Littérature scientifique sur le sujet « Mitotic errors »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Mitotic errors ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Mitotic errors"

1

Ford, Judith Helen, et Anthony Thomas Correll. « Chromosome errors at mitotic anaphase ». Genome 35, no 4 (1 août 1992) : 702–5. http://dx.doi.org/10.1139/g92-107.

Texte intégral
Résumé :
Errors in mitotic divisions were assayed using various satellite DNAs as probes, hybridized in situ, to show that they included nondisjunction, chromosome and chromatid lagging, chromatid malsegregation, and monopolar segregations. The total rates of error were 1.7, 1.1, and 0.6% for chromosomes X, 17, and 18, respectively. Lagging was the most common error for all chromosomes and chromatid malsegregation, a source of 3:1 segregations occurred at about the same frequency as nondisjunction. In some cells, lagging of both X chromatids occurred and there were several cells where both X chromosomes showed errors in segregation. The disjunction of chromosomes was shown to be independent of their segregation and is speculated to involve a different mechanism.Key words: nondisjunction, lagging, in situ, satellite DNA, aneuploidy.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sensi, Alberto, et Nicola Ricci. « Mitotic errors in trisomy 21 ». Nature Genetics 5, no 3 (novembre 1993) : 215. http://dx.doi.org/10.1038/ng1193-215a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ha, Geun-Hyoung, et Eun-Kyoung Yim Breuer. « Mitotic Kinases and p53 Signaling ». Biochemistry Research International 2012 (2012) : 1–14. http://dx.doi.org/10.1155/2012/195903.

Texte intégral
Résumé :
Mitosis is tightly regulated and any errors in this process often lead to aneuploidy, genomic instability, and tumorigenesis. Deregulation of mitotic kinases is significantly associated with improper cell division and aneuploidy. Because of their importance during mitosis and the relevance to cancer, mitotic kinase signaling has been extensively studied over the past few decades and, as a result, several mitotic kinase inhibitors have been developed. Despite promising preclinical results, targeting mitotic kinases for cancer therapy faces numerous challenges, including safety and patient selection issues. Therefore, there is an urgent need to better understand the molecular mechanisms underlying mitotic kinase signaling and its interactive network. Increasing evidence suggests that tumor suppressor p53 functions at the center of the mitotic kinase signaling network. In response to mitotic spindle damage, multiple mitotic kinases phosphorylate p53 to either activate or deactivate p53-mediated signaling. p53 can also regulate the expression and function of mitotic kinases, suggesting the existence of a network of mutual regulation, which can be positive or negative, between mitotic kinases and p53 signaling. Therefore, deciphering this regulatory network will provide knowledge to overcome current limitations of targeting mitotic kinases and further improve the results of targeted therapy.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Elsing, Alexandra N., Camilla Aspelin, Johanna K. Björk, Heidi A. Bergman, Samu V. Himanen, Marko J. Kallio, Pia Roos-Mattjus et Lea Sistonen. « Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival ». Journal of Cell Biology 206, no 6 (8 septembre 2014) : 735–49. http://dx.doi.org/10.1083/jcb.201402002.

Texte intégral
Résumé :
Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Green, Rebecca A., Roy Wollman et Kenneth B. Kaplan. « APC and EB1 Function Together in Mitosis to Regulate Spindle Dynamics and Chromosome Alignment ». Molecular Biology of the Cell 16, no 10 (octobre 2005) : 4609–22. http://dx.doi.org/10.1091/mbc.e05-03-0259.

Texte intégral
Résumé :
Recently, we have shown that a cancer causing truncation in adenomatous polyposis coli (APC) (APC1–1450) dominantly interferes with mitotic spindle function, suggesting APC regulates microtubule dynamics during mitosis. Here, we examine the possibility that APC mutants interfere with the function of EB1, a plus-end microtubule-binding protein that interacts with APC and is required for normal microtubule dynamics. We show that siRNA-mediated inhibition of APC, EB1, or APC and EB1 together give rise to similar defects in mitotic spindles and chromosome alignment without arresting cells in mitosis; in contrast inhibition of CLIP170 or LIS1 cause distinct spindle defects and mitotic arrest. We show that APC1–1450 acts as a dominant negative by forming a hetero-oligomer with the full-length APC and preventing it from interacting with EB1, which is consistent with a functional relationship between APC and EB1. Live-imaging of mitotic cells expressing EB1-GFP demonstrates that APC1–1450 compromises the dynamics of EB1-comets, increasing the frequency of EB1-GFP pausing. Together these data provide novel insight into how APC may regulate mitotic spindle function and how errors in chromosome segregation are tolerated in tumor cells.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Colicino, Erica G., Alice M. Garrastegui, Judy Freshour, Peu Santra, Dawn E. Post, Leszek Kotula et Heidi Hehnly. « Gravin regulates centrosome function through PLK1 ». Molecular Biology of the Cell 29, no 5 (mars 2018) : 532–41. http://dx.doi.org/10.1091/mbc.e17-08-0524.

Texte intégral
Résumé :
We propose to understand how the mitotic kinase PLK1 drives chromosome segregation errors, with a specific focus on Gravin, a PLK1 scaffold. In both three-dimensional primary prostate cancer cell cultures that are prone to Gravin depletion and Gravin short hairpin RNA (shRNA)–treated cells, an increase in cells containing micronuclei was noted in comparison with controls. To examine whether the loss of Gravin affected PLK1 distribution and activity, we utilized photokinetics and a PLK1 activity biosensor. Gravin depletion resulted in an increased PLK1 mobile fraction, causing the redistribution of active PLK1, which leads to increased defocusing and phosphorylation of the mitotic centrosome protein CEP215 at serine-613. Gravin depletion further led to defects in microtubule renucleation from mitotic centrosomes, decreased kinetochore-fiber integrity, increased incidence of chromosome misalignment, and subsequent formation of micronuclei following mitosis completion. Murine Gravin rescued chromosome misalignment and micronuclei formation, but a mutant Gravin that cannot bind PLK1 did not. These findings suggest that disruption of a Gravin–PLK1 interface leads to inappropriate PLK1 activity contributing to chromosome segregation errors, formation of micronuclei, and subsequent DNA damage.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hut, Henderika M. J., Harm H. Kampinga et Ody C. M. Sibon. « Hsp70 Protects Mitotic Cells against Heat-induced Centrosome Damage and Division Abnormalities ». Molecular Biology of the Cell 16, no 8 (août 2005) : 3776–85. http://dx.doi.org/10.1091/mbc.e05-01-0038.

Texte intégral
Résumé :
The effect of heat shock on centrosomes has been mainly studied in interphase cells. Centrosomes play a key role in proper segregation of DNA during mitosis. However, the direct effect and consequences of heat shock on mitotic cells and a possible cellular defense system against proteotoxic stress during mitosis have not been described in detail. Here, we show that mild heat shock, applied during mitosis, causes loss of dynamitin/p50 antibody staining from centrosomes and kinetochores. In addition, it induces division errors in most cells and in the remaining cells progression through mitosis is delayed. Expression of heat shock protein (Hsp)70 protects against most heat-induced division abnormalities. On heat shock, Hsp70 is rapidly recruited to mitotic centrosomes and normal progression through mitosis is observed immediately after release of Hsp70 from centrosomes. In addition, Hsp70 expression coincides with restoration of dynamitin/p50 antibody staining at centrosomes but not at kinetochores. Our data show that during mitosis, centrosomes are particularly affected resulting in abnormal mitosis. Hsp70 is sufficient to protect against most division abnormalities, demonstrating the involvement of Hsp70 in a repair mechanism of heat-damaged mitotic centrosomes.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Carvalhal, Sara, Alexandra Tavares, Mariana B. Santos, Mihailo Mirkovic et Raquel A. Oliveira. « A quantitative analysis of cohesin decay in mitotic fidelity ». Journal of Cell Biology 217, no 10 (12 juillet 2018) : 3343–53. http://dx.doi.org/10.1083/jcb.201801111.

Texte intégral
Résumé :
Sister chromatid cohesion mediated by cohesin is essential for mitotic fidelity. It counteracts spindle forces to prevent premature chromatid individualization and random genome segregation. However, it is unclear what effects a partial decline of cohesin may have on chromosome organization. In this study, we provide a quantitative analysis of cohesin decay by inducing acute removal of defined amounts of cohesin from metaphase-arrested chromosomes. We demonstrate that sister chromatid cohesion is very resistant to cohesin loss as chromatid disjunction is only observed when chromosomes lose >80% of bound cohesin. Removal close to this threshold leads to chromosomes that are still cohered but display compromised chromosome alignment and unstable spindle attachments. Partial cohesin decay leads to increased duration of mitosis and susceptibility to errors in chromosome segregation. We propose that high cohesin density ensures centromeric chromatin rigidity necessary to maintain a force balance with the mitotic spindle. Partial cohesin loss may lead to chromosome segregation errors even when sister chromatid cohesion is fulfilled.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Meyer, John S., Eric Cosatto et Hans Peter Graf. « Mitotic Index of Invasive Breast Carcinoma ». Archives of Pathology & ; Laboratory Medicine 133, no 11 (1 novembre 2009) : 1826–33. http://dx.doi.org/10.5858/133.11.1826.

Texte intégral
Résumé :
Abstract Context.—Mitotic figure counts are related to breast cancer behavior but have not been sufficiently reproducible to be accepted for clinical decision-making. Objective.—To improve reproducibility and accuracy of the mitotic count. Design.—Mitotic index (MI) was defined as the mitotic cell count per 10 high-power fields (HPFs), an area 0.183 mm2. Two to 6 replicate sets of 10 HPFs were counted from 328 invasive breast carcinomas. Standard errors and coefficients of variation for mean MI were compared with expected results predicted by the binomial distribution. Results.—The boundaries for MI that separated the data into equal thirds (tertials) were 1.14 and 5.33. Standard errors and coefficients of variation for MI followed distributions predicted by binomial probability. Mean coefficient of variation was 147% for the low tertial, 72% for the midtertial, and 34.6% for the upper tertial. Conclusions.—Standard errors for MI based on a single count of 10 HPFs are too broad and coefficients of variation too large to be acceptable for clinical use. This is explained as a binomial probability effect, possibly with a contribution from tumor heterogeneity. Errors can be reduced in proportion to the square root of the number of sets of 10 HPFs counted. Tertial cutoffs of MI of the Nottingham system currently used in breast carcinoma grading are too high to be applicable to the population we studied. We recommend validation of cutoffs before they are applied to a particular population of breast carcinomas. Counting 5 sets of 10 HPFs is necessary to accurately rank carcinomas with low MIs.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Krem, Maxwell M., et Marshall S. Horwitz. « Mitotic errors, aneuploidy and micronuclei in Hodgkin lymphoma pathogenesis ». Communicative & ; Integrative Biology 6, no 3 (13 mai 2013) : e23544. http://dx.doi.org/10.4161/cib.23544.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Mitotic errors"

1

Ivana, Barbaric, W. Andrews Peter, J. A. Halliwell, T. J. R. Frith, O. Laing, C. J. Price, O. J. Bower et al. « Nucleosides Rescue Replication-Mediated Genome Instability of Human Pluripotent Stem Cells ». 2020. http://hdl.handle.net/10454/18013.

Texte intégral
Résumé :
Yes
Human pluripotent stem cells (PSCs) are subject to the appearance of recurrent genetic variants on prolonged culture. We have now found that, compared with isogenic differentiated cells, PSCs exhibit evidence of considerably more DNA damage during the S phase of the cell cycle, apparently as a consequence of DNA replication stress marked by slower progression of DNA replication, activation of latent origins of replication, and collapse of replication forks. As in many cancers, which, like PSCs, exhibit a shortened G1 phase and DNA replication stress, the resulting DNA damage may underlie the higher incidence of abnormal and abortive mitoses in PSCs, resulting in chromosomal non-dysjunction or cell death. However, we have found that the extent of DNA replication stress, DNA damage, and consequent aberrant mitoses can be substantially reduced by culturing PSCs in the presence of exogenous nucleosides, resulting in improved survival, clonogenicity, and population growth.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Parcesepe, Pietro. « The link between centrosome defects and cancer unveiled by CROCC deficiency in rhabdoid colorectal cancer ». Doctoral thesis, 2017. http://hdl.handle.net/11562/961033.

Texte intégral
Résumé :
The century-old hypothesis on the role of centrosome in cancer remains unresolved. We show that reduced dosage of CROCC, a centrosomal-linker component required for centrosome cohesion and separation, due to mutation or allelic loss at 1p36.13 results in impaired centrosome phenotypes and monopolar mitotic forms characterizing a lethal subset of human colorectal cancers with rhabdoid phenotype. Interfering with CROCC in near-diploid colon cancer cells disrupts bipolar mitotic spindle architecture, and causes unequal DNA segregation errors to daughter cells resulting in a highly aggressive rhabdoid-like phenotype in vitro. Conversely, CROCC restoration in a metastatic cellular model harboring 1p36.13 deletion results in correction of centrosome segregation errors and cell death, revealing a mechanism of tolerance to gross mitotic errors and tetraploidization, two hallmarks of chromosomal instability. Together, our data shed light on a previously unknown link between centrosome cohesion apparatus and lethal cancer phenotypes providing new insight into pathways underlying genome instability.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Vázquez, de Castro Diez Cayetana. « Causes and consequences of chromosome segregation errors in the mouse preimplantation embryo ». Thesis, 2018. http://hdl.handle.net/1866/21198.

Texte intégral
Résumé :
La division cellulaire est un processus biologique universel nécessaire à la reproduction, au développement, à la survie cellulaire ainsi qu’à la réparation des tissus. Une ségrégation chromosomique exacte pendant la mitose est essentielle pour une répartition égale des chromosomes répliqués entre les cellules filles. Des erreurs dans la ségrégation des chromosomes mènent à une condition appelée aneuploïdie, définie par un nombre inadéquat de chromosomes dans une cellule. L’aneuploïdie est associée à une altération de la santé cellulaire, la tumorigénèse, des malformations congénitales et l'infertilité. Contre toute attente, les embryons préimplantatoires de mammifères, dont les humains, consistent souvent en un mélange de cellules euploïdes et de cellules aneuploïdes. Ce mosaïcisme est inexorablement causé par des erreurs dans la ségrégation des chromosomes au cours des divisions mitotiques suivant la fécondation et est associé à un potentiel de développement réduit lors des traitements de fertilité. Malgré sa découverte il y a 25 ans, les mécanismes qui sous-tendent l’apparition de l'aneuploïdie mosaïque dans les embryons préimplantatoires sont toujours méconnus. Pour explorer les causes et les conséquences des erreurs de ségrégation chromosomique, des approches d'imagerie de fine pointe ont été utilisées sur des embryons préimplantatoires murins. L'analyse de la dynamique de la ségrégation des chromosomes via l’imagerie de cellules vivantes a permis d’identifier les chromosomes retardataires, lors de l’anaphase, comme la forme la plus répandue des erreurs de ségrégation. Ces chromosomes retardataires entraînent fréquemment une encapsulation de chromosome unique dans une structure appelée micronoyau. D'autres expériences d'imagerie par immunofluorescence sur des cellules vivantes ou fixées ont révélé que les chromosomes des micronoyaux subissent des dommages importants à l'ADN et sont mal répartis de manière récurrente lors des divisions cellulaires subséquentes dans la phase préimplantatoire. D’autres approches ont aussi permis d’examiner l'efficacité du mécanisme de contrôle de l’assemblage du fuseau mitotique, (SAC pour Spindle Assembly Checkpoint). Les résultats obtenus attestent que le SAC fonctionne, cependant la signalisation liée au SAC n’est pas efficace et ne permet pas de différer l'anaphase, malgré la présence de chromosomes retardataires et ce indépendamment de la taille des cellules. Les résultats présentés révèlent aussi qu’une inhibition partielle d’une cible du SAC, le complexe de promotion de l'anaphase (APC/C), cause une mitose prolongée et une réduction des erreurs de ségrégation. En outre, les études présentées démontrent que la fonction déficiente du SAC pendant le développement préimplantatoire est la cause principale d’une forte incidence de chromosomes retardataires qui entraînent une mauvaise ségrégation chromosomique répétée et qui causent une aneuploïdie mosaïque dans l’embryon. De plus, ce travail fournit la preuve que la modulation pharmacologique de la signalisation SAC-APC/C permet d’éviter les erreurs de ségrégation des chromosomes dans les embryons précoces. En conclusion, ces résultats apportent de nouvelles perspectives sur les causes et la nature des erreurs de ségrégation chromosomique dans les embryons. De plus, ce travail apporte de nouvelles explications mécanistiques sur l'apparition du mosaïcisme dans les embryons ce qui aura des implications importantes dans la détection et la prévention thérapeutique potentielle de l'aneuploïdie mosaïque dans les embryons préimplantatoires.
Cell division is a universal biological process necessary for reproduction, development, cell survival and the maintenance and repair of tissues. Accurate chromosome segregation during mitosis is essential to ensure replicated chromosomes are partitioned equally into daughter cells. Errors in chromosome segregation often result in cells with abnormal numbers of chromosomes, a condition termed aneuploidy, which is associated with impaired cellular health, tumorigenesis, congenital defects and infertility. Counterintuitively, preimplantation embryos from many mammalian species, including humans, often consist of a mixture euploid and aneuploid cells. Such mosaic aneuploidy in embryos is inexorably caused by errors in chromosome segregation during mitotic divisions following fertilization and has been associated with reduced developmental potential in fertility treatments. However, ever since its discovery 25 years ago, how and why mosaic aneuploidy arises in the preimplantation embryo has remained elusive. To explore the causes and consequences of embryonic chromosome segregation errors, advanced imaging approaches were employed in the mouse preimplantation embryo. Live cell imaging analysis of chromosome segregation dynamics identified lagging anaphase chromosomes as the most prevalent form of chromosome mis-segregation in embryos. Lagging chromosomes frequently result in the encapsulation of single chromosomes into micronuclei, which occur in embryos in vitro and in vivo. Further live imaging and immunofluorescence experiments revealed chromosomes within micronuclei are subject to extensive DNA damage and centromeric identity loss, failing to assemble functional kinetochores and being recurrently mis-segregated during ensuing cell divisions in preimplantation development. To uncover the underlying causes for the increased propensity for chromosome mis-segregation in embryos, live imaging and loss-of-function approaches were used to examine the effectiveness of the mitotic safeguard mechanism, the Spindle Assembly Checkpoint (SAC). These studies demonstrated that the SAC normally functions to prevent segregation errors during preimplantation development but SAC signaling at misaligned chromosomes fails to delay anaphase. Moreover, SAC failure in embryos is most evident during mid-preimplantation development, independent of cell size. Partial inhibition of SAC target, the Anaphase Promoting Complex (APC/C), extended mitosis and reduced chromosome segregation errors in embryos. These studies have uncovered deficient SAC function during preimplantation development as a major cause for the high incidence of lagging chromosomes in embryos, which result in repeated mis-segregation of single chromosomes in a manner that necessarily causes mosaic aneuploidy. Additionally, this work provides proof-of-principle demonstration that pharmacological modulation of SAC-APC/C signalling can avert chromosome segregation errors in the early embryo. Altogether, these findings present new insights into the causes and nature of chromosome mis-segregation in embryos, providing novel mechanistic explanations for the occurrence of mosaicism that will have substantial implications for the detection and potential therapeutic prevention of aneuploidy in preimplantation embryos.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Mitotic errors"

1

Sarajevo, Institut za istoriju, dir. Historijski mitovi na Balkanu : Zbornik radova. Sarajevo : Institut za istoriju, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Mitotic errors"

1

Nicholson, Joshua M., et Daniela Cimini. « How Mitotic Errors Contribute to Karyotypic Diversity in Cancer ». Dans Advances in Cancer Research, 43–75. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-12-387688-1.00003-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Poornima, Subhadra, Saranya Vadrevu et Imran Ali Khan. « Background, Diagnosis, Types, Management/Prevention and Implications of Chromosomal Abnormalities ». Dans Down Syndrome and Other Chromosome Abnormalities. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.99812.

Texte intégral
Résumé :
Chromosomal abnormalities are caused by both meiotic and mitotic errors, and can be found in both reproductive and somatic cells. Meiotic and mitotic errors, on the other hand, may result in the development of abnormal copies of chromosomes. Somatic cell chromosomal abnormalities cause mosaicism, which implies that certain cells are normal while others express the abnormality. Fascinating genetic chromosomal discoveries have given answers to mysteries in children suffering from premature growth/retardation, ambiguous genitalia, metabolic disorders, dysmorphic syndromes, primary amenorrhea, infertility, recurrent pregnancy loss, and cancers. Many factors influence the risk of chromosomal abnormalities, including advanced maternal age, environmental factors such as smoking, alcohol intake, and exposure to chemicals/radiation, and family history. It is an inevitable fact that majority of chromosomal abnormalities arise spontaneously and are not treatable. Much attention has not been devoted to the study of chromosomal abnormalities in order to better understand the pathogenesis and rising prevalence of various clinical conditions. This chapter will address the relationship of chromosomal abnormalities in various conditions with the goal of increasing awareness of causes and furthering diagnosis, management/treatment, counseling, and prevention options. Furthermore, preimplantation and prenatal testing can be planned from the laboratory bench to the clinical bedside using sophisticated molecular techniques.
Styles APA, Harvard, Vancouver, ISO, etc.
3

« The Endogenous Manipulation of DNA Within the Cell ». Dans Animal Genetics for Chemists, 61–95. The Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/bk9781782627609-00061.

Texte intégral
Résumé :
This chapter covers what happens to the DNA and its function(s) during important processes within the cell. Topics covered include the following. Gene expression and the conversion of a gene into proteins. Transcription, splicing and alternative splicing. Translation. Proteins. Regulation of gene expression. RNAi. Mitochondrial DNA. Stages in the cell cycle by which a cell replicates itself. Cell division and death. Nuclear and mitochondrial DNA replication. Mitosis. Errors in DNA replication and mitosis, consequences and repair mechanisms. Mosaicism (mosaic Down syndrome).
Styles APA, Harvard, Vancouver, ISO, etc.
4

Carr, Simon M., et Nicholas B. La Thangue. « Cell cycle control ». Dans Oxford Textbook of Oncology, 31–41. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199656103.003.0004.

Texte intégral
Résumé :
All cells arise by the division of existing cells in a highly regulated series of events known as the cell cycle. Whilst duplication of other cellular contents occurs throughout all stages of the cycle, chromosomal DNA is replicated only once at a stage known as S phase. Once this is complete, distribution of chromosomes and other cellular components occurs during the final stage of the cell cycle, known as M phase, or mitosis. The cell cycle is therefore regulated in a temporal fashion, so that entry into subsequent cell cycle stages only occurs once the previous stage has been completed. A number of signalling mechanisms monitor the integrity of cell cycle progression, and later cell cycle stages can be delayed if any errors need correction. This chapter gives an overview of the major control mechanisms that regulate cell cycle progression, and how these are circumvented during the onset of cancer.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Mitotic errors"

1

El-Labban, A., C. Arteta, A. Zisserman, A. W. Bird et A. Hyman. « Mitotic phase based detection of chromosome segregation errors in embryonic stem cells ». Dans 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013). IEEE, 2013. http://dx.doi.org/10.1109/isbi.2013.6556619.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Harder, N., F. Mora-Bermudez, W. J. Godinez, J. Ellenberg, R. Eils et K. Rohr. « DETERMINATION OF MITOTIC DELAYS IN 3D FLUORESCENCE MICROSCOPY IMAGES OF HUMAN CELLS USING AN ERROR-CORRECTING FINITE STATE MACHINE ». Dans 2007 4th IEEE International Symposium on Biomedical Imaging : From Nano to Macro. IEEE, 2007. http://dx.doi.org/10.1109/isbi.2007.357034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie