Sommaire
Littérature scientifique sur le sujet « Mo/Cu CODH »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Mo/Cu CODH ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Mo/Cu CODH"
Hollingsworth, Thilini S., Ryan L. Hollingsworth, Richard L. Lord et Stanislav Groysman. « Cooperative bimetallic reactivity of a heterodinuclear molybdenum–copper model of Mo–Cu CODH ». Dalton Transactions 47, no 30 (2018) : 10017–24. http://dx.doi.org/10.1039/c8dt02323a.
Texte intégralReginald, Stacy Simai, Michael Etzerodt, Deby Fapyane et In Seop Chang. « Functional Expression of a Mo–Cu-Dependent Carbon Monoxide Dehydrogenase (CODH) and Its Use as a Dissolved CO Bio-microsensor ». ACS Sensors 6, no 7 (12 juillet 2021) : 2772–82. http://dx.doi.org/10.1021/acssensors.1c01243.
Texte intégralGhosh, Dibbendu, Soumen Sinhababu, Bernard D. Santarsiero et Neal P. Mankad. « A W/Cu Synthetic Model for the Mo/Cu Cofactor of Aerobic CODH Indicates That Biochemical CO Oxidation Requires a Frustrated Lewis Acid/Base Pair ». Journal of the American Chemical Society 142, no 29 (29 juin 2020) : 12635–42. http://dx.doi.org/10.1021/jacs.0c03343.
Texte intégralRogan Šmuc, Nastja, Matej Dolenec, Sabina Kramar et Ana Mladenović. « Heavy Metal Signature and Environmental Assessment of Nearshore Sediments : Port of Koper (Northern Adriatic Sea) ». Geosciences 8, no 11 (31 octobre 2018) : 398. http://dx.doi.org/10.3390/geosciences8110398.
Texte intégralKong, Yunhui, Guodong Chen, Bingli Liu, Miao Xie, Zhengbo Yu, Cheng Li, Yixiao Wu et al. « 3D Mineral Prospectivity Mapping of Zaozigou Gold Deposit, West Qinling, China : Machine Learning-Based Mineral Prediction ». Minerals 12, no 11 (26 octobre 2022) : 1361. http://dx.doi.org/10.3390/min12111361.
Texte intégralLi, Leiming, Jun Wu, Jian Lu et Juan Xu. « Speciation, risks and isotope-based source apportionment of trace elements in soils of the northeastern Qinghai–Tibet Plateau ». Geochemistry : Exploration, Environment, Analysis 20, no 3 (12 août 2019) : 315–22. http://dx.doi.org/10.1144/geochem2019-042.
Texte intégralSuslova, A., et A. Hassanein. « Simulation of femtosecond laser absorption by metallic targets and their thermal evolution ». Laser and Particle Beams 35, no 3 (21 juin 2017) : 415–28. http://dx.doi.org/10.1017/s0263034617000404.
Texte intégralIhnat, Milan. « Development of a New Series of Agricultural/Food Reference Materials for Analytical Quality Control of Elemental Determinations ». Journal of AOAC INTERNATIONAL 77, no 6 (1 novembre 1994) : 1605–26. http://dx.doi.org/10.1093/jaoac/77.6.1605.
Texte intégralXu-Yang, Yangjunjie, Rémi Losno, Fabrice Monna, Jean-Louis Rajot, Mohamed Labiadh, Gilles Bergametti et Béatrice Marticorena. « Compositional data analysis (CoDA) as a tool to evaluate a new low-cost settling-based PM<sub>10</sub> ; sampling head in a desert dust source region ». Atmospheric Measurement Techniques 14, no 12 (8 décembre 2021) : 7657–80. http://dx.doi.org/10.5194/amt-14-7657-2021.
Texte intégral« RA825 ». Alloy Digest 50, no 4 (1 avril 2001). http://dx.doi.org/10.31399/asm.ad.ni0563.
Texte intégralThèses sur le sujet "Mo/Cu CODH"
ROVALETTI, ANNA. « A computational outlook on the catalysis exerted by the unique active site of MoCu CO dehydrogenases ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/305403.
Texte intégralProduction and consumption processes in soil ecosystems contribute to the global biochemical cycles of many trace gases (CH4, CO, H2, N2O and NO) that are relevant for atmospheric chemistry and climate. Such small gas molecules play different role into the metabolism of microorganisms placed in soil that rely on specific metalloenzymes for their transformation. Among these, molybdenum-based metalloenzymes were evidenced to be crucial in such context. In particular, a specific molybdoenzyme was reported to be involved in atmospheric CO oxidation. MoCu CO dehydrogenases (MoCu CODH) is an enzyme found in aerobic carboxidobacteria, such as Oligotropha carboxidovorans which represent one of the essential components in the biogeochemical carbon monoxide (CO) consumption. In fact, they contribute to maintenance of subtoxic concentration of CO in the lower atmosphere by processing approximately 2×108 tons of it annually. This bacterial metalloprotein catalyses the oxidation of CO to CO2, while it can also split H2 in two protons and two electrons. Such reactions are performed thanks to a unique active site composed of two metals, a copper ion and a molybdenum one, linked together through a sulphur atom. Despite extended theoretical and experimental studies had been carried out concerning this enzyme, several aspects related to its reactivity have not been unravelled.In the present thesis, we focused on the in silico description of MoCu CODH in order to deepen the understanding of the reaction mechanisms catalysed by the enzyme. To do so, in the framework of density functional theory (DFT), we applied models of different sizes to obtain an accurate description of the system. In the context of CO oxidation catalysis, we evidenced that if a previously proposed thiocarbonate like intermediate is formed along the catalytic path, it does not represent a rate limiting species on the enzymatic energy landscape, differently from results of previous theoretical studies. Moreover, we were able to suggest an alternative catalytic mechanism for the oxidation of CO that involves the direct role of a water molecule, activated by the sourrounding active site. As for the MoCu CODH hydrogenase activity, two plausible mechanisms for the splitting of H2 were presented. For the first time we suggested that the MoCu CODH active site may be viewed as a Frustrated Lewis Pair (FLP), and we proposed a FLP-like mechanism for oxidation of the dihydrogen. Alternatively, a protonation event–e.g. Cu-bound cysteine residue protonation – prior to binding of H2 to the active site proved to be necessary to present a plausible reactive channel.