Articles de revues sur le sujet « Molecular beam mass spectrometry »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Molecular beam mass spectrometry.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Molecular beam mass spectrometry ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Grieser, Manfred, Viviane C. Schmidt, Klaus Blaum, Florian Grussie, Robert von Hahn, Ábel Kálosi, Holger Kreckel et al. « Isochronous mass spectrometry in an electrostatic storage ring ». Review of Scientific Instruments 93, no 6 (1 juin 2022) : 063302. http://dx.doi.org/10.1063/5.0090131.

Texte intégral
Résumé :
For sensitive studies of molecular ions in electrostatic storage rings, the exact knowledge of the isobaric composition of stored beams from a variety of ion sources is essential. Conventional mass-filtering techniques are often inefficient to resolve the beam components. Here, we report the first isochronous mass spectrometry in an electrostatic storage ring, which offers a high mass resolution of Δ m/ m < 1 × 10−5 even for heavy molecular species with m > 100 u and uncooled ion beams. Mass contaminations can be resolved and identified at relative fractions down to 0.02%.
Styles APA, Harvard, Vancouver, ISO, etc.
2

KASPER, T., P. OSWALD, M. KAMPHUS et K. KOHSEHOINGHAUS. « Ethanol flame structure investigated by molecular beam mass spectrometry ». Combustion and Flame 150, no 3 (août 2007) : 220–31. http://dx.doi.org/10.1016/j.combustflame.2006.12.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Fárník, Michal, et Jozef Lengyel. « Mass spectrometry of aerosol particle analogues in molecular beam experiments ». Mass Spectrometry Reviews 37, no 5 (27 novembre 2017) : 630–51. http://dx.doi.org/10.1002/mas.21554.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Korobeinichev, Oleg P., Leonid V. Kuibida, Alexander A. Paletsky et Andrey G. Shmakov. « Molecular-Beam Mass-Spectrometry to Ammonium Dinitramide Combustion Chemistry Studies ». Journal of Propulsion and Power 14, no 6 (novembre 1998) : 991–1000. http://dx.doi.org/10.2514/2.5364.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Aranda Gonzalvo, Y., T. D. Whitmore, J. A. Rees, D. L. Seymour et E. Stoffels. « Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry ». Journal of Vacuum Science & ; Technology A : Vacuum, Surfaces, and Films 24, no 3 (mai 2006) : 550–53. http://dx.doi.org/10.1116/1.2194938.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dantus, M., M. H. M. Janssen et A. H. Zewail. « Femtosecond probing of molecular dynamics by mass-spectrometry in a molecular beam ». Chemical Physics Letters 181, no 4 (juin 1991) : 281–87. http://dx.doi.org/10.1016/0009-2614(91)80071-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zavilopulo, A. N., et A. I. Dolgin. « Mass-spectrometry of cluster molecular beams ». Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms 126, no 1-4 (avril 1997) : 305–9. http://dx.doi.org/10.1016/s0168-583x(97)01104-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hsu, Wen L., Mark C. McMaster, Michael E. Coltrin et David S. Dandy. « Molecular Beam Mass Spectrometry Studies of Chemical Vapor Deposition of Diamond ». Japanese Journal of Applied Physics 33, Part 1, No. 4B (30 avril 1994) : 2231–39. http://dx.doi.org/10.1143/jjap.33.2231.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Balooch, M., D. R. Olander, W. J. Siekhaus et D. E. Miller. « Reaction of chlorine and molybdenum by modulated molecular beam mass spectrometry ». Surface Science Letters 249, no 1-3 (juin 1991) : A270. http://dx.doi.org/10.1016/0167-2584(91)90149-l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Balooch, M., D. R. Olander, W. J. Siekhaus et D. E. Miller. « Reaction of chlorine and molybdenum by modulated molecular beam mass spectrometry ». Surface Science 249, no 1-3 (juin 1991) : 322–34. http://dx.doi.org/10.1016/0039-6028(91)90856-n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Hsu, W. L., et D. M. Tung. « Application of molecular beam mass spectrometry to chemical vapor deposition studies ». Review of Scientific Instruments 63, no 9 (septembre 1992) : 4138–48. http://dx.doi.org/10.1063/1.1143225.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Tsao, J. Y., T. M. Brennan et B. E. Hammons. « Reflection mass spectrometry of As incorporation during GaAs molecular beam epitaxy ». Applied Physics Letters 53, no 4 (25 juillet 1988) : 288–90. http://dx.doi.org/10.1063/1.99916.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Butkovskaya, N. L., E. S. Vasil'ev et I. I. Morozov. « Study of small benzene clusters by pulse molecular beam mass spectrometry ». Russian Chemical Bulletin 45, no 7 (juillet 1996) : 1635–41. http://dx.doi.org/10.1007/bf01431800.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Yase, Kiyoshi, Yuji Yoshida, Toshiyuki Uno et Norimasa Okui. « Direct analysis of an organic molecular beam by quadrupole mass spectrometry ». Journal of Crystal Growth 166, no 1-4 (septembre 1996) : 942–45. http://dx.doi.org/10.1016/0022-0248(95)00898-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Karas, Michael. « Laser Microprobe Mass Spectrometry for Spatially Resolved Organic Analysis ». Proceedings, annual meeting, Electron Microscopy Society of America 48, no 2 (12 août 1990) : 306–7. http://dx.doi.org/10.1017/s0424820100135137.

Texte intégral
Résumé :
Within the last twenty years, lasers were used for sample ionization in mass spectrometry by coupling nearly any available type of laser to the different kinds of available mass analyzers. There is a broad area of applications of the so-called laser ionization/desorption mass spectrometry (LIMS, LDMS) in a large variety of fields, such as geology, mineralogy, material research, general chemistry and biochemistry ranging from determination of bulk elemental composition to molecular weight determination of biological macromolecules. By combining an UV-microscope with a short-pulse UV-laser (for sample observation and focused irradiation of selected sample areas within μm-resolution) and a time-of-flight mass spectrometer, the technique of laser microprobe mass spectrometry was established (LAMMA-, LIMAtechnique). Also laser microprobe mass spectrometry was applied in very different fields. Most of the work dealt with the determination of element distributions within biological samples, usually prepared as thin sections and examined with a transmission geometry, i.e. by perforating the compartment of sample to be analyzed with a high intensity laser beam.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Ruwe, Lena, Kai Moshammer, Nils Hansen et Katharina Kohse-Höinghaus. « Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames ». Physical Chemistry Chemical Physics 20, no 16 (2018) : 10780–95. http://dx.doi.org/10.1039/c7cp07743b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Kulchitsky, N. A. « Atomic and Molecular Beams Control in Molecular Beam Epitaxy ». Nano- i Mikrosistemnaya Tehnika 23, no 1 (24 février 2021) : 47–56. http://dx.doi.org/10.17587/nmst.23.47-56.

Texte intégral
Résumé :
Rapid development of molecular beam epitaxy (MBE) in recent decades has led to the emergence of a variety of technological installations, as well as electronic and optical diagnostics of growing layers, as well as atomic and molecular beams. Known methods for monitoring atomic and molecular beams in MBE installations-mass spectrometric and luminescent - involve bulky sensors, which can only be placed in special growth chambers. This paper describes a structurally simple and fairly universal method for determining the intensities of atomic and molecular beams, based on registering the amount of electron scattering at small angles that occur when a narrow electron beam interacts with the atoms of a vaporized substance. We consider the theoretical prerequisites for the diagnosis of an atomic beam by the phenomenon of scattering of fast electrons in it.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Uchimura, Tomohiro, Klaus Hafner, Ralf Zimmermann et Totaro Imasaka. « Multiphoton Ionization Mass Spectrometry of Chlorophenols as Indicators for Dioxins ». Applied Spectroscopy 57, no 4 (avril 2003) : 461–65. http://dx.doi.org/10.1366/00037020360626014.

Texte intégral
Résumé :
Mono-, di- and trichlorophenols were measured using resonance-enhanced multiphoton ionization mass spectrometry (MPI-MS) combined with supersonic jet (SSJ) or effusive molecular beam (EMB) spectrometry. All mono- and dichlorophenols, except 2,6-dichlorophenol, provided sharp and structured MPI spectra for the S1←S0 transition. Selectivity and sensitivity were both enhanced when SSJ spectrometry was used, compared with EMB spectrometry, because of a narrower linewidth in the MPI spectrum, given by molecular cooling by supersonic jet expansion. The ionization efficiency decreased with increasing number of chlorine substituents for the chlorophenols, since they have shorter excited-state lifetimes and require three photons for ionization. Some of the chlorophenols, which are toxic themselves, have the potential for use as indicators for analysis of polychlorinated dibenzo- p-dioxin/dibenzofurans in flue gases emitted from an incinerator.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Loftus, Neil. « Gold standard : Mass spectrometry and chromatography ». Biochemist 24, no 1 (1 février 2002) : 25–27. http://dx.doi.org/10.1042/bio02401025.

Texte intégral
Résumé :
Mass spectrometry (MS) interfaced with liquid chromatography (LC) was once considered a technology that was reserved for rather specific applications that appeared to work in sequence with the phases of the moon. Early adventures with thermospray and particle beam interfaces proved to be of limited use, and it was not until atmospheric pressure ionization established itself that we could regard LC–MS as the analytical tool of choice for a considerable range of challenges. Indeed, advances in source design and increased ion transmission have presented a new generation of instruments that use hybrid technology such as quadrupole-time of flight (QToF), ToF–ToF and quadrupole ion-trap ToF, which provide even higher levels of confidence as a consequence of higher mass accuracy and enhanced structural information.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Khodakov, Mikhail, Aleksandr Zarvin, Valeriy Kaljada et Nikolay Korobeishchikov. « Mass-Spectrometry of Supersonic Cluster Jets of Methane and Argon-Methane Mixtures ». Siberian Journal of Physics 7, no 3 (1 octobre 2012) : 84–95. http://dx.doi.org/10.54362/1818-7919-2012-7-3-84-95.

Texte intégral
Résumé :
We describe a new experimental facility LEMPUS-2, which provides experimental research in supersonic flows of gases and gas mixtures in the oil-free vacuum. Model experiments in a flow of pure argon in order to verify and test the diagnostic equipment of set-up were performed. Experimental studies of the formation of cluster beams of methane and argon-methane mixtures have been performed to determine the optimal conditions for the formation of intense molecular beams of methane clusters. We obtain an intense molecular beam of methane clusters. It was found that in a supersonic jet of large size pure methane clusters are not diagnosed by the mass spectrum of oligomeric fragments, whereas in mixtures of argon with small admixtures of methane is recorded in the mass spectrum, apparently as oligomers of methane and mixed clusters of argon-methane . It was confirmed that the clustering of methane starts at lower pressures of inhibition than argon and lead to further delay of cluster formation in argon. It is shown that for high intensity methane clusters fluxes should be used specially selected gas mixtures
Styles APA, Harvard, Vancouver, ISO, etc.
21

Zheng, Zhi-Hao, Wang Li, Ling-Nan Wu, Kai-Ru Jin, Qiang Xu, Hong Wang, Bing-Zhi Liu, Zhan-Dong Wang et Zhen-Yu Tian. « Pyrolysis study of iso-propylamine with SVUV-photoionization molecular-beam mass spectrometry ». Combustion and Flame 244 (octobre 2022) : 112232. http://dx.doi.org/10.1016/j.combustflame.2022.112232.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Williams, George J., Timothy B. Smith, Frank S. Gulczinski et Alec D. Gallimore. « Correlating Laser Induced Fluorescence and Molecular Beam Mass Spectrometry Ion Energy Distributions ». Journal of Propulsion and Power 18, no 2 (mars 2002) : 489–91. http://dx.doi.org/10.2514/2.5960.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Wierda, Derk Andrew, Chandra M. Reddy et Carmela C. Amato-Wierda. « Gas phase analysis of TiCl4 plasma processes by molecular beam mass spectrometry ». Surface and Coatings Technology 148, no 2-3 (décembre 2001) : 256–61. http://dx.doi.org/10.1016/s0257-8972(01)01343-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Syage, Jack A. « REAL-TIME DETECTION of Chemical Agents Using Molecular Beam Laser Mass Spectrometry ». Analytical Chemistry 62, no 8 (avril 1990) : 505A—509A. http://dx.doi.org/10.1021/ac00207a740.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Zavilopulo, A. N., O. B. Shpenik et A. M. Mylymko. « Examination of a molecular se beam by mass spectrometry with electron ionization ». Technical Physics 62, no 3 (mars 2017) : 359–64. http://dx.doi.org/10.1134/s106378421703029x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Tian, Dong-Xu, Yue-Xi Liu, Bing-Yin Wang, Chuang-Chuang Cao, Zhong-Kai Liu, Yi-Tong Zhai, Yan Zhang, Jiu-Zhong Yang et Zhen-Yu Tian. « Pyrolysis study of iso-propylbenzene with photoionization and molecular beam mass spectrometry ». Combustion and Flame 209 (novembre 2019) : 313–21. http://dx.doi.org/10.1016/j.combustflame.2019.07.036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Liu, Yue-Xi, Zhi-Hao Zheng, Dong-Xu Tian, Zhen-Yu Tian, Chuang-Chuang Cao, Zhong-Kai Liu, Yi-Tong Zhai, Yan Zhang et Jiu-Zhong Yang. « Pyrolysis study of 1,2,4-trimethylcyclohexane with SVUV-photoionization molecular-beam mass spectrometry ». Combustion and Flame 219 (septembre 2020) : 449–55. http://dx.doi.org/10.1016/j.combustflame.2020.06.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Chen, Jin-Tao, Dan Yu, Wang Li, Wen-Ye Chen, Shu-Bao Song, Cheng Xie, Jiu-Zhong Yang et Zhen-Yu Tian. « Oxidation study of benzaldehyde with synchrotron photoionization and molecular beam mass spectrometry ». Combustion and Flame 220 (octobre 2020) : 455–67. http://dx.doi.org/10.1016/j.combustflame.2020.07.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Butkovskaya, N. I., E. S. Vasil'ev et I. I. Morozov. « Molecular-beam mass spectrometry of van der Waals clusters. Mass spectrum of hydrogen sulfide dimer ». Russian Chemical Bulletin 44, no 5 (mai 1995) : 813–18. http://dx.doi.org/10.1007/bf00696907.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Kozliak, Evguenii, Mark Sulkes, Ibrahim Alhroub, Alena Kubátová, Anastasia Andrianova et Wayne Seames. « Influence of early stages of triglyceride pyrolysis on the formation of PAHs as coke precursors ». Physical Chemistry Chemical Physics 21, no 36 (2019) : 20189–203. http://dx.doi.org/10.1039/c9cp02025j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Scuderi, D., A. Paladini, M. Satta, D. Catone, F. Rondino, A. Filippi, S. Piccirillo, M. Speranza et A. Giardini Guidoni. « Solvent free interactions in contact pairs of molecules of biological interest : Laser spectroscopic and electrospray mass spectrometric studies ». International Journal of Photoenergy 6, no 1 (2004) : 17–21. http://dx.doi.org/10.1155/s1110662x04000030.

Texte intégral
Résumé :
A laser spectroscopic and mass spectrometric study of ionic and molecular clusters of biological interest is reported. The molecules of interest and their aggregates were generated in a supersonic beam and analyzed by mass resolved resonant two photon absorption and ionization (R2PI) and by collision induced mass spectrometry (CID-MS). The absence of the solvent allows to study these systems in the isolated state free of undesired solvent effects which may level off the differences in their properties. The gas phase results have been compared to theoretical estimates of the structure and stability of the systems under investigation.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Aoki, Jun, Masako Isokawa et Michisato Toyoda. « Space and Time Coherent Mapping for Subcellular Resolution of Imaging Mass Spectrometry ». Cells 11, no 21 (26 octobre 2022) : 3382. http://dx.doi.org/10.3390/cells11213382.

Texte intégral
Résumé :
Space and time coherent mapping (STCM) is a technology developed in our laboratory for improved matrix-assisted laser desorption ionization (MALDI) time of flight (TOF) imaging mass spectrometry (IMS). STCM excels in high spatial resolutions, which probe-based scanning methods cannot attain in conventional MALDI IMS. By replacing a scanning probe with a large field laser beam, focusing ion optics, and position-sensitive detectors, STCM tracks the entire flight trajectories of individual ions throughout the ionization process and visualizes the ionization site on the sample surface with a subcellular scale of precision and a substantially short acquisition time. Results obtained in thinly sectioned leech segmental ganglia and epididymis demonstrate that STCM IMS is highly suited for (1) imaging bioactive lipid messengers such as endocannabinoids and the mediators of neuronal activities in situ with spatial resolution sufficient to detail subcellular localization, (2) integrating resultant images in mass spectrometry to optically defined cell anatomy, and (3) assembling a stack of ion maps derived from mass spectra for cluster analysis. We propose that STCM IMS is the choice over a probe-based scanning mass spectrometer for high-resolution single-cell molecular imaging.
Styles APA, Harvard, Vancouver, ISO, etc.
33

N. P., Tarasova, Zanin A. A. et Krivoborodov E. G. « Electron-beam Initiated Polymerization of Elemental Phosphorus ». International Journal of Chemical Engineering and Materials 2 (2 novembre 2023) : 77–80. http://dx.doi.org/10.37394/232031.2023.2.11.

Texte intégral
Résumé :
The article discusses the results of the synthesis of polymer phosphorus from the elemental phosphorus in the aqueous medium under the electron-beam irradiation. The structure of the obtained high-molecular phosphorus-containing compounds was analyzed and compared with samples of commercially available red phosphorus by mass spectrometry with matrix-activated laser desorption/ionization.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Gerasimov, Iliya, Denis Knyazkov, Andrey Shmakov, Oleg Korobeinichev, Nils Hansen et Charles Westbrook. « Investigation of Methyl Pentanoate Flame Structure by Molecular-Beam Mass Spectrometry and Modeling ». Siberian Journal of Physics 9, no 3 (1 octobre 2014) : 49–62. http://dx.doi.org/10.54362/1818-7919-2014-9-3-49-62.

Texte intégral
Résumé :
The structure of four stoichiometric and fuel-rich premixed flames of methyl pentanoate stabilized at low (20 torr) and atmospheric pressures has been studied by molecular-beam mass spectrometry. The data obtained have been compared with results of numerical simulations, performed with implication of two detailed chemical kinetic mechanisms, one of which has been developed by the authors of this work. While both mechanisms have predicted concentration profiles for most of the species quite well, some discrepancies between experimental and modeling data have been observed for carbon monoxide and some intermediate products. Considerable differences in several profiles simulated with different mechanisms have been noted. Analysis of reaction paths in investigated flames has shown most of these differences to be caused by different reactions and kinetics used for isomerization of primary radicals of methyl pentanoate oxidation in these mechanisms
Styles APA, Harvard, Vancouver, ISO, etc.
35

Li, Wang, Jiu-Zhong Yang, Long Zhao, Dan Yu et Zhen-Yu Tian. « Pyrolysis investigation of n-propylamine with synchrotron photoionization and molecular-beam mass spectrometry ». Combustion and Flame 232 (octobre 2021) : 111511. http://dx.doi.org/10.1016/j.combustflame.2021.111511.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Mikhaylov, V. I., et L. E. Polyak. « Mass-Spectrometry Investigation of the Kinetics of the Molecular-Beam Epitaxy of CdTe ». Journal of Surface Investigation : X-ray, Synchrotron and Neutron Techniques 15, no 4 (juillet 2021) : 683–95. http://dx.doi.org/10.1134/s1027451021040133.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Zhang, Qiang, et Alec M. Wodtke. « Using Volatile Solvents for Ion Formation in Liquid Molecular Beam Expansion Mass Spectrometry ». Analytical Chemistry 77, no 23 (décembre 2005) : 7612–17. http://dx.doi.org/10.1021/ac050792l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Appelhans, Anthony D., James E. Delmore et David A. Dahl. « Focused, rasterable, high-energy neutral molecular beam probe for secondary ion mass spectrometry ». Analytical Chemistry 59, no 13 (juillet 1987) : 1685–91. http://dx.doi.org/10.1021/ac00140a022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Styris, D. L., et D. A. Redfield. « Mechanisms of graphite furnace atomization of aluminum by molecular beam sampling mass spectrometry ». Analytical Chemistry 59, no 24 (15 décembre 1987) : 2891–97. http://dx.doi.org/10.1021/ac00151a012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Zarvin, A. E., V. V. Kalyada et V. E. Khudozhitkov. « Features of molecular-beam mass spectrometry registration of clusters in underexpanded supersonic jets ». Thermophysics and Aeromechanics 24, no 5 (septembre 2017) : 671–81. http://dx.doi.org/10.1134/s0869864317050031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Schubert, E. F., H. S. Luftman, R. F. Kopf, R. L. Headrick et J. M. Kuo. « Secondary‐ion mass spectrometry on δ‐doped GaAs grown by molecular beam epitaxy ». Applied Physics Letters 57, no 17 (22 octobre 1990) : 1799–801. http://dx.doi.org/10.1063/1.104026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Antoine, Rodolphe, Isabelle Compagnon, Driss Rayane, Michel Broyer, Philippe Dugourd, Nicolas Sommerer, Michel Rossignol, David Pippen, Frederick C. Hagemeister et Martin F. Jarrold. « Application of Molecular Beam Deflection Time-of-Flight Mass Spectrometry to Peptide Analysis ». Analytical Chemistry 75, no 20 (octobre 2003) : 5512–16. http://dx.doi.org/10.1021/ac030202o.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Paletsky, A. A., A. G. Tereshchenko, E. N. Volkov, O. P. Korobeinichev, G. V. Sakovich, V. F. Komarov et V. A. Shandakov. « Study of the CL-20 flame structure using probing molecular beam mass spectrometry ». Combustion, Explosion, and Shock Waves 45, no 3 (mai 2009) : 286–92. http://dx.doi.org/10.1007/s10573-009-0038-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Aubry, O., J. L. Delfau, C. Met, L. Vandenbulcke et C. Vovelle. « Precursors of diamond films analysed by molecular beam mass spectrometry of microwave plasmas ». Diamond and Related Materials 13, no 1 (janvier 2004) : 116–24. http://dx.doi.org/10.1016/j.diamond.2003.09.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Park, Soonam, Feng Liao, John M. Larson, Steven L. Girshick et Michael R. Zachariah. « Molecular Beam Mass Spectrometry System for Characterization of Thermal Plasma Chemical Vapor Deposition ». Plasma Chemistry and Plasma Processing 24, no 3 (septembre 2004) : 353–72. http://dx.doi.org/10.1007/s11090-004-2273-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Georgiou, S., E. Mastoraki, E. Raptakis et Z. Xenidi. « The Potential of Vacuum Ultraviolet Photoionization Mass Spectrometry in Monitoring Photofragmentation of Organometallics ». Laser Chemistry 13, no 2 (1 janvier 1993) : 113–19. http://dx.doi.org/10.1155/1993/26032.

Texte intégral
Résumé :
The paper examines the potential of vacuum ultraviolet (VUV) photoionization mass spectroscopy in probing the fragmentation of organometallics in molecular-beam studies and laser-assisted deposition processes. To this end, the ionic fragmentation pattern of few common organometallics, namely metallocenes and carbonyls, is examined at selected VUV wavelengths, produced by microwave-discharge resonance atomic lamps. Discussion of the recorded spectra in terms of the electronic structure of the compounds indicates lack of dynamical bias in the VUV photoionization/fragmentation of metal complexes. Excitation with VUV light results in simpler ionic fragmentation patterns than what observed with electron-impact ionization, thereby enabling accurate monitoring of the excimer-laser photodissociation of organometallics. Finally, the intensity of the VUV ionic signal appears to be adequate for molecular-beam studies. An illustrative example is provided for the study of the 248nm-induced photodesorption of Mo(CO)6 from cryogenic films.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Agblevor, F. A., R. J. Evans et K. D. Johnson. « Molecular-beam mass-spectrometric analysis of lignocellulosic materials ». Journal of Analytical and Applied Pyrolysis 30, no 2 (décembre 1994) : 125–44. http://dx.doi.org/10.1016/0165-2370(94)00808-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Castellanos, Anthony, Richard H. Gomer et Francisco Fernandez-Lima. « Submicron 3-D mass spectrometry imaging reveals an asymmetric molecular distribution on chemotaxing cells ». F1000Research 11 (8 septembre 2022) : 1017. http://dx.doi.org/10.12688/f1000research.124273.1.

Texte intégral
Résumé :
Background: Dictyostelium discoideum is a ~10 µm diameter unicellular eukaryote that lives on soil surfaces. When starved, D. discoideum cells aggregate into streams of cells in a process called chemotaxis. In this report, we studied D. discoideum cells during chemotaxis using 3D - mass spectrometry imaging (3D-MSI). Methods: The 3D-MSI consisted of the sequential generation of 2D molecular maps using burst alignment coupled to delayed extraction time-of flight secondary ion mass spectrometry (TOF-SIMS) combined with a soft sputtering beam to access the different layers. Results: Molecular maps with sub-cellular high spatial resolution (~300 nm) indicated the presence of ions at m/z = 221 and 236 at the front and sides, but reduced levels at the back, of cells moving toward of aggregation streams. The 3D-MSI also detected an ion at m/z = 240 at the edges and back, but reduced levels at the front, of aggregating cells. Other ions showed an even distribution across the cells. Conclusions: Together, these results demonstrate the utility of sub-micron MSI to study eukaryotic chemotaxis.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Amirav, Aviv, et Ori Granot. « Liquid chromatography mass spectrometry with supersonic molecular beams ». Journal of the American Society for Mass Spectrometry 11, no 6 (juin 2000) : 587–91. http://dx.doi.org/10.1016/s1044-0305(00)00125-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Chatillon, Christian, et Ioana Nuta. « Spurious molecular beams in Knudsen effusion mass spectrometry ». Calphad 65 (juin 2019) : 8–15. http://dx.doi.org/10.1016/j.calphad.2019.01.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie