Littérature scientifique sur le sujet « Molecular electronic qubits »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Molecular electronic qubits ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Molecular electronic qubits"

1

CAO, WEN-ZHEN, LI-JIE TIAN, HUI-JUAN JIANG et CHONG LI. « SINGLE QUBIT MANIPULATION IN HETERONUCLEAR DIATOMIC MOLECULAR SYSTEM ». International Journal of Quantum Information 06, no 06 (décembre 2008) : 1223–30. http://dx.doi.org/10.1142/s0219749908004390.

Texte intégral
Résumé :
We propose a scenario to realize quantum computers utilizing heteronuclear diatomic rovibrational states as qubits. We focused on rovibrational qubits created by simple transform limited infrared laser pulse instead of using chirped pulse. Numerical calculations show that single qubit gate operation in the electronic ground state of LiH molecule can be obtained. We also discuss the effect of temperature on the initially rotational states, and a suitable experiment condition is indicated.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Koiller, Belita, Xuedong Hu, Rodrigo B. Capaz, Adriano S. Martins et Sankar Das Sarma. « Silicon-based spin and charge quantum computation ». Anais da Academia Brasileira de Ciências 77, no 2 (juin 2005) : 201–22. http://dx.doi.org/10.1590/s0001-37652005000200002.

Texte intégral
Résumé :
Silicon-based quantum-computer architectures have attracted attention because of their promise for scalability and their potential for synergetically utilizing the available resources associated with the existing Si technology infrastructure. Electronic and nuclear spins of shallow donors (e.g. phosphorus) in Si are ideal candidates for qubits in such proposals due to the relatively long spin coherence times. For these spin qubits, donor electron charge manipulation by external gates is a key ingredient for control and read-out of single-qubit operations, while shallow donor exchange gates are frequently invoked to perform two-qubit operations. More recently, charge qubits based on tunnel coupling in P+2 substitutional molecular ions in Si have also been proposed. We discuss the feasibility of the building blocks involved in shallow donor quantum computation in silicon, taking into account the peculiarities of silicon electronic structure, in particular the six degenerate states at the conduction band edge. We show that quantum interference among these states does not significantly affect operations involving a single donor, but leads to fast oscillations in electron exchange coupling and on tunnel-coupling strength when the donor pair relative position is changed on a lattice-parameter scale. These studies illustrate the considerable potential as well as the tremendous challenges posed by donor spin and charge as candidates for qubits in silicon.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Benci, Tesi, Atzori, Sessoli et Torre. « Spin Dynamics and Phonons, Insights into Potential Molecular Qubits ». Proceedings 26, no 1 (5 septembre 2019) : 46. http://dx.doi.org/10.3390/proceedings2019026046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sproules, Stephen. « Electronic structure study of divanadium complexes with rigid covalent coordination : potential molecular qubits with slow spin relaxation ». Dalton Transactions 50, no 14 (2021) : 4778–82. http://dx.doi.org/10.1039/d1dt00709b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Picó-Cortés, Jordi, et Gloria Platero. « Dynamical second-order noise sweetspots in resonantly driven spin qubits ». Quantum 5 (23 décembre 2021) : 607. http://dx.doi.org/10.22331/q-2021-12-23-607.

Texte intégral
Résumé :
Quantum dot-based quantum computation employs extensively the exchange interaction between nearby electronic spins in order to manipulate and couple different qubits. The exchange interaction, however, couples the qubit states to charge noise, which reduces the fidelity of the quantum gates that employ it. The effect of charge noise can be mitigated by working at noise sweetspots in which the sensitivity to charge variations is reduced. In this work we study the response to charge noise of a double quantum dot based qubit in the presence of ac gates, with arbitrary driving amplitudes, applied either to the dot levels or to the tunneling barrier. Tuning with an ac driving allows to manipulate the sign and strength of the exchange interaction as well as its coupling to environmental electric noise. Moreover, we show the possibility of inducing a second-order sweetspot in the resonant spin-triplet qubit in which the dephasing time is significantly increased.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kintzel, Benjamin, Michael Böhme, Junjie Liu, Anja Burkhardt, Jakub Mrozek, Axel Buchholz, Arzhang Ardavan et Winfried Plass. « Molecular electronic spin qubits from a spin-frustrated trinuclear copper complex ». Chemical Communications 54, no 92 (2018) : 12934–37. http://dx.doi.org/10.1039/c8cc06741d.

Texte intégral
Résumé :
The trinuclear copper(ii) complex [Cu3(saltag)(py)6]ClO4 (H5saltag = tris(2-hydroxybenzylidene)triaminoguanidine) was synthesized and characterized by experimental as well as theoretical methods.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Issah, Ibrahim, Mohsin Habib et Humeyra Caglayan. « Long-range qubit entanglement via rolled-up zero-index waveguide ». Nanophotonics 10, no 18 (17 novembre 2021) : 4579–89. http://dx.doi.org/10.1515/nanoph-2021-0453.

Texte intégral
Résumé :
Abstract Preservation of an entangled state in a quantum system is one of the major goals in quantum technological applications. However, entanglement can be quickly lost into dissipation when the effective interaction among the qubits becomes smaller compared to the noise-injection from the environment. Thus, a medium that can sustain the entanglement of distantly spaced qubits is essential for practical implementations. This work introduces the fabrication of a rolled-up zero-index waveguide which can serve as a unique reservoir for the long-range qubit–qubit entanglement. We also present the numerical evaluation of the concurrence (entanglement measure) via Ansys Lumerical FDTD simulations using the parameters determined experimentally. The calculations demonstrate the feasibility and supremacy of the experimental method. We develop and fabricate this novel structure using cost-effective self-rolling techniques. The results of this study redefine the range of light-matter interactions and show the potential of the rolled-up zero-index waveguides for various classical and quantum applications such as quantum communication, quantum information processing, and superradiance.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Korsbakken, Jan I., Frank K. Wilhelm et K. Birgitta Whaley. « Electronic structure of superposition states in flux qubits ». Physica Scripta T137 (décembre 2009) : 014022. http://dx.doi.org/10.1088/0031-8949/2009/t137/014022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Jeong, Hyunseok. « Converting qubits ». Nature Photonics 17, no 2 (février 2023) : 131–32. http://dx.doi.org/10.1038/s41566-022-01147-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Simoni, Mario, Giovanni Amedeo Cirillo, Giovanna Turvani, Mariagrazia Graziano et Maurizio Zamboni. « Towards Compact Modeling of Noisy Quantum Computers : A Molecular-Spin-Qubit Case of Study ». ACM Journal on Emerging Technologies in Computing Systems 18, no 1 (31 janvier 2022) : 1–26. http://dx.doi.org/10.1145/3474223.

Texte intégral
Résumé :
Classical simulation of Noisy Intermediate Scale Quantum computers is a crucial task for testing the expected performance of real hardware. The standard approach, based on solving Schrödinger and Lindblad equations, is demanding when scaling the number of qubits in terms of both execution time and memory. In this article, attempts in defining compact models for the simulation of quantum hardware are proposed, ensuring results close to those obtained with standard formalism. Molecular Nuclear Magnetic Resonance quantum hardware is the target technology, where three non-ideality phenomena—common to other quantum technologies—are taken into account: decoherence, off-resonance qubit evolution, and undesired qubit-qubit residual interaction. A model for each non-ideality phenomenon is embedded into a MATLAB simulation infrastructure of noisy quantum computers. The accuracy of the models is tested on a benchmark of quantum circuits, in the expected operating ranges of quantum hardware. The corresponding outcomes are compared with those obtained via numeric integration of the Schrödinger equation and the Qiskit’s QASMSimulator. The achieved results give evidence that this work is a step forward towards the definition of compact models able to provide fast results close to those obtained with the traditional physical simulation strategies, thus paving the way for their integration into a classical simulator of quantum computers.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Molecular electronic qubits"

1

Brown, Richard Matthew. « Coherent transfer between electron and nuclear spin qubits and their decoherence properties ». Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:21e043b7-3b72-44d7-8095-74308a6827dd.

Texte intégral
Résumé :
Conventional computing faces a huge technical challenge as traditional transistors will soon reach their size limitations. This will halt progress in reaching faster processing speeds and to overcome this problem, require an entirely new approach. Quantum computing (QC) is a natural solution offering a route to miniaturisation by, for example, storing information in electron or nuclear spin states, whilst harnessing the power of quantum physics to perform certain calculations exponentially faster than its classical counterpart. However, QCs face many difficulties, such as, protecting the quantum-bit (qubit) from the environment and its irreversible loss through the process of decoherence. Hybrid systems provide a route to harnessing the benefits of multiple degrees of freedom through the coherent transfer of quantum information between them. In this thesis I show coherent qubit transfer between electron and nuclear spin states in a 15N@C60 molecular system (comprising a nitrogen atom encapsulated in a carbon cage) and a solid state system, using phosphorous donors in silicon (Si:P). The propagation uses a series of resonant mi- crowave and radiofrequency pulses and is shown with a two-way fidelity of around 90% for an arbitrary qubit state. The transfer allows quantum information to be held in the nuclear spin for up to 3 orders of magnitude longer than in the electron spin, producing a 15N@C60 and Si:P ‘quantum memory’ of up to 130 ms and 1.75 s, respectively. I show electron and nuclear spin relaxation (T1), in both systems, is dominated by a two-phonon process resonant with an excited state, with a constant electron/nuclear T1 ratio. The thesis further investigates the decoherence and relaxation properties of metal atoms encapsulated in a carbon cage, termed metallofullerenes, discovering that exceptionally long electron spin decoherence times are possible, such that these can be considered a viable QC candidate.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Krajňák, Tomáš. « Depozice velkých organických molekul v UHV ». Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402579.

Texte intégral
Résumé :
In this thesis, large organic molecules (DM15N, DM18N, Cu(dbm)2) were deposited. These molecules are cannot be deposited by thermal sublimation due the fact that they decompose at lower temperature than they sublime. The employed molecules to single molecular magnets, which can be potentially used as quantum bites (qubit). The new method of deposition atomic layer injection made by Bihur Crystal company was introduced and tested. The method uses liquid solution with molecules which is driven by argon gas through pulse valve to the sample placed in ultra-high vacuum chamber. During the deposition, droplets of solution are formed on the sample surface. The solvent can be removed by light annealing or by keeping the sample in the vacuum for couple of days. The molecules were investigated by x-ray photoelectron spectroscopy and by scanning electron microscopy to determine fragmentation of the molecules, to study topography of the resultant surface and homogeneity of the deposited layer. We found conditions at which the intact molecules are deposited on the sample surfaces and form molecular nano- and micro- crystals.
Styles APA, Harvard, Vancouver, ISO, etc.
3

BENCI, STEFANO. « Enhancing the performance of potential molecular Qubits : insight into the phonons involved in the spin-lattice relaxation ». Doctoral thesis, 2021. http://hdl.handle.net/2158/1234475.

Texte intégral
Résumé :
The development of quantum mechanics led to the birth of the quantum computing, a new frontier of the computer science which exploits quantum phenomena such as the quantum states superposition and the entanglement to perform computation. The basic element of a quantum computer is the Qubit, a two-level quantum system that can be addressed whether in 0 or 1 , but also in a coherent superposition of these two states. Among the great variety of potential Qubit systems, molecular electron spins show interesting features as the great tunability of the electronic and magnetic properties as well as the possibility to interact with other Qubits by adopting an ad-hoc synthetic strategy. Despite these positive features, they suffer from relatively short coherence time, Tm, namely the time during which the quantum information stored inside the Qubit is maintained. The aim of this PhD work is the optimization of the molecular Qubits performances through the research of the key “elements” to enhance the spin-lattice relaxation time, T1, that sets the upper limit of Tm. The study has been focused on Vanadium(IV) coordination compounds whose magnetic properties are due to the single unpaired electron, resulting in a S= 1/2 spin value. This element shows a weak spin-orbit coupling and, consequently, a small spin-phonon coupling, that makes it particularly suitable for the purpose. Two classes of complexes have been taken into account: vanadyl-based molecules, which show the VO2+ metal centre in a square pyramidal coordination geometry, and V(IV)-based ones in which the metal centre is octahedrally coordinated. Several ligands have been used in order to test different structural effects on the spin relaxation. In this study we utilized different experimental techniques to investigate different aspects of the issue. We jointed standard magnetic techniques, as alternate-current (AC) susceptometry, continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopy, and TeraHertz time-domain spectroscopy (THz-TDS) for the characterization of the phonons of the complexes in the crystal phase. Moreover, a deeper investigation of the spin-lattice relaxation mechanisms required a more exotic technique, that is time-resolved THz-pump EPR-probe (TR-THz-EPR) measurements, which exploits the free electron laser radiation as THz source at the Novosibirsk Free Electron Laser (NovoFEL) facility. The whole work has been supported by theoretical calculations that has been fundamental in the rationalization of several experimental results. The manuscript is organized in several parts and each of them includes different chapters. Part I provides a general introduction about Qubits and, in particular, those based on molecular electronic spins. In part II, many theoretical concepts that I consider to be essential in the comprehension of this work are discussed, such as the theory of the spin relaxation and the spin-phonon interaction, with a short mention to the spin-orbit coupling. In part III, the techniques based on custom setups, as THz-TDS setups and the NovoFEL equipment, as well as the samples preparation, are examined. Part IV, which represents the main one, is devoted to the results obtained during the PhD. It is divided in two chapters, according to the two main topics: the former contains the outcomes obtained by the combination of magnetic techniques and THz-TD spectroscopy, arranged according to the publications; while the latter includes the investigation of THz-induced effects on the spin dynamics, performed at NovoFEL. In part V, that is the last one, a summary of this work helps in getting an overall view of it.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Santanni, Fabio. « Molecular approaches for the optimization of electron spin-based quantum bits and quantum logic gates ». Doctoral thesis, 2022. http://hdl.handle.net/2158/1262928.

Texte intégral
Résumé :
This work highlights the different possibilities given by a rational chemical approach to obtain molecular-based quantum bits and quantum logic gates as an appealing and alternative platform for implementing quantum computation. This work resumes the three years of the author's work on this subject, mainly presenting and focusing on experimental results obtained for some new potential hydrogen-free molecular qubits, multi-qubit structures, and state-of-the-art EPR-based (Electron Paramagnetic Resonance) experiments on an archetypical vanadyl-based qubit.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Molecular electronic qubits"

1

Moreno-Pineda, Eufemio, Daniel O. T. A. Martins et Floriana Tuna. « Molecules as qubits, qudits and quantum gates ». Dans Electron Paramagnetic Resonance, 146–87. Cambridge : Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781839162534-00146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Molecular electronic qubits"

1

Sato, Kazuo, Shigeki Nakazawa, Robabeh D. Rahimi, Shinsuke Nishida, Tomoaki Ise, Daisuke Shimoi, Kazuo Toyota et al. « QUANTUM COMPUTING USING PULSE-BASED ELECTRON-NUCLEAR DOUBLE RESONANCE (ENDOR) : MOLECULAR SPIN-QUBITS ». Dans Molecular Realizations of Quantum Computing 2007. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812838681_0004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie