Littérature scientifique sur le sujet « Mitochondria, rare diseases, gene therapy »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Mitochondria, rare diseases, gene therapy ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Mitochondria, rare diseases, gene therapy"
Ramón, Javier, Ferran Vila-Julià, David Molina-Granada, Miguel Molina-Berenguer, Maria Jesús Melià, Elena García-Arumí, Javier Torres-Torronteras, Yolanda Cámara et Ramon Martí. « Therapy Prospects for Mitochondrial DNA Maintenance Disorders ». International Journal of Molecular Sciences 22, no 12 (16 juin 2021) : 6447. http://dx.doi.org/10.3390/ijms22126447.
Texte intégralChojdak-Łukasiewicz, Justyna, Edyta Dziadkowiak et Sławomir Budrewicz. « Monogenic Causes of Strokes ». Genes 12, no 12 (23 novembre 2021) : 1855. http://dx.doi.org/10.3390/genes12121855.
Texte intégralMishra, Ratnakar, Benson S. Chen, Prachi Richa et Patrick Yu-Wai-Man. « Wolfram syndrome : new pathophysiological insights and therapeutic strategies ». Therapeutic Advances in Rare Disease 2 (janvier 2021) : 263300402110395. http://dx.doi.org/10.1177/26330040211039518.
Texte intégralAlbiges, Laurence, Ronan Flippot, Nathalie Rioux-Leclercq et Toni K. Choueiri. « Non–Clear Cell Renal Cell Carcinomas : From Shadow to Light ». Journal of Clinical Oncology 36, no 36 (20 décembre 2018) : 3624–31. http://dx.doi.org/10.1200/jco.2018.79.2531.
Texte intégralSAHEL, JA. « Gene therapy in rare diseases ». Acta Ophthalmologica 90 (6 août 2012) : 0. http://dx.doi.org/10.1111/j.1755-3768.2012.3222.x.
Texte intégralPhillips, M. Ian, et Andrew B. Burns. « The emergence of gene therapy for rare diseases ». Expert Opinion on Orphan Drugs 2, no 11 (28 octobre 2014) : 1197–209. http://dx.doi.org/10.1517/21678707.2014.978284.
Texte intégralWang, Wenqing, Avni Awani, Lauren Reich, Yusuke Nakauchi, Daniel Thomas, Daniel P. Dever, Matthew Porteus et Katja G. Weinacht. « An Engineered Cell-Traceable Model of Reticular Dysgenesis in Human Hematopoietic Stem Cells Linking Metabolism and Differentiation ». Blood 132, Supplement 1 (29 novembre 2018) : 2558. http://dx.doi.org/10.1182/blood-2018-99-117926.
Texte intégralGirach, Aniz. « The Future of Gene Therapy for Rare Eye Diseases ». Cell and Gene Therapy Insights 4, no 7 (15 octobre 2018) : 725–31. http://dx.doi.org/10.18609/cgti.2018.073.
Texte intégralFaria, Rúben, Prisca Boisguérin, Ângela Sousa et Diana Costa. « Delivery Systems for Mitochondrial Gene Therapy : A Review ». Pharmaceutics 15, no 2 (8 février 2023) : 572. http://dx.doi.org/10.3390/pharmaceutics15020572.
Texte intégralSeibel, Peter, Jörg Trappe, Gaetano Villani, Thomas Klopstock, Sergio Papa et Heinz Reichmann. « Transfection of mitochondria : strategy towards a gene therapy of mitochondrial DNA diseases ». Nucleic Acids Research 23, no 1 (1995) : 10–17. http://dx.doi.org/10.1093/nar/23.1.10.
Texte intégralThèses sur le sujet "Mitochondria, rare diseases, gene therapy"
BOTTANI, EMANUELA. « Mitochondrial diseases : from gene function to therapy ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/94380.
Texte intégralMitochondrial diseases are genetic disorders characterized by defects in oxidative phosphorylation caused by mutations in mitochondrial DNA, or in nuclear genes whose products are related to oxidative phosphorylation or mitochondrial biology. The first part of the project was focused on the generation and characterization of a mouse model of mitochondrial disease, Ttc19ko. Patients with mutations in TTC19 were characterized by neurological impairments and mitochondrial respiratory complex III deficiency. Ttc19 is a mitochondrial protein that seems to be associated to complex III assembly and/or stability. We showed that Ttc19ko mice have neurological symptoms, muscular weakness and reduction in spontaneous locomotors activity, clearly resembling the human disease. Brain also had neurological abnormalities with presence of ubiquitin and GFAP positive staining. Comprehensive lab animals monitoring system revealed a reduction in O2 consumption, CO2 production and energy expenditure in Ttc19ko mice, indicating an overall reduction of energy metabolism. Complex III activity was significantly reduced in tissues and this was linked to an increased ROS production. BNGE analysis of mitochondrial complex III showed a substantial reduction of the incorporation of the catalytic Rieske iron-sulfur protein into the fully assembled complex. A stable isotope labelling by amino acids in cell culture (SILAC) expressing TTC19-Flag followed by immunoprecipitation and mass spec analysis revealed a higher scored interaction between Ttc19 and the subunits of the pre-complexIII, and a lower scored interaction with Rieske protein and Uqcrh, both of them are late assembled subunits. We also demonstrated that Ttc19 is associated to the fully assembled complex III. Taken together, these results suggests that Ttc19 is an intrinsic assembly factor of complex III that interacts with the pre-complex III thus facilitating the incorporation of the late assembled Rieske protein. The second part of the project was focused on a gene therapy approach on a second mouse model of mitochondrial disease, MPv17ko. Mutations in hMPV17 cause a hepatocerebral form of mtDNA depletion syndrome hallmarked by early-onset liver failure, leading to premature death. Liver transplantation and frequent feeding using slow-release carbohydrates are the only available therapies, although surviving patients develop slowly progressive neuropathy. The physiological role of Mpv17 is still unclear. We showed that Mpv17 is part of a high molecular weight complex of unknown composition, which is essential for mtDNA maintenance in liver. On a standard diet, Mpv17ko mouse shows hardly any symptom of liver dysfunction, but a ketogenic diet leads these animals to liver cirrhosis and failure. However, when expression of human MPV17 is carried out by adeno-associated virus mediated gene replacement, the Mpv17ko mice are able to reconstitute the Mpv17-containing supramolecular complex, restore liver mtDNA copy number and oxidative phosphorylation proficiency and prevent liver failure induced by the KD. These results open new therapeutic perspectives for the treatment of MPV17-related liver-specific MDS.
Hidaka, Takuya. « Development of Sequence-Specific DNA Binders for the Therapy of Mitochondrial Diseases ». Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263495.
Texte intégralFoster, Robert Graham. « Development of a modular in vivo reporter system for CRISPR-mediated genome editing and its therapeutic applications for rare genetic respiratory diseases ». Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33040.
Texte intégralLu, Keyin. « Ischemic preconditioning and hydrodynamic delivery for the prevention of acute kidney injury ». Thesis, 2015. http://hdl.handle.net/1805/7966.
Texte intégralAcute Kidney Injury (AKI) is a prevalent and significant problem whose primary treatment is supportive care. Ischemic preconditioning is a strategy used to protect organs from ischemic injury via a prior injury. Ischemic preconditioning in the kidneys has been shown to confer protection onto kidneys from subsequent ischemic insults with attenuated serum creatinine values in treated rats. In the preconditioned kidneys, the enzyme IDH2 was discovered to be upregulated in the mitochondria. Hydrodynamic fluid delivery to the kidney was found to be a viable technique for delivering this gene to the kidney, resulting in artificially upregulated expression of IDH2. Via a two-pronged effort to discern the functional significance of ischemic preconditioning and hydrodynamic IDH2 fluid injections, we performed mitochondrial oxygen respiration assays on both preconditioned and injected kidneys. We found that renal ischemic preconditioning resulted in no significant difference between sham and preconditioned, subsequently injured kidneys, which is similar to the results from the serum creatinine studies. Hydrodynamically IDH2-injected, and subsequently injured kidneys respire significantly better than vehicle injected, and subsequently injured kidneys, which shows that hydrodynamic injections of IDH2 protects kidneys against injury, and partially mimics the effects of preconditioning.
Livres sur le sujet "Mitochondria, rare diseases, gene therapy"
G, Thoene Jess, dir. Small molecule therapy for genetic disease. Cambridge : Cambridge University Press, 2010.
Trouver le texte intégralThoene, Jess G. Small Molecule Therapy for Genetic Disease. Cambridge University Press, 2010.
Trouver le texte intégralThoene, Jess G. Small Molecule Therapy for Genetic Disease. Cambridge University Press, 2010.
Trouver le texte intégralThoene, Jess G. Small Molecule Therapy for Genetic Disease. Cambridge University Press, 2010.
Trouver le texte intégralThoene, Jess G. Small Molecule Therapy for Genetic Disease. Cambridge University Press, 2010.
Trouver le texte intégralSchwartz, Peter J., et Lia Crotti. Monogenic and oligogenic cardiovascular diseases : genetics of arrhythmias—catecholaminergic polymorphic ventricular tachycardia. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0152.
Texte intégralChapitres de livres sur le sujet "Mitochondria, rare diseases, gene therapy"
Chow, Shein-Chung. « Gene Therapy for Rare Diseases ». Dans Innovative Methods for Rare Disease Drug Development, 247–64. Boca Raton, FL : CRC Press, 2021. | : Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9781003049364-13.
Texte intégralRobinson, Peter. « Cell and Gene Therapy in Rare Diseases ». Dans Rare Disease Drug Development, 249–61. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78605-2_16.
Texte intégralGrosios, Konstantina, Harald Petry et Jacek Lubelski. « Adeno-Associated Virus Gene Therapy and Its Application to the Prevention and Personalised Treatment of Rare Diseases ». Dans Rare Diseases, 131–57. Dordrecht : Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9214-1_9.
Texte intégralLópez-Márquez, Arístides, Ainhoa Martínez-Pizarro, Belén Pérez, Eva Richard et Lourdes R. Desviat. « Modeling Splicing Variants Amenable to Antisense Therapy by Use of CRISPR-Cas9-Based Gene Editing in HepG2 Cells ». Dans Methods in Molecular Biology, 167–84. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_10.
Texte intégralPiñón Hofbauer, Josefina, Verena Wally, Christina Guttmann-Gruber, Iris Gratz et Ulrich Koller. « Therapy Development for Epidermolysis Bullosa ». Dans Rare Diseases [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97437.
Texte intégralNita, Magdalena, Jacek Pliszczyński, Andrzej Eljaszewicz, Marcin Moniuszko, Tomasz Ołdak, Katarzyna Woźniak, Sławomir Majewski et al. « Surgical Treatment of Wounds Using Stem Cells in Epidermolysis Bullosa (EB) ». Dans Rare Diseases [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97036.
Texte intégralGorodetskiy, Vadim. « Felty’s Syndrome ». Dans Rare Diseases [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97080.
Texte intégralTariq, Muhammad, Naveed Altaf Malik, Ilyas Ahmad, Syeda Seema Waseem et Shahid Mahmood Baig. « Genetic Testing for Rare Genetic Disorders ». Dans Omics Technologies for Clinical Diagnosis and Gene Therapy : Medical Applications in Human Genetics, 14–28. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815079517122010005.
Texte intégralKazmi, Hira, et Muhammad Ilyas. « Next-Generation Technologies for Rare Inherited Disorders ». Dans Omics Technologies for Clinical Diagnosis and Gene Therapy : Medical Applications in Human Genetics, 1–13. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815079517122010004.
Texte intégralHassan, Muhammad Jawad, Muhammad Faheem et Sabba Mehmood. « Emerging OMICS and Genetic Disease ». Dans Omics Technologies for Clinical Diagnosis and Gene Therapy : Medical Applications in Human Genetics, 93–113. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815079517122010010.
Texte intégral