Articles de revues sur le sujet « Mn-catalyzed »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Mn-catalyzed.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Mn-catalyzed ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

WHELAN, GENE, et RONALD C. SIMS. « Mn-Catalyzed Oxidation of Naphthalenediol ». Hazardous Waste and Hazardous Materials 12, no 4 (janvier 1995) : 381–94. http://dx.doi.org/10.1089/hwm.1995.12.381.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nishikori, Hisashi, et Tsutomu Katsuki. « Mn-salen catalyzed enantioselective sulfimidation ». Applied Catalysis A : General 194-195 (mars 2000) : 475–77. http://dx.doi.org/10.1016/s0926-860x(99)00393-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Chen, Yuanjin, Tian Tian et Zhiping Li. « Mn-Catalyzed azidation–peroxidation of alkenes ». Organic Chemistry Frontiers 6, no 5 (2019) : 632–36. http://dx.doi.org/10.1039/c8qo01231h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cozzi, P. « Mn-Catalyzed Reformatsky Reaction with Ketones ». Synfacts 2006, no 7 (juin 2006) : 0698. http://dx.doi.org/10.1055/s-2006-941862.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fu, Niankai, Yifan Shen, Anthony R. Allen, Lu Song, Atsushi Ozaki et Song Lin. « Mn-Catalyzed Electrochemical Chloroalkylation of Alkenes ». ACS Catalysis 9, no 1 (5 décembre 2018) : 746–54. http://dx.doi.org/10.1021/acscatal.8b03209.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rehman, S., M. Hafeez, U. Manzoor, M. A. Khan et A. S. Bhatti. « Competitive role of Mn diffusion with growth in Mn catalyzed nanostructures ». Journal of Applied Physics 111, no 8 (15 avril 2012) : 084301. http://dx.doi.org/10.1063/1.3702881.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Osipova, Elena S., Ekaterina S. Gulyaeva, Nikolay V. Kireev, Sergey A. Kovalenko, Christian Bijani, Yves Canac, Dmitry A. Valyaev, Oleg A. Filippov, Natalia V. Belkova et Elena S. Shubina. « Fac-to-mer isomerization triggers hydride transfer from Mn(i) complex fac-[(dppm)Mn(CO)3H] ». Chemical Communications 58, no 32 (2022) : 5017–20. http://dx.doi.org/10.1039/d2cc00999d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Schmidt et Husted. « The Biochemical Properties of Manganese in Plants ». Plants 8, no 10 (27 septembre 2019) : 381. http://dx.doi.org/10.3390/plants8100381.

Texte intégral
Résumé :
Manganese (Mn) is an essential micronutrient with many functional roles in plant metabolism. Manganese acts as an activator and co-factor of hundreds of metalloenzymes in plants. Because of its ability to readily change oxidation state in biological systems, Mn plays and important role in a broad range of enzyme-catalyzed reactions, including redox reactions, phosphorylation, decarboxylation, and hydrolysis. Manganese(II) is the prevalent oxidation state of Mn in plants and exhibits fast ligand exchange kinetics, which means that Mn can often be substituted by other metal ions, such as Mg(II), which has similar ion characteristics and requirements to the ligand environment of the metal binding sites. Knowledge of the molecular mechanisms catalyzed by Mn and regulation of Mn insertion into the active site of Mn-dependent enzymes, in the presence of other metals, is gradually evolving. This review presents an overview of the chemistry and biochemistry of Mn in plants, including an updated list of known Mn-dependent enzymes, together with enzymes where Mn has been shown to exchange with other metal ions. Furthermore, the current knowledge of the structure and functional role of the three most well characterized Mn-containing metalloenzymes in plants; the oxygen evolving complex of photosystem II, Mn superoxide dismutase, and oxalate oxidase is summarized.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zhang, Liang, Shuya Liu, Zhiguo Zhao, Hongmei Su, Jingcheng Hao et Yao Wang. « (Salen)Mn(iii)-catalyzed chemoselective acylazidation of olefins ». Chemical Science 9, no 28 (2018) : 6085–90. http://dx.doi.org/10.1039/c8sc01882k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wang, Congyang, et Ting Liu. « Manganese-Catalyzed C(sp2)–H Addition to Polar Unsaturated Bonds ». Synlett 32, no 13 (27 mars 2021) : 1323–29. http://dx.doi.org/10.1055/a-1468-6136.

Texte intégral
Résumé :
AbstractTransition-metal-catalyzed nucleophilic C–H addition of hydrocarbons to polar unsaturated bonds could intrinsically avoid prefunctionalization of substrates and formation of waste byproducts, thus featuring high step- and atom-economy. As the third most abundant transition metal, manganese-catalyzed C–H addition to polar unsaturated bonds remains challenging, partially due to the difficulty in building a closed catalytic cycle of manganese. In the past few years, we have developed manganese catalysis to enable the sp2-hydrid C–H addition to polar unsaturated bonds (e.g., imines, aldehydes, nitriles), which will be discussed in this personal account.1 Introduction2 Mn-Catalyzed N-Directed C(sp2)–H Addition to Polar Unsaturated Bonds3 Mn-Catalyzed O-Directed C(sp2)–H Addition to Polar Unsaturated Bonds4 Conclusion
Styles APA, Harvard, Vancouver, ISO, etc.
11

Ge, Luo, et Syuzanna R. Harutyunyan. « Manganese(i)-catalyzed access to 1,2-bisphosphine ligands ». Chemical Science 13, no 5 (2022) : 1307–12. http://dx.doi.org/10.1039/d1sc06694c.

Texte intégral
Résumé :
Chiral bisphosphine ligands are of key importance in transition-metal-catalyzed asymmetric synthesis of optically active products. Mn(i)-catalyzed hydrophosphination offers a two-step, one-pot synthetic sequence to access chiral 1,2-bisphosphines.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Attiogbe, Francis K., et Raymond C. Francis. « Hydrogen peroxide decomposition in bicarbonate solution catalyzed by divalent manganese species*This article has a companion paper in this issue (doi : 10.1139/v11-078). » Canadian Journal of Chemistry 89, no 10 (octobre 2011) : 1297–303. http://dx.doi.org/10.1139/v11-080.

Texte intégral
Résumé :
The peroxymonocarbonate mono- and di-anions (HCO4– and CO42–) are known to be generated from H2O2/HCO3–. They are promising oxidants for wood pulp bleaching, but peroxide decomposition catalyzed by Mn(II) species may be significant for pulp samples with unusually high Mn contents. This investigation aimed to see if HCO3– addition caused destabilization of the peroxygen system owing to its partial conversion to HCO4–. This anionic peracid is a much stronger oxidant than H2O2 and could lead to a higher rate of Mn(II) oxidation to Mn(III) and (or) Mn(IV). For most free radical chain mechanisms, an increase in Mn(II) oxidation results in a higher rate of peroxide decomposition. Peroxide decomposition catalyzed by Mn(II) was investigated in H2O2/HCO3 in the pH ranges 8.5–8.7 and 7.4–7.9. The rate equation for peroxide decomposition was first order in [H2O2] and [Mn(II)] in both pH ranges, but close to second order in [HCO3–] in the higher pH range and close to third order in the lower pH range. Free radical chain mechanisms were proposed for both pH ranges and with all the correct reaction orders. Contrary to mechanisms previously proposed, it was concluded that HCO4– is the principal oxidizer of Mn(II) in the pH 7.4–7.9 range.
Styles APA, Harvard, Vancouver, ISO, etc.
13

WHELAN, GENE, et RONALD C. SIMS. « Mn-Catalyzed Oxidation of Multiple-Ringed Aromatics ». Hazardous Waste and Hazardous Materials 12, no 3 (janvier 1995) : 243–56. http://dx.doi.org/10.1089/hwm.1995.12.243.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Gong, Hang, Juan Ma et Jingyu Zhang. « Mn(II)-Catalyzed N-Acylation of Amines ». Synthesis 51, no 03 (4 septembre 2018) : 693–703. http://dx.doi.org/10.1055/s-0037-1610267.

Texte intégral
Résumé :
A practical protocol has been developed here for the Mn(II)-catalyzed N-acylation of amines with high yields using N,N-dimethylformamide and other amides as the carbonyl source. The protocol is simple, does not require any acid, base, ligand, or other additives, and encompasses a broad substrate scope for primary, secondary, and heterocyclic amines.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kohmura, Yoshinori, et Tsutomu Katsuki. « Mn(salen)-catalyzed enantioselective CH amination ». Tetrahedron Letters 42, no 19 (mai 2001) : 3339–42. http://dx.doi.org/10.1016/s0040-4039(01)00427-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Fang, Yuan, Yonghui Wang, Fen Wang, Chengyong Shu, Jianfeng Zhu et Wenling Wu. « Fe–Mn bimetallic oxides-catalyzed oxygen reduction reaction in alkaline direct methanol fuel cells ». RSC Advances 8, no 16 (2018) : 8678–87. http://dx.doi.org/10.1039/c7ra12610g.

Texte intégral
Résumé :
Heterojunction interfaces and synergistic effect between Fe2O3 and Mn2O3 play a key role in Fe2O3/Mn2O3-catalyzed ORR.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wen, Zhengcheng, Mengmeng Du, Yuan Li, Zhihua Wang, Jiangrong Xu et Kefa Cen. « Quantum chemistry study on the oxidation of NO catalyzed by ZSM5 supported Mn/Co–Al/Ce ». Journal of Theoretical and Computational Chemistry 16, no 05 (août 2017) : 1750044. http://dx.doi.org/10.1142/s0219633617500444.

Texte intégral
Résumé :
The detailed mechanism of NO oxidation catalyzed by ZSM5 supported Mn/Co–Al/Ce is investigated and revealed by Quantum Chemistry Calculation. A three-step catalytic mechanism for NO oxidation is proposed and studied. Theoretical results show that, the activate energies of reactions catalyzed by ZSM-5 supported Mn/Co (71.1[Formula: see text]kJ/mol/80.6[Formula: see text]kJ/mol) are much lower than that obtained from the direct NO oxidation. This indicates that the ZSM-5 supported Mn/Co has an obvious catalytic effect. When the active center Si is replaced by Al and Ce, the activation energies are further decreased to about 40[Formula: see text]kJ/mol. This indicates that the doping of Al and Ce can obviously improve the catalytic effect. The theoretical study illustrates that the catalysts for NO oxidation not only relate to the supported transition metal such as Co and Mn, but also highly relate to the activity centers such as Al and Ce.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Xie, Jin, Zhongfei Yan et Chengjian Zhu. « Manganese(I)-Catalyzed Selective Functionalization of Alkynes ». Synlett 30, no 02 (30 novembre 2018) : 124–28. http://dx.doi.org/10.1055/s-0037-1610335.

Texte intégral
Résumé :
Mn(I)-catalyzed selective functionalization of alkynes permits the convenient synthesis of substituted alkenes with high step and atom economies. Although the insertion of five-membered chelated manganacycle intermediates into alkynes has been widely reported, nonchelated Ar–Mn(I) species originating from commercially available arylboronic acids are unprecedented. Our new protocol achieved a challenging hydroarylation of unsymmetrical 1,3-diynes with arylboronic acids with complete regio-, stereo-, and chemoselectivity to give a wide array of trisubstituted conjugated (Z)-enynes in moderate to good yields.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Strekalova, S. O., M. N. Khrizanforov, T. V. Gryaznova, V. V. Khrizanforova et Yu H. Budnikova. « Electrochemical phosphorylation of coumarins catalyzed by transition metal complexes (Ni—Mn, Co—Mn) ». Russian Chemical Bulletin 65, no 5 (mai 2016) : 1295–98. http://dx.doi.org/10.1007/s11172-016-1451-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Goto, Atsushi, Koji Nagasawa, Ayaka Shinjo, Yoshinobu Tsujii et Takeshi Fukuda. « Reversible Chain Transfer Catalyzed Polymerization of Methyl Methacrylate with In-Situ Formed Alkyl Iodide Initiator ». Australian Journal of Chemistry 62, no 11 (2009) : 1492. http://dx.doi.org/10.1071/ch09229.

Texte intégral
Résumé :
A method utilizing generation of an alkyl iodide (low-mass dormant species) in situ formed in polymerization was adopted to reversible chain transfer catalyzed polymerizations (RTCP) (living radical polymerizations) with several nitrogen and phosphorus catalysts. The polymerization of methyl methacrylate afforded low-polydispersity polymers (Mw/Mn ~1.2–1.4), with Mn values predicted to high conversions; where Mn and Mw are the number- and weight-average molecular weights respectively. This method is robust and would enhance the utility of RTCP.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Yang, Bobin, Wei Yao, Xiao-Feng Xia et Dawei Wang. « Mn-Catalyzed 1,6-conjugate addition/aromatization of para-quinone methides ». Organic & ; Biomolecular Chemistry 16, no 24 (2018) : 4547–57. http://dx.doi.org/10.1039/c8ob01057a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Nogi, Keisuke, Tetsuaki Fujihara, Jun Terao et Yasushi Tsuji. « Cobalt-catalyzed carboxylation of propargyl acetates with carbon dioxide ». Chem. Commun. 50, no 86 (2014) : 13052–55. http://dx.doi.org/10.1039/c4cc03644a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Shao, Zhihui, Yujie Wang, Yaqian Liu, Qian Wang, Xiaoling Fu et Qiang Liu. « A general and efficient Mn-catalyzed acceptorless dehydrogenative coupling of alcohols with hydroxides into carboxylates ». Organic Chemistry Frontiers 5, no 8 (2018) : 1248–56. http://dx.doi.org/10.1039/c8qo00023a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Wang, Juping, Kangcheng Zheng, Ting Li et Xiaojing Zhan. « Mechanism and Chemoselectivity of Mn-Catalyzed Intramolecular Nitrene Transfer Reaction : C–H Amination vs. C=C Aziridination ». Catalysts 10, no 3 (4 mars 2020) : 292. http://dx.doi.org/10.3390/catal10030292.

Texte intégral
Résumé :
The reactivity, mechanism and chemoselectivity of the Mn-catalyzed intramolecular C–H amination versus C=C aziridination of allylic substrate cis-4-hexenylsulfamate are investigated by BP86 density functional theory computations. Emphasis is placed on the origins of high reactivity and high chemoselectivity of Mn catalysis. The N p orbital character of frontier orbitals, a strong electron-withdrawing porphyrazine ligand and a poor π backbonding of high-valent MnIII metal to N atom lead to high electrophilic reactivity of Mn-nitrene. The calculated energy barrier of C–H amination is 9.9 kcal/mol lower than that of C=C aziridination, which indicates that Mn-based catalysis has an excellent level of chemoselectivity towards C–H amination, well consistent with the experimental the product ratio of amintion-to-aziridination I:A (i.e., (Insertion):(Aziridination)) >20:1. This extraordinary chemoselectivity towards C–H amination originates from the structural features of porphyrazine: a rigid ligand with the big π-conjugated bond. Electron-donating substituents can further increase Mn-catalyzed C–H amination reactivity. The controlling factors found in this work may be considered as design elements for an economical and environmentally friendly C–H amination system with high reactivity and high chemoselectivity.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Long, Wenhao, Pengcheng Lian, Jingjing Li et Xiaobing Wan. « Mn-Catalysed photoredox hydroxytrifluoromethylation of aliphatic alkenes using CF3SO2Na ». Organic & ; Biomolecular Chemistry 18, no 33 (2020) : 6483–86. http://dx.doi.org/10.1039/d0ob01322f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Sharma, Rohit, Firdoos Ahmad Sofi, Preeti Rana et Prasad V. Bharatam. « Bimetallic Cu–Mn B spinel oxide catalyzed oxidative synthesis of 1,2-disubstituted benzimidazoles from benzyl bromides ». New Journal of Chemistry 43, no 10 (2019) : 4013–16. http://dx.doi.org/10.1039/c8nj05504a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Sun, Q. « Mn/MFI catalyzed reduction of NOx with alkanes ». Applied Catalysis B : Environmental 42, no 4 (10 juin 2003) : 393–401. http://dx.doi.org/10.1016/s0926-3373(02)00278-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Biswas, Achintesh Narayan, Purak Das, Sujit Kumar Kandar, Arunava Agarwala, Debkumar Bandyopadhyay et Pinaki Bandyopadhyay. « Chiral Mn(III) salen catalyzed oxidation of hydrocarbons ». Transition Metal Chemistry 35, no 5 (22 avril 2010) : 527–30. http://dx.doi.org/10.1007/s11243-010-9359-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Tateiwa, Jun-ichi, Keiji Hashimoto, Takayoshi Yamauchi et Sakae Uemura. « Cation-Exchanged Montmorillonite (Mn+-Mont)-Catalyzed Prins Reaction ». Bulletin of the Chemical Society of Japan 69, no 8 (août 1996) : 2361–68. http://dx.doi.org/10.1246/bcsj.69.2361.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Fukuda, Tsutomu, et Tsutomu Katsuki. « Mn-salen catalyzed asymmetric oxidation of enol derivatives ». Tetrahedron Letters 37, no 25 (juin 1996) : 4389–92. http://dx.doi.org/10.1016/0040-4039(96)00858-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Riguet, Eric, Ingo Klement, Ch Kishan Reddy, Gérard Cahiez et Paul Knochel. « New mixed metal (Mn/Cu) catalyzed stereoselective cyclizations ». Tetrahedron Letters 37, no 33 (août 1996) : 5865–68. http://dx.doi.org/10.1016/0040-4039(96)01249-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Golchoubian, Hamid, et Nesa Ghasemi. « Diphenylmethane Oxidation Catalyzed by Mononuclear Mn(III) Complexes ». Journal of the Chinese Chemical Society 58, no 4 (août 2011) : 470–73. http://dx.doi.org/10.1002/jccs.201190008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Wei, Zhihong, Adiran de Aguirre, Kathrin Junge, Matthias Beller et Haijun Jiao. « Exploring the mechanisms of aqueous methanol dehydrogenation catalyzed by defined PNP Mn and Re pincer complexes under base-free as well as strong base conditions ». Catalysis Science & ; Technology 8, no 14 (2018) : 3649–65. http://dx.doi.org/10.1039/c8cy00746b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Xu, Daqian, Qiangsheng Sun, Jin Lin et Wei Sun. « Ligand regulation for manganese-catalyzed enantioselective epoxidation of olefins without acid ». Chemical Communications 56, no 86 (2020) : 13101–4. http://dx.doi.org/10.1039/d0cc04440g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Wang, Xiao-Yu, Yong-Qin He, Mei Wang, Yi Zhou, Na Li, Xian-Rong Song, Zhao-Zhao Zhou, Wan-Fa Tian et Qiang Xiao. « Visible-light-driven proton reduction for semi-hydrogenation of alkynes via organophotoredox/manganese dual catalysis ». RSC Advances 12, no 55 (2022) : 36138–41. http://dx.doi.org/10.1039/d2ra07920h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Wang, Yang, Xiaofeng Zhang, Haixiong Liu, Hui Chen et Deguang Huang. « Nickel-catalyzed direct formation of the C–S bonds of aryl sulfides from arylsulfonyl chlorides and aryl iodides using Mn as a reducing agent ». Organic Chemistry Frontiers 4, no 1 (2017) : 31–36. http://dx.doi.org/10.1039/c6qo00451b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Jones, C., S. A. Crowe, A. Sturm, K. L. Leslie, L. C. W. MacLean, S. Katsev, C. Henny, D. A. Fowle et D. E. Canfield. « Biogeochemistry of manganese in ferruginous Lake Matano, Indonesia ». Biogeosciences 8, no 10 (26 octobre 2011) : 2977–91. http://dx.doi.org/10.5194/bg-8-2977-2011.

Texte intégral
Résumé :
Abstract. This study explores Mn biogeochemistry in a stratified, ferruginous lake, a modern analogue to ferruginous oceans. Intense Mn cycling occurs in the chemocline where Mn is recycled at least 15 times before sedimentation. The product of biologically catalyzed Mn oxidation in Lake Matano is birnessite. Although there is evidence for abiotic Mn reduction with Fe(II), Mn reduction likely occurs through a variety of pathways. The flux of Fe(II) is insufficient to balance the reduction of Mn at 125 m depth in the water column, and Mn reduction could be a significant contributor to CH4 oxidation. By combining results from synchrotron-based X-ray fluorescence and X-ray spectroscopy, extractions of sinking particles, and reaction transport modeling, we find the kinetics of Mn reduction in the lake's reducing waters are sufficiently rapid to preclude the deposition of Mn oxides from the water column to the sediments underlying ferruginous water. This has strong implications for the interpretation of the sedimentary Mn record.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Shi, Lijun, Xiang Zhong, Houde She, Ziqiang Lei et Fuwei Li. « Manganese catalyzed C–H functionalization of indoles with alkynes to synthesize bis/trisubstituted indolylalkenes and carbazoles : the acid is the key to control selectivity ». Chemical Communications 51, no 33 (2015) : 7136–39. http://dx.doi.org/10.1039/c5cc00249d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Zhang, Yaxing, Jianyu Dong, Lixin Liu, Long Liu, Yongbo Zhou et Shuang-Feng Yin. « Manganese(iii) acetate catalyzed oxidative amination of benzylic C(sp3)–H bonds with nitriles ». Organic & ; Biomolecular Chemistry 15, no 14 (2017) : 2897–901. http://dx.doi.org/10.1039/c7ob00512a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Ju, Yeming, Di Miao, Ruiyang Yu et Sangho Koo. « Tandem catalytic oxidative deacetylation of acetoacetic esters and heteroaromatic cyclizations ». Organic & ; Biomolecular Chemistry 13, no 9 (2015) : 2588–99. http://dx.doi.org/10.1039/c4ob02441a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Kong, Gui-Xian, Jiao-Na Han, Dandan Yang, Jun-Long Niu et Mao-Ping Song. « Manganese-catalyzed cascade annulations of alkyne-tethered N-alkoxyamides : synthesis of polycyclic isoquinolin-1(2H)-ones ». Organic & ; Biomolecular Chemistry 17, no 48 (2019) : 10167–71. http://dx.doi.org/10.1039/c9ob02364j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Castaman, Silvana T., Shirley Nakagaki, Ronny R. Ribeiro, Kátia J. Ciuffi et Sueli M. Drechsel. « Homogeneous and heterogeneous olefin epoxidation catalyzed by a binuclear Mn(II)Mn(III) complex ». Journal of Molecular Catalysis A : Chemical 300, no 1-2 (mars 2009) : 89–97. http://dx.doi.org/10.1016/j.molcata.2008.10.037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Li, Qianqian, Suhong Huo, Lingpeng Meng et Xiaoyan Li. « Mechanism and origin of the stereoselectivity of manganese-catalyzed hydrosilylation of alkynes : a DFT study ». Catalysis Science & ; Technology 12, no 8 (2022) : 2649–58. http://dx.doi.org/10.1039/d1cy02340c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Liu, Bingxian, Yin Yuan, Panjie Hu, Guangfan Zheng, Dachang Bai, Junbiao Chang et Xingwei Li. « Mn(i)-Catalyzed nucleophilic addition/ring expansion via C–H activation and C–C cleavage ». Chemical Communications 55, no 72 (2019) : 10764–67. http://dx.doi.org/10.1039/c9cc05973c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Cembellín, Sara, Iván Maisuls, Constantin G. Daniliuc, Helena Osthues, Nikos L. Doltsinis, Cristian A. Strassert et Frank Glorius. « One-step synthesis of indolizino[3,4,5-ab]isoindoles by manganese(i)-catalyzed C–H activation : structural studies and photophysical properties ». Organic & ; Biomolecular Chemistry 20, no 4 (2022) : 796–800. http://dx.doi.org/10.1039/d1ob02246f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Herrero, Christian, Annamaria Quaranta, Rémy Ricoux, Alexandre Trehoux, Atif Mahammed, Zeev Gross, Frédéric Banse et Jean-Pierre Mahy. « Oxidation catalysis via visible-light water activation of a [Ru(bpy)3]2+ chromophore BSA–metallocorrole couple ». Dalton Transactions 45, no 2 (2016) : 706–10. http://dx.doi.org/10.1039/c5dt04158a.

Texte intégral
Résumé :
Light induced enantioselective oxidation of thioanisole with water as the oxygen atom source is catalyzed by a Mn-corrole–BSA artificial metalloenzyme in the presence of a photoactivable ruthenium complex.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Hu, Yu-Lin, Dong Fang et Rong Xing. « Efficient and convenient oxidation of sulfides to sulfoxides with molecular oxygen catalyzed by Mn(OAc)2 in ionic liquid [C12mim][NO3] ». RSC Adv. 4, no 93 (2014) : 51140–45. http://dx.doi.org/10.1039/c4ra06695b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Hu, Xinyu, Bobin Yang, Wei Yao et Dawei Wang. « Alanine Triazole Mn-Catalyzed Coupling/Aromatization of Quinone Methides ». Chinese Journal of Organic Chemistry 38, no 12 (2018) : 3296. http://dx.doi.org/10.6023/cjoc201805019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Nishino, Hiroshi, et Md Aminul Haque. « Synthesis of Peroxylactones Using Mn(III)-Catalyzed Aerobic Oxidation ». HETEROCYCLES 83, no 8 (2011) : 1783. http://dx.doi.org/10.3987/com-11-12241.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Fukuda, Tsutomu, Ryo Irie et Tsutomu Katsuki. « Mn-Salen Catalyzed Asymmetric Epoxidation of Conjugated Trisubstituted Olefins ». Synlett 1995, no 02 (février 1995) : 197–98. http://dx.doi.org/10.1055/s-1995-4916.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie