum for training the next generation of nephrologists. Sous la direction de Neil Turner. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0365_update_001.
Texte intégralChapitres de livres sur le sujet "Moving planes method"
Faugeras, Olivier. « Cartan's moving frame method and its application to the geometry and evolution of curves in the euclidean, affine and projective planes ». Dans Applications of Invariance in Computer Vision, 9–46. Berlin, Heidelberg : Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58240-1_2.
Texte intégralPacella, Filomena. « I.7. Symmetry of Solutions – Moving Plane Method ». Dans James Serrin. Selected Papers, 429–68. Basel : Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0845-3_7.
Texte intégralMarkenscoff, Xanthippi. « The Moving Plane Inhomogeneity Boundary with Transformation Strain ». Dans Methods and Tastes in Modern Continuum Mechanics, 469–80. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1884-5_29.
Texte intégralTakabatake, Hideo. « Static and Dynamic Analyses of Rectangular Floating Plates Subjected to Moving Loads ». Dans Simplified Analytical Methods of Elastic Plates, 203–26. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0086-8_10.
Texte intégralTakabatake, Hideo. « Static and Dynamic Analyses of Rectangular Plates with Stepped Thickness Subjected to Moving Loads ». Dans Simplified Analytical Methods of Elastic Plates, 189–202. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0086-8_9.
Texte intégralPrasetya, Herbert Ray, Nazarruddin et Sugiharto Pujangkoro. « Shelf Allocation Redesign and Warehouse Management System Improvement to Optimize Warehouse Material Flow in Oleo Chemical Industry Business ». Dans Proceedings of the 19th International Symposium on Management (INSYMA 2022), 1135–45. Dordrecht : Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-008-4_140.
Texte intégralKang, Dong-Joong, Jong-Eun Ha et Tae-Jung Lho. « A Fast Method for Detecting Moving Vehicles Using Plane Constraint of Geometric Invariance ». Dans Computational Science and Its Applications - ICCSA 2006, 1163–71. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11751595_122.
Texte intégralNguyen, Xuan Vu, Van Hai Luong, Tan Ngoc Than Cao et Minh Thi Tran. « Hydroelastic Analysis of Floating Plates Subjected to Moving Loads in Shallow Water Condition by Using the Moving Element Method ». Dans Lecture Notes in Civil Engineering, 1119–28. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5144-4_109.
Texte intégralOzbay, Baris N., Gregory L. Futia, Ming Ma, Connor McCullough, Michael D. Young, Diego Restrepo et Emily A. Gibson. « Miniature Multiphoton Microscopes for Recording Neural Activity in Freely Moving Animals ». Dans Neuromethods, 187–230. New York, NY : Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2764-8_7.
Texte intégralKim, Jeong-Hyun, Zhu Teng, Dong-Joong Kang et Jong-Eun Ha. « Multiple Plane Detection Method from Range Data of Digital Imaging System for Moving Robot Applications ». Dans Augmented Vision and Reality, 201–15. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55131-4_11.
Texte intégralActes de conférences sur le sujet "Moving planes method"
Mazumder, A. K. M. Monayem H. « Finite Element Method for Fluid Flow in 3D Domains Containing Moving Interfaces ». Dans ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10016.
Texte intégralTeller, Davida Y., et Delwin J. Lindsey. « Motion photometry : additivity and the isoluminant plane ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.thf4.
Texte intégralWnuk, Marian. « Limiting the risk to the environment by measuring the characteristics of antennas in the near zone ». Dans 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002531.
Texte intégralNotohardjono, Budy D., et Robert Sanders. « Static and Dynamic Handling Stability of Server Rack Computers ». Dans ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20473.
Texte intégralDobson, Sarah L., Pang-chen Sun et Yeshayahu Fainman. « Diffractive Optical Element for Chromatic Confocal Imaging ». Dans Diffractive Optics and Micro-Optics. Washington, D.C. : Optica Publishing Group, 1996. http://dx.doi.org/10.1364/domo.1996.dtua.2.
Texte intégralLee, Usik, et Joohong Kim. « Modal Spectral Element for the Transverse Vibrations of Axially Moving Wide-Band Strips ». Dans ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/detc2002/cie-34469.
Texte intégralKuznetsov, B., I. Bovdui et T. Nikitina. « Nonlinear Robust Control Parametric Synthesis by Moving Plants with Elastic Elements ». Dans 2020 IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC). IEEE, 2020. http://dx.doi.org/10.1109/msnmc50359.2020.9255656.
Texte intégralSantos, Plínio, Marcelo Pereira et Mauricio Donadon. « ANALYSIS OF LAMINATE COMPOSITE PLATES USING MOVING LEAST SQUARE RITZ METHOD ». Dans 26th International Congress of Mechanical Engineering. ABCM, 2021. http://dx.doi.org/10.26678/abcm.cobem2021.cob2021-0276.
Texte intégralGurunathan, B., et S. G. Dhande. « A Computer Aided Geometric Method for Development of Conical Convolutes ». Dans ASME 1987 Design Technology Conferences. American Society of Mechanical Engineers, 1987. http://dx.doi.org/10.1115/detc1987-0047.
Texte intégralGonzalez-Martino, Ignacio, et Sébastien Gautier. « Unsteady Flow Physics and Performance Prediction of a 1-1/2 Stage Unshrouded High Work Turbine Using the Lattice Boltzmann Approach ». Dans ASME Turbo Expo 2016 : Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56364.
Texte intégralRapports d'organisations sur le sujet "Moving planes method"
Zilberman, Mark. Methods to Test the “Dimming Effect” Produced by a Decrease in the Number of Photons Received from Receding Light Sources. Intellectual Archive, novembre 2020. http://dx.doi.org/10.32370/iaj.2437.
Texte intégralXu, Jin-Rong, et Amir Sharon. Comparative studies of fungal pathogeneses in two hemibiotrophs : Magnaporthe grisea and Colletotrichum gloeosporioides. United States Department of Agriculture, mai 2008. http://dx.doi.org/10.32747/2008.7695585.bard.
Texte intégralMicrobiology in the 21st Century : Where Are We and Where Are We Going ? American Society for Microbiology, 2004. http://dx.doi.org/10.1128/aamcol.5sept.2003.
Texte intégral