Articles de revues sur le sujet « Molecular imaging applications »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Molecular imaging applications.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Molecular imaging applications ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Ozeki, Yasuyuki. « Molecular vibrational imaging by stimulated Raman scattering microscopy : principles and applications [Invited] ». Chinese Optics Letters 18, no 12 (2020) : 121702. http://dx.doi.org/10.3788/col202018.121702.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tian, M. « Molecular Imaging : Fundamentals and Applications ». Journal of Nuclear Medicine 56, no 2 (8 janvier 2015) : 329. http://dx.doi.org/10.2967/jnumed.114.153353.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Li, King C. P., Sunil D. Pandit, Samira Guccione et Mark D. Bednarski. « Molecular Imaging Applications in Nanomedicine ». Biomedical Microdevices 6, no 2 (juin 2004) : 113–16. http://dx.doi.org/10.1023/b:bmmd.0000031747.05317.81.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hildebrandt, Isabel Junie, et Sanjiv Sam Gambhir. « Molecular imaging applications for immunology ». Clinical Immunology 111, no 2 (mai 2004) : 210–24. http://dx.doi.org/10.1016/j.clim.2003.12.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Petrik, Milos, Chuangyan Zhai, Hubertus Haas et Clemens Decristoforo. « Siderophores for molecular imaging applications ». Clinical and Translational Imaging 5, no 1 (11 octobre 2016) : 15–27. http://dx.doi.org/10.1007/s40336-016-0211-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Heneweer, Carola, et Jan Grimm. « Clinical applications in molecular imaging ». Pediatric Radiology 41, no 2 (3 décembre 2010) : 199–207. http://dx.doi.org/10.1007/s00247-010-1902-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

James, Michelle L., et Sanjiv S. Gambhir. « A Molecular Imaging Primer : Modalities, Imaging Agents, and Applications ». Physiological Reviews 92, no 2 (avril 2012) : 897–965. http://dx.doi.org/10.1152/physrev.00049.2010.

Texte intégral
Résumé :
Molecular imaging is revolutionizing the way we study the inner workings of the human body, diagnose diseases, approach drug design, and assess therapies. The field as a whole is making possible the visualization of complex biochemical processes involved in normal physiology and disease states, in real time, in living cells, tissues, and intact subjects. In this review, we focus specifically on molecular imaging of intact living subjects. We provide a basic primer for those who are new to molecular imaging, and a resource for those involved in the field. We begin by describing classical molecular imaging techniques together with their key strengths and limitations, after which we introduce some of the latest emerging imaging modalities. We provide an overview of the main classes of molecular imaging agents (i.e., small molecules, peptides, aptamers, engineered proteins, and nanoparticles) and cite examples of how molecular imaging is being applied in oncology, neuroscience, cardiology, gene therapy, cell tracking, and theranostics (therapy combined with diagnostics). A step-by-step guide to answering biological and/or clinical questions using the tools of molecular imaging is also provided. We conclude by discussing the grand challenges of the field, its future directions, and enormous potential for further impacting how we approach research and medicine.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Cai, Jiong, Zhaofei Liu, Fan Wang et Fang Li. « Phage Display Applications for Molecular Imaging ». Current Pharmaceutical Biotechnology 11, no 6 (1 septembre 2010) : 603–9. http://dx.doi.org/10.2174/138920110792246573.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zhao, Ming, Xuefeng Wang, Gregory M. Lawrence, Patricio Espinoza et David D. Nolte. « Molecular Interferometric Imaging for Biosensor Applications ». IEEE Journal of Selected Topics in Quantum Electronics 13, no 6 (2007) : 1680–90. http://dx.doi.org/10.1109/jstqe.2007.911002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mountz, John D., Hui-Chen Hsu, Qi Wu, Hong-Gang Liu, Huang-Ge Zhang et James M. Mountz. « Molecular imaging : New applications for biochemistry ». Journal of Cellular Biochemistry 87, S39 (2002) : 162–71. http://dx.doi.org/10.1002/jcb.10434.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Blankenberg, Francis G., et H. William Strauss. « Nuclear medicine applications in molecular imaging ». Journal of Magnetic Resonance Imaging 16, no 4 (25 septembre 2002) : 352–61. http://dx.doi.org/10.1002/jmri.10171.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Chen, Zhi-Yi, Yi-Xiang Wang, Yan Lin, Jin-Shan Zhang, Feng Yang, Qiu-Lan Zhou et Yang-Ying Liao. « Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy ». BioMed Research International 2014 (2014) : 1–12. http://dx.doi.org/10.1155/2014/819324.

Texte intégral
Résumé :
Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Silindir, Mine, Suna Erdoğan, A. Yekta Özer et Serge Maia. « Liposomes and their applications in molecular imaging ». Journal of Drug Targeting 20, no 5 (4 mai 2012) : 401–15. http://dx.doi.org/10.3109/1061186x.2012.685477.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Miller, Tom. « PET : Molecular Imaging and Its Biological Applications. » American Journal of Roentgenology 184, no 4 (avril 2005) : 1366. http://dx.doi.org/10.2214/ajr.184.4.01841366.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Son, Joo-Hiuk. « Principle and applications of terahertz molecular imaging ». Nanotechnology 24, no 21 (25 avril 2013) : 214001. http://dx.doi.org/10.1088/0957-4484/24/21/214001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Mahmood, U. « Near infrared optical applications in molecular imaging ». IEEE Engineering in Medicine and Biology Magazine 23, no 4 (juillet 2004) : 58–66. http://dx.doi.org/10.1109/memb.2004.1337950.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Chatterjee, Sushmita. « Applications of lentiviral vectors in molecular imaging ». Frontiers in Bioscience 19, no 6 (2014) : 835. http://dx.doi.org/10.2741/4251.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

de la Zerda, Adam. « Photoacoustic Molecular Imaging and its Biophysical Applications ». Biophysical Journal 104, no 2 (janvier 2013) : 185a. http://dx.doi.org/10.1016/j.bpj.2012.11.1044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Shirshahi, Vahid, et Madjid Soltani. « Solid silica nanoparticles : applications in molecular imaging ». Contrast Media & ; Molecular Imaging 10, no 1 (3 juillet 2014) : 1–17. http://dx.doi.org/10.1002/cmmi.1611.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Du, Meng, Ting Wang, Yaozhang Yang, Fengyi Zeng, Yue Li et Zhiyi Chen. « Application of Genetically Encoded Molecular Imaging Probes in Tumor Imaging ». Contrast Media & ; Molecular Imaging 2022 (27 août 2022) : 1–9. http://dx.doi.org/10.1155/2022/5473244.

Texte intégral
Résumé :
In recent years, imaging technology has made rapid progress to improve the sensitivity of tumor diagnostic. With the development of genetic engineering and synthetic biology, various genetically encoded molecular imaging probes have also been extensively developed. As a biomedical imaging method with excellent detectable sensitivity and spatial resolution, genetically encoded molecular imaging has great application potential in the visualization of cellular and molecular functions during tumor development. Compared to chemosynthetic dyes and nanoparticles with an imaging function, genetically encoded molecular imaging probes can more easily label specific cells or proteins of interest in tumor tissues and have higher stability and tissue contrast in vivo. Therefore, genetically encoded molecular imaging probes have attracted increasing attention from researchers in engineering and biomedicine. In this review, we aimed to introduce the genetically encoded molecular imaging probes and further explained their applications in tumor imaging.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Kircher, Moritz F., et Jürgen K. Willmann. « Molecular Body Imaging : MR Imaging, CT, and US. Part II. Applications ». Radiology 264, no 2 (août 2012) : 349–68. http://dx.doi.org/10.1148/radiol.12111703.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Tian, M. « Molecular Imaging of Small Animals : Instrumentation and Applications ». Journal of Nuclear Medicine 56, no 7 (29 mai 2015) : 1130. http://dx.doi.org/10.2967/jnumed.115.161281.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Iyer, Meera, Makoto Sato, Mai Johnson, Sanjiv Gambhir et Lily Wu. « Applications of Molecular Imaging in Cancer Gene Therapy ». Current Gene Therapy 5, no 6 (1 décembre 2005) : 607–18. http://dx.doi.org/10.2174/156652305774964695.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Williams, Stephen R., Laura Hausmann et Jörg B. Schulz. « Molecular imaging and its applications : visualization beyond imagination ». Journal of Neurochemistry 127, no 5 (30 octobre 2013) : 575–77. http://dx.doi.org/10.1111/jnc.12445.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Hicks, Rodney J. « Clinical applications of molecular imaging in sarcoma evaluation ». Cancer Imaging 5, no 1 (2005) : 66–72. http://dx.doi.org/10.1102/1470-7330.2005.0008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Sasaki, Makoto. « Magnetic resonance molecular imaging : applications to stroke management ». Nosotchu 30, no 6 (2008) : 822–24. http://dx.doi.org/10.3995/jstroke.30.822.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Hazle, J., L. Clarke, E. Jackson et J. Humm. « TU-D-330D-01 : Molecular Imaging II - Applications ». Medical Physics 33, no 6Part17 (juin 2006) : 2197. http://dx.doi.org/10.1118/1.2241554.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Li, Junwei, Jie Liu, Chen-Wei Wei, Bin Liu, Matthew O'Donnell et Xiaohu Gao. « Emerging applications of conjugated polymers in molecular imaging ». Physical Chemistry Chemical Physics 15, no 40 (2013) : 17006. http://dx.doi.org/10.1039/c3cp51763b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Vishal, Thumar, MD, Liu, MD Ji-Bin et Eisenbrey, PhD John. « Applications in Molecular Ultrasound Imaging : Present and Future ». ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 3, no 3 (2019) : 62. http://dx.doi.org/10.37015/audt.2019.190812.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Dimayuga, Vanessa M., et Martin Rodriguez-Porcel. « Molecular Imaging of Cell Therapy for Gastroenterologic Applications ». Pancreatology 11, no 4 (août 2011) : 414–27. http://dx.doi.org/10.1159/000327395.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Wu, Cuichen Sam, Lu Peng, Mingxu You, Da Han, Tao Chen, Kathryn R. Williams, Chaoyong James Yang et Weihong Tan. « Engineering Molecular Beacons for Intracellular Imaging ». International Journal of Molecular Imaging 2012 (6 novembre 2012) : 1–10. http://dx.doi.org/10.1155/2012/501579.

Texte intégral
Résumé :
Molecular beacons (MBs) represent a class of nucleic acid probes with unique DNA hairpin structures that specifically target complementary DNA or RNA. The inherent “OFF” to “ON” signal transduction mechanism of MBs makes them promising molecular probes for real-time imaging of DNA/RNA in living cells. However, conventional MBs have been challenged with such issues as false-positive signals and poor biostability in complex cellular matrices. This paper describes the novel engineering steps used to improve the fluorescence signal and reduce to background fluorescence, as well as the incorporation of unnatural nucleotide bases to increase the resistance of MBs to nuclease degradation for application in such fields as chemical analysis, biotechnology, and clinical medicine. The applications of these de novo MBs for single-cell imaging will be also discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Cassidy, Paul J., et George K. Radda. « Molecular imaging perspectives ». Journal of The Royal Society Interface 2, no 3 (10 mai 2005) : 133–44. http://dx.doi.org/10.1098/rsif.2005.0040.

Texte intégral
Résumé :
Molecular imaging is an emerging technology at the life science/physical science interface which is set to revolutionize our understanding and treatment of disease. The tools of molecular imaging are the imaging modalities and their corresponding contrast agents. These facilitate interaction with a biological target at a molecular level in a number of ways. The diverse nature of molecular imaging requires knowledge from both the life and physical sciences for its successful development and implementation. The aim of this review is to introduce the subject of molecular imaging from both life science and physical science perspectives. However, we will restrict our coverage to the prominent in vivo molecular imaging modalities of magnetic resonance imaging, optical imaging and nuclear imaging. The physical basis of these imaging modalities, the use of contrast agents and the imaging parameters of sensitivity, temporal resolution and spatial resolution are described. Then, the specificity of contrast agents for targeting and sensing molecular events, and some applications of molecular imaging in biology and medicine are given. Finally, the diverse nature of molecular imaging and its reliance on interdisciplinary collaboration is discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Köse, Gurbet, Milita Darguzyte et Fabian Kiessling. « Molecular Ultrasound Imaging ». Nanomaterials 10, no 10 (28 septembre 2020) : 1935. http://dx.doi.org/10.3390/nano10101935.

Texte intégral
Résumé :
In the last decade, molecular ultrasound imaging has been rapidly progressing. It has proven promising to diagnose angiogenesis, inflammation, and thrombosis, and many intravascular targets, such as VEGFR2, integrins, and selectins, have been successfully visualized in vivo. Furthermore, pre-clinical studies demonstrated that molecular ultrasound increased sensitivity and specificity in disease detection, classification, and therapy response monitoring compared to current clinically applied ultrasound technologies. Several techniques were developed to detect target-bound microbubbles comprising sensitive particle acoustic quantification (SPAQ), destruction-replenishment analysis, and dwelling time assessment. Moreover, some groups tried to assess microbubble binding by a change in their echogenicity after target binding. These techniques can be complemented by radiation force ultrasound improving target binding by pushing microbubbles to vessel walls. Two targeted microbubble formulations are already in clinical trials for tumor detection and liver lesion characterization, and further clinical scale targeted microbubbles are prepared for clinical translation. The recent enormous progress in the field of molecular ultrasound imaging is summarized in this review article by introducing the most relevant detection technologies, concepts for targeted nano- and micro-bubbles, as well as their applications to characterize various diseases. Finally, progress in clinical translation is highlighted, and roadblocks are discussed that currently slow the clinical translation.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Cepeda, Eduardo, et Katherine Narváez. « Molecular Photoacoustic Imaging ». Bionatura 6, no 4 (15 novembre 2021) : 2351–55. http://dx.doi.org/10.21931/rb/2021.06.04.34.

Texte intégral
Résumé :
Medicine has gone through several challenges to make it much more accurate and thus prolong the human being's life. A large part of this challenge is diseased, so early detection can help carry out treatment on time. There is a technology that allows detecting an abnormality within the body without using an invasive method. Ultrasound is a diagnostic test used to scan organs and tissues through sound waves. Although this technique has been widely used, the results are not desired because the images generated are not high resolution. On the other hand, X-rays are used because it presents an image with a much higher resolution than other techniques based on light waves or ultrasound; despite this, they are harmful to cells. In consequence of this problem, another method called molecular photoacoustic imaging has been implemented. This technique bridges the traditional depth limits of ballistic optical imaging and diffuse optical imaging's resolution limits, using the acoustic waves generated in response to laser light absorption, which has now shown potential for molecular imaging, allowing the visualization of biological processes in a non-invasive way. The purpose of this article is to give a critically scoped review of the physical, chemical, and biochemical characteristics of existing photoacoustic contrast agents, highlighting the pivotal applications and current challenges for molecular photoacoustic imaging.
Styles APA, Harvard, Vancouver, ISO, etc.
35

He, Cailing, Jiayuan Zhu, Huayue Zhang, Ruirui Qiao et Run Zhang. « Photoacoustic Imaging Probes for Theranostic Applications ». Biosensors 12, no 11 (1 novembre 2022) : 947. http://dx.doi.org/10.3390/bios12110947.

Texte intégral
Résumé :
Photoacoustic imaging (PAI), an emerging biomedical imaging technology, capitalizes on a wide range of endogenous chromophores and exogenous contrast agents to offer detailed information related to the functional and molecular content of diseased biological tissues. Compared with traditional imaging technologies, PAI offers outstanding advantages, such as a higher spatial resolution, deeper penetrability in biological tissues, and improved imaging contrast. Based on nanomaterials and small molecular organic dyes, a huge number of contrast agents have recently been developed as PAI probes for disease diagnosis and treatment. Herein, we report the recent advances in the development of nanomaterials and organic dye-based PAI probes. The current challenges in the field and future research directions for the designing and fabrication of PAI probes are proposed.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kumamoto, Yasuaki, Menglu Li, Kota Koike et Katsumasa Fujita. « Slit-scanning Raman microscopy : Instrumentation and applications for molecular imaging of cell and tissue ». Journal of Applied Physics 132, no 17 (7 novembre 2022) : 171101. http://dx.doi.org/10.1063/5.0102079.

Texte intégral
Résumé :
In recent years, Raman microscopy has emerged as a molecular imaging tool for cell and tissue analysis. A key reason for this is the development of techniques that significantly increase imaging speed. In this Tutorial, we introduce slit-scanning Raman microscopy, a Raman imaging technique that achieves imaging speeds more than two orders of magnitude faster than conventional confocal Raman microscopy, and its application to cell and tissue imaging and analysis. Recent advances in Raman imaging, particularly further improvements in imaging speed, sensitivity, specificity, and spatial resolution, are also discussed. In addition, we present the prospects of Raman microscopy as a molecular imaging method to aid in new discoveries in life sciences and the potential of high-speed Raman imaging for clinical applications.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Catrysse, Peter B., Francisco H. Imai, Dale C. Linne von Berg et John T. Sheridan. « Imaging systems and applications ». Applied Optics 52, no 7 (28 février 2013) : ISA1. http://dx.doi.org/10.1364/ao.52.00isa1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Aljabali, Alaa A. A., et Mohammad A. Obeid. « Inorganic-organic Nanomaterials for Therapeutics and Molecular Imaging Applications ». Nanoscience & ; Nanotechnology-Asia 10, no 6 (30 novembre 2020) : 748–65. http://dx.doi.org/10.2174/2210681209666190807145229.

Texte intégral
Résumé :
Background:: Surface modification of nanoparticles with targeting moieties can be achieved through bioconjugation chemistries to impart new Functionalities. Various polymeric nanoparticles have been used for the formulation of nanoparticles such as naturally-occurring protein cages, virus-like particles, polymeric saccharides, and liposomes. These polymers have been proven to be biocompatible, side effects free and degradable with no toxicity. Objectives:: This paper reviews available literature on the nanoparticles pharmaceutical and medical applications. The review highlights and updates the customized solutions for selective drug delivery systems that allow high-affinity binding between nanoparticles and the target receptors. Methods:: Bibliographic databases and web-search engines were used to retrieve studies that assessed the usability of nanoparticles in the pharmaceutical and medical fields. Data were extracted on each system in vivo and in vitro applications, its advantages and disadvantages, and its ability to be chemically and genetically modified to impart new functionalities. Finally, a comparison between naturally occurring and their synthetic counterparts was carried out. Results:: The results showed that nanoparticles-based systems could have promising applications in diagnostics, cell labeling, contrast agents (Magnetic Resonance Imaging and Computed Tomography), antimicrobial agents, and as drug delivery systems. However, precautions should be taken to avoid or minimize toxic effect or incompatibility of nanoparticles-based systems with the biological systems in case of pharmaceutical or medical applications. Conclusion:: This review presented a summary of recent developments in the field of pharmaceutical nanotechnology and highlighted the challenges and the merits that some of the nanoparticles- based systems both in vivo and in vitro systems.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Harada, Yoshinori, et Tetsuro Takamatsu. « Editorial [Hot Topic Biomedical Applications of Molecular Vibrational Imaging] ». Current Pharmaceutical Biotechnology 14, no 2 (1 février 2013) : 131–32. http://dx.doi.org/10.2174/1389201011314020001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Harada, Yoshinori, et Tetsuro Takamatsu. « Editorial (Hot Topic : Biomedical Applications of Molecular Vibrational Imaging) ». Current Pharmaceutical Biotechnology 14, no 2 (1 février 2013) : 131–32. http://dx.doi.org/10.2174/138920113805219421.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Penet, Marie-France, Maria Mikhaylova, Cong Li, Balaji Krishnamachary, Kristine Glunde, Arvind P. Pathak et Zaver M. Bhujwalla. « Applications of molecular MRI and optical imaging in cancer ». Future Medicinal Chemistry 2, no 6 (juin 2010) : 975–88. http://dx.doi.org/10.4155/fmc.10.25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Gimi, B., A. P. Pathak, E. Ackerstaff, K. Glunde, D. Artemov et Z. M. Bhujwalla. « Molecular Imaging of Cancer : Applications of Magnetic Resonance Methods ». Proceedings of the IEEE 93, no 4 (avril 2005) : 784–99. http://dx.doi.org/10.1109/jproc.2005.844266.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Shim, Chi Young, et Jonathan R. Lindner. « Cardiovascular Molecular Imaging with Contrast Ultrasound : Principles and Applications ». Korean Circulation Journal 44, no 1 (2014) : 1. http://dx.doi.org/10.4070/kcj.2014.44.1.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Abou, D. S., J. E. Pickett et D. L. J. Thorek. « Nuclear molecular imaging with nanoparticles : radiochemistry, applications and translation ». British Journal of Radiology 88, no 1054 (octobre 2015) : 20150185. http://dx.doi.org/10.1259/bjr.20150185.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Zhang, Rui, Liangliang Zhang, Tong Wu, Ruixue Wang, Shasha Zuo, Dong Wu, Cunlin Zhang, Jue Zhang et Jing Fang. « Continuous-terahertz-wave molecular imaging system for biomedical applications ». Journal of Biomedical Optics 21, no 7 (12 juillet 2016) : 076006. http://dx.doi.org/10.1117/1.jbo.21.7.076006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Feng, Jinchao, Wenxiang Cong, Kuangyu Shi, Shouping Zhu et Jun Zhang. « Translational Molecular Imaging Computing : Advances in Theories and Applications ». BioMed Research International 2016 (2016) : 1–2. http://dx.doi.org/10.1155/2016/1569605.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Reichert, D. « Applications of molecular mechanics to metal-based imaging agents ». Coordination Chemistry Reviews 212, no 1 (février 2001) : 111–31. http://dx.doi.org/10.1016/s0010-8545(00)00367-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Mezzanotte, Laura, Moniek van ‘t Root, Hacer Karatas, Elena A. Goun et Clemens W. G. M. Löwik. « In Vivo Molecular Bioluminescence Imaging : New Tools and Applications ». Trends in Biotechnology 35, no 7 (juillet 2017) : 640–52. http://dx.doi.org/10.1016/j.tibtech.2017.03.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Ajito, Katsuhiro, Yuko Ueno, Ho-Jin Song, Emi Tamechika et Naoya Kukutsu. « Terahertz Chemical Imaging of Molecular Networks for Pharmaceutical Applications ». ECS Transactions 35, no 7 (16 décembre 2019) : 157–65. http://dx.doi.org/10.1149/1.3571988.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Delli Castelli, Daniela, Eliana Gianolio, Simonetta Geninatti Crich, Enzo Terreno et Silvio Aime. « Metal containing nanosized systems for MR-Molecular Imaging applications ». Coordination Chemistry Reviews 252, no 21-22 (novembre 2008) : 2424–43. http://dx.doi.org/10.1016/j.ccr.2008.05.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie