Articles de revues sur le sujet « Modular multilevel »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Modular multilevel.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Modular multilevel ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Pou, Josep, Marcelo A. Perez et Ricardo P. Aguilera. « Modular Multilevel Converters ». IEEE Transactions on Industrial Electronics 66, no 3 (mars 2019) : 2204–6. http://dx.doi.org/10.1109/tie.2018.2872631.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gontijo, Gustavo, Songda Wang, Tamas Kerekes et Remus Teodorescu. « Performance Analysis of Modular Multilevel Converter and Modular Multilevel Series Converter under Variable-Frequency Operation Regarding Submodule-Capacitor Voltage Ripple ». Energies 14, no 3 (2 février 2021) : 776. http://dx.doi.org/10.3390/en14030776.

Texte intégral
Résumé :
The modular multilevel converter is capable to reach high-voltage levels with high flexibility, high reliability, and high power quality as it became the standard solution for high-power high-voltage applications that operate with fixed frequency. However, in machine-drive applications, the modular multilevel converter shows critical problems since an extremely high submodule-capacitor voltage ripple occurs in the machine start-up and at low-speed operation, which can damage the converter. Recently, a new converter solution named modular multilevel series converter was proposed as a promising alternative for high-power machine-drive applications since it presented many important structural and operational advantages in relation to the modular multilevel converter such as the reduced number of submodule capacitors and the low submodule-capacitor voltage ripple at low frequencies. Even though the modular multilevel series converter presented a reduced number of capacitors, the size of these capacitors was not analyzed. This paper presents a detailed comparison analysis of the performance of the modular multilevel converter and the modular multilevel series converter at variable-frequency operation, which is based on the proposed analytical description of the submodule-capacitor voltage ripple in such topologies. This analysis concludes that the new modular multilevel series converter can be designed with smaller capacitors in comparison to the modular multilevel converter if these converters are used to drive electrical machines that operate within a range of low-frequency values. In other words, the modular multilevel series converter experiences extremely low submodule-capacitor voltage ripple at very low frequencies, which means that this converter solution presents high performance in the electrical machine start-up and at low-speed operation.
Styles APA, Harvard, Vancouver, ISO, etc.
3

ThinhQuach, Ngoc, Sang Heon Chae, Seungmin Lee, Ho-Chan Kim et Eel-Hwan Kim. « Analyzing Modulation Techniques for the Modular Multilevel Converter ». International Journal of Computer and Electrical Engineering 8, no 4 (2016) : 259–71. http://dx.doi.org/10.17706/ijcee.2016.8.4.259-271.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Vozikis, Dimitrios, Fahad Alsokhiry, Grain Philip Adam et Yusuf Al-Turki. « Novel Enhanced Modular Multilevel Converter for High-Voltage Direct Current Transmission Systems ». Energies 13, no 9 (4 mai 2020) : 2257. http://dx.doi.org/10.3390/en13092257.

Texte intégral
Résumé :
This paper proposes an enhanced modular multilevel converter as an alternative to the conventional half-bridge modular multilevel converter that employs a reduced number of medium-voltage cells, with the aim of improving waveforms quality in its AC and DC sides. Each enhanced modular multilevel converter arm consists of high-voltage and low-voltage chain-links. The enhanced modular multilevel converter uses the high-voltage chain-links based on medium-voltage half-bridge cells to synthesize the fundamental voltage using nearest level modulation. Although the low-voltage chain-links filter out the voltage harmonics from the voltage generated by the high-voltage chain-links, which are rough and stepped approximations of the fundamental voltage, the enhanced modular multilevel converter uses the nested multilevel concept to dramatically increase the number of voltage levels per phase compared to half-bridge modular multilevel converter. The aforementioned improvements are achieved at the cost of a small increase in semiconductor losses. Detailed simulations conducted in EMPT-RV and experimental results confirm the validity of the proposed converter.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Steiks, Ingars, et Leonids Ribickis. « Voltage Monitoring on Capacitor of Modular Multilevel Converter ». Scientific Journal of Riga Technical University. Power and Electrical Engineering 25, no 25 (1 janvier 2009) : 145–50. http://dx.doi.org/10.2478/v10144-009-0031-1.

Texte intégral
Résumé :
Voltage Monitoring on Capacitor of Modular Multilevel ConverterA modular multilevel converter is an attractive solution for power conversion without transformers. As modular multilevel converter consists of cascade connections and floating dc capacitors, it requires continuous voltage monitoring. This paper represents voltage measurement circuit of a DC-storage capacitor including power supply with results of experiments.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dr. Sujatha Balaraman,, P. Yogini. « Three Phase Eleven Level Modular Multilevel Inverter with PD-PWM for Grid Connected System ». International Journal for Modern Trends in Science and Technology, no 8 (7 août 2020) : 86–91. http://dx.doi.org/10.46501/ijmtst060816.

Texte intégral
Résumé :
The prominence of Modular Multilevel Inverters (MMI) is rising owing their merits of simple mechanical construction and good voltage sharing for semiconductor devices. Mostly Multilevel Inverters use more than one source; however, the effective use of all the sources at all levels is rare. Conventional Multilevel Inverters will diminish the energy efficiency of the conversion system. When compared to conventional multilevel inverter, Modular Multilevel Inverter with a high numbers of voltage levels seem to be the most suitable because of the use of an isolated dc source. This paper explores a three-phase eleven level modular multilevel inverter with phase disposition pulse width modulation technique (PD-PWM) that can extract power from all the sources at all the levels. Besides, this paper develops a synchronous d-q reference frame controller to control the current of 11kV. When compared with Reduced Switch Count based Multilevel Inverter Series/Parallel switching topologies, the Modular Multilevel Inverter provides better Total Harmonic Distortion (THD) of output voltage and utilization factor.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ali, Salman, Santiago Bogarra, Muhammad Mansooor Khan, Ahmad Taha, Pyae Pyae Phyo et Yung-Cheol Byun. « Prospective Submodule Topologies for MMC-BESS and Its Control Analysis with HBSM ». Electronics 12, no 1 (21 décembre 2022) : 20. http://dx.doi.org/10.3390/electronics12010020.

Texte intégral
Résumé :
Battery energy storage systems and multilevel converters are the most essential constituents of modern medium voltage networks. In this regard, the modular multilevel converter offers numerous advantages over other multilevel converters. The key feature of modular multilevel converter is its capability to integrate small battery packs in a split manner, given the opportunity to submodules to operate at considerably low voltages. In this paper, we focus on study of potential SMs for modular multilevel converter based battery energy storage system while, keeping in view the inconsistency of secondary batteries. Although, selecting a submodule for modular multilevel converter based battery energy storage system, the state of charge control complexity is a key concern, which increases as the voltage levels increase. This study suggests that the half-bridge, clamped single, and full-bridge submodules are the most suitable submodules for modular multilevel converter based battery energy storage system since, they provide simplest state of charge control due to integration of one battery pack along with other advantages among all 24 submodule topologies. Depending on submodules analysis, the modular multilevel converter based battery energy storage system based on half-bridge submodules is investigated by splitting it into AC and DC equivalent circuits to acquire the AC and DC side power controls along with an state of charge control. Subsequently, to validate different control modes, a downscaled laboratory prototype has been developed.
Styles APA, Harvard, Vancouver, ISO, etc.
8

B B, Thool, et Awate S P. « Modular Multilevel Converter Based Statcom ». International Journal of Electrical and Electronics Engineering 2, no 1 (25 janvier 2015) : 6–9. http://dx.doi.org/10.14445/23488379/ijeee-v2i1p103.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ferreira, Jan A. « The Multilevel Modular DC Converter ». IEEE Transactions on Power Electronics 28, no 10 (octobre 2013) : 4460–65. http://dx.doi.org/10.1109/tpel.2012.2237413.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

R, Dr Devarajan. « Design of Intelligent Modular Multilevel Converters for HVDC System ». Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (25 juillet 2020) : 1769–74. http://dx.doi.org/10.5373/jardcs/v12sp7/20202287.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Diaz, Matias, Roberto Cárdenas Dobson, Efrain Ibaceta, Andrés Mora, Matias Urrutia, Mauricio Espinoza, Felix Rojas et Patrick Wheeler. « An Overview of Applications of the Modular Multilevel Matrix Converter ». Energies 13, no 21 (22 octobre 2020) : 5546. http://dx.doi.org/10.3390/en13215546.

Texte intégral
Résumé :
The modular multilevel matrix converter is a relatively new power converter topology suitable for high-power alternating current (AC)-to-AC applications. Several publications in the literature have highlighted the converter capabilities, such as full modularity, fault-redundancy, control flexibility and input/output power quality. However, the topology and control of this converter are relatively complex to realise, considering that the converter has a large number of power-cells and floating capacitors. To the best of the authors’ knowledge, there are no review papers where the applications of the modular multilevel matrix converter are discussed. Hence, this paper aims to provide a comprehensive review of the state-of-the-art of the modular multilevel matrix converter, focusing on implementation issues and applications. Guidelines to dimensioning the key components of this converter are described and compared to other modular multilevel topologies, highlighting the versatility and controllability of the converter in high-power applications. Additionally, the most popular applications for the modular multilevel matrix converter, such as wind turbines, grid connection and motor drives, are discussed based on analyses of simulation and experimental results. Finally, future trends and new opportunities for the use of the modular multilevel matrix converter in high-power AC-to-AC applications are identified.
Styles APA, Harvard, Vancouver, ISO, etc.
12

N., Sujitha, Partha Sarathi Subudhi, Krithiga S., Angalaeswari S., Deepa T. et Subbulekshmi D. « Grid tied PV System using modular multilevel inverter ». International Journal of Power Electronics and Drive Systems (IJPEDS) 10, no 4 (1 décembre 2019) : 2013. http://dx.doi.org/10.11591/ijpeds.v10.i4.pp2013-2020.

Texte intégral
Résumé :
A grid tied photovoltaic system using modular multilevel inverter topology is proposed in this paper. Basic unit structure of modular multilevel inverter used in this system is capable of converting DC power from PV array to AC power for feeding power to the household loads or utility grid. The proposed modular multilevel inverter structure has lesser power electronic devices compared to the existing multilevel inverter topologies. The proposed system generates a nearly sinusoidal signal and achieves better output profile with low total harmonic distortion. Simulation of the proposed system is carried out in MATLAB/Simulink software and the results are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Wu, Hao, et Ping Wang. « A Novel Modulation Method for Modular Multilevel Converters ». Applied Mechanics and Materials 538 (avril 2014) : 239–42. http://dx.doi.org/10.4028/www.scientific.net/amm.538.239.

Texte intégral
Résumé :
Modular Multilevel has been widely applied in Flexible HVDC, electric locomotives and PET(Power Electronics Transformers). The modulation method is important for the converter performance. This paper presents an improved modulation method for Modular Multilevel Converter.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Kim, Ui-Jin. « DC Fault Ride through Capability with Proposed Modified Half Bridge Sub-module in Modular Multilevel Converter-HVDC System ». Transactions of The Korean Institute of Electrical Engineers 70, no 5 (31 mai 2021) : 757–63. http://dx.doi.org/10.5370/kiee.2021.70.5.757.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Li, Gen, et Jun Liang. « Modular Multilevel Converters : Recent Applications [History] ». IEEE Electrification Magazine 10, no 3 (septembre 2022) : 85–92. http://dx.doi.org/10.1109/mele.2022.3187886.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Adamowicz, Marek, et Zbigniew Krzeminski. « Medium voltage (MV) modular multilevel converters ». AUTOMATYKA, ELEKTRYKA, ZAKLOCENIA 5, no 3(17)2014 (30 novembre 2014) : 56–71. http://dx.doi.org/10.17274/aez.2014.17.04.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Burgos-Mellado, Claudio, Felipe Donoso, Tomislav Dragicevic, Roberto Cardenas-Dobson, Patrick Wheeler, Jon Clare et Alan Watson. « Cyber-Attacks in Modular Multilevel Converters ». IEEE Transactions on Power Electronics 37, no 7 (juillet 2022) : 8488–501. http://dx.doi.org/10.1109/tpel.2022.3147466.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Zhou, Yuebin, Daozhuo Jiang, Pengfei Hu, Jie Guo, Yiqiao Liang et Zhiyong Lin. « A Prototype of Modular Multilevel Converters ». IEEE Transactions on Power Electronics 29, no 7 (juillet 2014) : 3267–78. http://dx.doi.org/10.1109/tpel.2013.2278338.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Kish, G. J., R. Shi et P. W. Lehn. « The Delta-Configured Modular Multilevel Converter ». IEEE Transactions on Power Delivery 31, no 3 (juin 2016) : 1060–67. http://dx.doi.org/10.1109/tpwrd.2015.2392780.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Alaei, Ramiar, S. Ali Khajehoddin et Wilsun Xu. « Sparse AC/AC Modular Multilevel Converter ». IEEE Transactions on Power Delivery 31, no 3 (juin 2016) : 1195–202. http://dx.doi.org/10.1109/tpwrd.2015.2440271.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Harnefors, Lennart, Antonios Antonopoulos, Staffan Norrga, Lennart Angquist et Hans-Peter Nee. « Dynamic Analysis of Modular Multilevel Converters ». IEEE Transactions on Industrial Electronics 60, no 7 (juillet 2013) : 2526–37. http://dx.doi.org/10.1109/tie.2012.2194974.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Tang, Yuan, Li Ran, Olayiwola Alatise et Philip Mawby. « Capacitor Selection for Modular Multilevel Converter ». IEEE Transactions on Industry Applications 52, no 4 (juillet 2016) : 3279–93. http://dx.doi.org/10.1109/tia.2016.2533620.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Martinez-Rodrigo, Fernando, Dionisio Ramirez, Alexis Rey-Boue, Santiago de Pablo et Luis Herrero-de Lucas. « Modular Multilevel Converters : Control and Applications ». Energies 10, no 11 (26 octobre 2017) : 1709. http://dx.doi.org/10.3390/en10111709.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Cwikowski, O., H. R. Wickramasinghe, G. Konstantinou, J. Pou, M. Barnes et R. Shuttleworth. « Modular Multilevel Converter DC Fault Protection ». IEEE Transactions on Power Delivery 33, no 1 (février 2018) : 291–300. http://dx.doi.org/10.1109/tpwrd.2017.2715833.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Arbugeri, Cesar A., Samir A. Mussa et Marcelo L. Heldwein. « AC–AC Modular Multilevel Converter—Hexverter ». Energies 15, no 22 (14 novembre 2022) : 8519. http://dx.doi.org/10.3390/en15228519.

Texte intégral
Résumé :
This article proposes the study, control and analysis of the topology of an AC–AC modular multilevel converter, known in the literature as the Hexverter. The Hexverter is capable of converting the energy between two AC systems with a reduced number of elements, if compared with other modular multilevel topologies, which makes this topology attractive in AC–AC applications. However, there are few studies about the Hexverter in the literature, so this work presents its operation principle, conducts modeling, and proposes a control scheme for the converter’s proper operation, validating the operation and control via hardware-in-the-loop emulation.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Zhang, Xinlin, Yanchi Zhang, Da Xie et Bowen Zhao. « Study of start-up decoupling controller for modular multilevel converter ». E3S Web of Conferences 261 (2021) : 01026. http://dx.doi.org/10.1051/e3sconf/202126101026.

Texte intégral
Résumé :
Modular multilevel converters are widely used in power systems because of their significant advantages. In this paper, a dynamic mathematical model is established by analyzing the topology, operating principle and switching function of the modular multilevel converter, so as to construct an inner and outer loop decoupling controller in dq coordinates. The carrier phase-shift pulse-width modulation is selected to control the sub-module operation, and the uncontrolled pre-charging method is adopted to charge the sub-module. Finally, simulation experiments are carried out in MATLAB/Simulink, and the results show that the control method achieves smooth start-up of the modular multilevel converter.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Gontijo, Gustavo, Songda Wang, Tamas Kerekes et Remus Teodorescu. « New AC–AC Modular Multilevel Converter Solution for Medium-Voltage Machine-Drive Applications : Modular Multilevel Series Converter ». Energies 13, no 14 (16 juillet 2020) : 3664. http://dx.doi.org/10.3390/en13143664.

Texte intégral
Résumé :
Due to its scalability, reliability, high power quality and flexibility, the modular multilevel converter is the standard solution for high-power high-voltage applications in which an AC–DC–AC connection is required such as high-voltage direct-current transmission systems. However, this converter presents some undesired features from both structural and operational perspectives. For example, it presents a high number of components, which results in high costs, size, weight and conduction losses. Moreover, the modular multilevel converter presents problems dealing with DC-side faults, with unbalanced grid conditions, and many internal control loops are required for its proper operation. In variable-frequency operation, the modular multilevel converter presents some serious limitations. The most critical are the high-voltage ripples, in the submodule capacitors, at low frequencies. Thus, many different AC–AC converter solutions, with modular multilevel structure, have been proposed as alternatives for high-power machine-drive applications such as offshore wind turbines, pumped-hydro-storage systems and industrial motor drives. These converters present their own drawbacks mostly related to control complexity, operational limitations, size and weight. This paper introduces an entirely new medium-voltage AC–AC modular multilevel converter solution with many operational and structural advantages in comparison to the modular multilevel converter and other alternative topologies. The proposed converter presents high performance at low frequencies, regarding the amplitude of the voltage ripples in the submodule capacitors, which could make it very suitable for machine-drive applications. In this paper, an analytical description of the voltage ripples in the submodule capacitors is proposed, which proves the high performance of the converter under low-frequency operation. Moreover, the proposed converter presents high performance under unbalanced grid conditions. This important feature is demonstrated through simulation results. The converter solution introduced in this paper has a simple structure, with decoupled phases, which leads to the absence of undesired circulating currents and to a straightforward control, with very few internal control loops for its proper operation, and with simple modulation. Since the converter phases are decoupled, no arm inductors are required, which contributes to the weight and size reduction of the topology. In this paper, a detailed comparison analysis with the modular multilevel converter is presented based on number of components, conduction and switching losses. This analysis concludes that the proposed converter solution presents a reduction in costs and an expressive reduction in size and weight, in comparison to the modular multilevel converter. Thus, it should be a promising solution for high-power machine-drive applications that require compactness and lightness such as offshore wind turbines. In this paper, simulation results are presented explaining the behavior of the proposed converter, proving that it is capable of synthesizing a high-power-quality load voltage, with variable frequency, while exchanging power with the grid. Thus, this topology could be used to control the machine speed in a machine-drive application. Finally, experimental results are provided to validate the topology.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Duran, Alberto, Efrain Ibaceta, Matias Diaz, Felix Rojas, Roberto Cardenas et Hector Chavez. « Control of a Modular Multilevel Matrix Converter for Unified Power Flow Controller Applications ». Energies 13, no 4 (20 février 2020) : 953. http://dx.doi.org/10.3390/en13040953.

Texte intégral
Résumé :
The modular multilevel matrix converter has been proposed as a suitable option for high power applications such as flexible AC transmission systems. Among flexible AC transmission systems, the unified power flow controller stands out as the most versatile device. However, the application of the modular multilevel matrix converter has not been thoroughly analyzed for unified power flow controller applications due to the sophisticated control systems that are needed when its ports operate at equal frequencies. In this context, this paper presents a cascaded control structure for a modular multilevel matrix converter based unified power flow controller. The control is implemented in a decoupled reference frame, and it features proportional-integral external controllers and internal proportional multi-resonant controllers. Additionally, the input port of the modular multilevel matrix converter is regulated in grid-feeding mode, and the output port is regulated in grid-forming mode to provide power flow compensation. The effectiveness of the proposed vector control system is demonstrated through simulation studies and experimental validation tests conducted with a 27-cell 5 kW prototype.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Diab, Ahmed A. Zaki, Terad Ebraheem, Raseel Aljendy, Hamdy M. Sultan et Ziad M. Ali. « Optimal Design and Control of MMC STATCOM for Improving Power Quality Indicators ». Applied Sciences 10, no 7 (4 avril 2020) : 2490. http://dx.doi.org/10.3390/app10072490.

Texte intégral
Résumé :
In recent years, modular multilevel converters (MMC) are becoming popular in the distribution and transmission of electrical systems. The multilevel converter suffers from circulating current within the converter that increases the conduction loss of switches and increases the thermal stress on the capacitors and switches’ IGBTs. One of the main solutions to control the circulating current is to keep the capacitor voltage balanced in the MMC. In this paper, a new hybrid control algorithm for the cascaded modular multilevel converter is presented. The Harris hawk’s optimization (HHO) and Atom search optimization (ASO) are used to optimally design the controller of the hybrid MMC. The proposed structure of modular multilevel inverters allows effective operation, a low level of harmonic distortion in the absence of output voltage filters, a low switching frequency, and excellent flexibility to achieve the requirements of any voltage level. The effectiveness of the proposed controller and the multilevel converter has been verified through testing with the application of the MMC-static synchronous compensator (STATCOM). The stability of the voltage capacitors was monitored with balanced and unbalanced loads on the studied network.
Styles APA, Harvard, Vancouver, ISO, etc.
30

G, Ramya, et Ramaprabha R. « A Review on Designand Control Methods of Modular Multilevel Converter ». International Journal of Power Electronics and Drive Systems (IJPEDS) 7, no 3 (1 septembre 2016) : 863. http://dx.doi.org/10.11591/ijpeds.v7.i3.pp863-871.

Texte intégral
Résumé :
Modular multilevel converters (MMC) are an emerging voltage source converter topology suitable for many applications. Due to abundant utilization of HVDC power transmission, the modular multilevel converter has become popular converter type to be used in high voltage applications. Other applications include interfacing renewable energy power sources to the grid and motor drives. Modular multilevel converters are beneficial for high voltage and high power motor drives because of the properties of this converter topology, such as, low distortion, high efficiency, etc. For the past few years significant research has been carried out to address the technical challenges associated with operation and voltage balancing of MMC. In this paper, a detailed technical review on the control strategies is presented for ready reference.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Rashmi, Vidya, et Manju Khare. « Study of Cascaded H-Bridge Converter Control Strategies and their Impact on Switching Harmonics ». SMART MOVES JOURNAL IJOSCIENCE 4, no 3 (12 mars 2018) : 8. http://dx.doi.org/10.24113/ojsscience.v4i3.128.

Texte intégral
Résumé :
The Cascaded H-Bridge (CHB) multilevel static synchronous compensator (STATCOM) has been widely accepted in the industry [1]-[8]. An outstanding advantage of the CHB multilevel topology is their modular structure. This enables higher-level STATCOM to be easily implemented through series connection of more cells. since the pulse-width modulation (PWM) signals of each cell are generated all by the central controller instead of their own controller, the cell does not look like an “independent module”. To achieve “true” modular implementation, a distributed control system (DCS) for the CHB multilevel STATCOM should be developed.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Perez, Marcelo A., Salvador Ceballos, Georgios Konstantinou, Josep Pou et Ricardo P. Aguilera. « Modular Multilevel Converters : Recent Achievements and Challenges ». IEEE Open Journal of the Industrial Electronics Society 2 (2021) : 224–39. http://dx.doi.org/10.1109/ojies.2021.3060791.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Zygmanowski, M., B. Grzesik, M. Fulczyk et R. Nalepa. « Selected aspects of Modular Multilevel Converter operation ». Bulletin of the Polish Academy of Sciences Technical Sciences 62, no 2 (1 juin 2014) : 375–85. http://dx.doi.org/10.2478/bpasts-2014-0038.

Texte intégral
Résumé :
Abstract The operation of the Modular Multilevel Converter (MMC) is the main subject of this paper. Selected operation aspects are discussed on the basis of the averaged model, with a special focus on power section parameters and control. The direct modulation method has been chosen for the control of the MMC.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Vielzeuf, D., N. Floquet, D. Chatain, F. Bonnete, D. Ferry, J. Garrabou et E. M. Stolper. « Multilevel modular mesocrystalline organization in red coral ». American Mineralogist 95, no 2-3 (1 février 2010) : 242–48. http://dx.doi.org/10.2138/am.2010.3268.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Dinkel, Daniel, Claus Hillermeier et Rainer Marquardt. « Direct Multivariable Control for Modular Multilevel Converters ». IEEE Transactions on Power Electronics 37, no 7 (juillet 2022) : 7819–33. http://dx.doi.org/10.1109/tpel.2022.3148578.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Gao, Feng, Decun Niu, Hao Tian, Chunjuan Jia, Nan Li et Yong Zhao. « Control of Parallel-Connected Modular Multilevel Converters ». IEEE Transactions on Power Electronics 30, no 1 (janvier 2015) : 372–86. http://dx.doi.org/10.1109/tpel.2014.2313333.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Sun, Jian, et Hanchao Liu. « Sequence Impedance Modeling of Modular Multilevel Converters ». IEEE Journal of Emerging and Selected Topics in Power Electronics 5, no 4 (décembre 2017) : 1427–43. http://dx.doi.org/10.1109/jestpe.2017.2762408.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Saad, Hani, Sebastien Dennetiere, Jean Mahseredjian, Philippe Delarue, Xavier Guillaud, Jaime Peralta et Samuel Nguefeu. « Modular Multilevel Converter Models for Electromagnetic Transients ». IEEE Transactions on Power Delivery 29, no 3 (juin 2014) : 1481–89. http://dx.doi.org/10.1109/tpwrd.2013.2285633.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

SHALINI, ROY, et PANDEY RAHUL. « MODULAR MULTILEVEL DC-DC CONVERTERS : A REVIEW ». i-manager’s Journal on Electrical Engineering 13, no 1 (2019) : 42. http://dx.doi.org/10.26634/jee.13.1.16344.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Barnklau, Hans, Albrecht Gensior et Steffen Bernet. « Submodule Capacitor Dimensioning for Modular Multilevel Converters ». IEEE Transactions on Industry Applications 50, no 3 (mai 2014) : 1915–23. http://dx.doi.org/10.1109/tia.2013.2282472.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Yang, Shunfeng, Yi Tang et Peng Wang. « Distributed Control for a Modular Multilevel Converter ». IEEE Transactions on Power Electronics 33, no 7 (juillet 2018) : 5578–91. http://dx.doi.org/10.1109/tpel.2017.2751254.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Wang, Jinyu, et Peng Wang. « Power Decoupling Control for Modular Multilevel Converter ». IEEE Transactions on Power Electronics 33, no 11 (novembre 2018) : 9296–309. http://dx.doi.org/10.1109/tpel.2018.2799321.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Xia, Bing, Yaohua Li, Zixin Li, Georgios Konstantinou, Fei Xu, Fanqiang Gao et Ping Wang. « Decentralized Control Method for Modular Multilevel Converters ». IEEE Transactions on Power Electronics 34, no 6 (juin 2019) : 5117–30. http://dx.doi.org/10.1109/tpel.2018.2866258.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Antonopoulos, Antonios, Lennart Angquist, Lennart Harnefors, Kalle Ilves et Hans-Peter Nee. « Global Asymptotic Stability of Modular Multilevel Converters ». IEEE Transactions on Industrial Electronics 61, no 2 (février 2014) : 603–12. http://dx.doi.org/10.1109/tie.2013.2254100.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Vidal, Ricardo, Diego Soto, Iván Andrade, Javier Riedemann, Cristián Pesce, Enrique Belenguer, Ruben Pena et Ramon Blasco-Gimenez. « A multilevel modular DC–DC converter topology ». Mathematics and Computers in Simulation 131 (janvier 2017) : 128–41. http://dx.doi.org/10.1016/j.matcom.2015.12.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

A., Arikesh, et A. K. Parvathy. « Modular multilevel inverter for renewable energy applications ». International Journal of Electrical and Computer Engineering (IJECE) 10, no 1 (1 février 2020) : 1. http://dx.doi.org/10.11591/ijece.v10i1.pp1-14.

Texte intégral
Résumé :
<p>This paper proposes a Multilevel Inverter (MLI) which focuses on two objective , minimal voltage sources and lesser switching component. The proposed Asymmetrical Cascaded Multilevel Inverter (ACMLI) is able to achieve the objective by selectively opting the voltage level of DC sources chosen and implementing the mathematical operation of addition and subtraction on the DC sources. This system also utilizes multiple carrier sinusoidal pulse width modulation technique (MCS-PWM) for operating the switches. It is found that the number of switches required for proposed modular bridge ACMLI and modified H bridge ACMLI was lesser than the traditional Cascaded H bridge Multilevel Inverter (CHB-MLI). It is also evident that the number of DC voltage sources and filter required for smoothing the output waveform is reduced compared to the traditional MLI. The Total Harmonic Distortion (THD) for the proposed circuit was simulated and analyzed in MATLAB Simulink environment and the results are found to be very less and satisfactory. The proposed circuit can find its application in integrating Renewable Energy Sources (RES) to the utility grid, Electrical Vehicle (EV) , harmonic reduction and so on. The simulation results of the proposed circuits are tabulated and compared with the traditional cascaded MLI.</p>
Styles APA, Harvard, Vancouver, ISO, etc.
47

Qiu, Peng, Feng Xu, Yi Lu, Jihong Li, Gaoren Liu, Huangqing Xiao, Shijia Wang et Zheng Xu. « Improved modulation method of modular multilevel converter ». Journal of Engineering 2017, no 13 (1 janvier 2017) : 2544–48. http://dx.doi.org/10.1049/joe.2017.0786.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Kung, Sunny H., et Gregory J. Kish. « Multiport Modular Multilevel Converter for DC Systems ». IEEE Transactions on Power Delivery 34, no 1 (février 2019) : 73–83. http://dx.doi.org/10.1109/tpwrd.2018.2846264.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Shao, Shuai, Yucen Li, Jing Sheng, Chushan Li, Wuhua Li, Junming Zhang et Xiangning He. « A Modular Multilevel Resonant DC–DC Converter ». IEEE Transactions on Power Electronics 35, no 8 (août 2020) : 7921–32. http://dx.doi.org/10.1109/tpel.2019.2962032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Blaszczyk, P., K. Koska et P. Klimczak. « Energy balancing in modular multilevel converter systems ». Bulletin of the Polish Academy of Sciences Technical Sciences 65, no 5 (1 octobre 2017) : 685–94. http://dx.doi.org/10.1515/bpasts-2017-0073.

Texte intégral
Résumé :
Abstract The modular multilevel converter (MMC) is a well-known solution for medium and high voltage high power converter systems. This paper deals with energy balancing of MMCs. The analysis includes multi-converter systems. In order to provide clear view, the MMC control system is divided into hierarchical levels. Details of control and balancing methods are discussed for each level separately. Finally, experimental results, based on multi-converter test setup, are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie