Littérature scientifique sur le sujet « Microtubules »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Microtubules ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Microtubules"
Ray, S., E. Meyhöfer, R. A. Milligan et J. Howard. « Kinesin follows the microtubule's protofilament axis. » Journal of Cell Biology 121, no 5 (1 juin 1993) : 1083–93. http://dx.doi.org/10.1083/jcb.121.5.1083.
Texte intégralOokata, K., S. Hisanaga, E. Okumura et T. Kishimoto. « Association of p34cdc2/cyclin B complex with microtubules in starfish oocytes ». Journal of Cell Science 105, no 4 (1 août 1993) : 873–81. http://dx.doi.org/10.1242/jcs.105.4.873.
Texte intégralLloyd, C. W., et B. Wells. « Microtubules are at the tips of root hairs and form helical patterns corresponding to inner wall fibrils ». Journal of Cell Science 75, no 1 (1 avril 1985) : 225–38. http://dx.doi.org/10.1242/jcs.75.1.225.
Texte intégralLogan, Caitlin M., et A. Sue Menko. « Microtubules : Evolving roles and critical cellular interactions ». Experimental Biology and Medicine 244, no 15 (6 août 2019) : 1240–54. http://dx.doi.org/10.1177/1535370219867296.
Texte intégralGittes, F., B. Mickey, J. Nettleton et J. Howard. « Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. » Journal of Cell Biology 120, no 4 (15 février 1993) : 923–34. http://dx.doi.org/10.1083/jcb.120.4.923.
Texte intégralSider, J. R., C. A. Mandato, K. L. Weber, A. J. Zandy, D. Beach, R. J. Finst, J. Skoble et W. M. Bement. « Direct observation of microtubule-f-actin interaction in cell free lysates ». Journal of Cell Science 112, no 12 (15 juin 1999) : 1947–56. http://dx.doi.org/10.1242/jcs.112.12.1947.
Texte intégralCassimeris, L., C. L. Rieder, G. Rupp et E. D. Salmon. « Stability of microtubule attachment to metaphase kinetochores in PtK1 cells ». Journal of Cell Science 96, no 1 (1 mai 1990) : 9–15. http://dx.doi.org/10.1242/jcs.96.1.9.
Texte intégralXuHan, X., et A. A. M. Van Lammeren. « Microtubular configurations during endosperm development in Phaseolus vulgaris ». Canadian Journal of Botany 72, no 10 (1 octobre 1994) : 1489–95. http://dx.doi.org/10.1139/b94-183.
Texte intégralInfante, A. S., M. S. Stein, Y. Zhai, G. G. Borisy et G. G. Gundersen. « Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap ». Journal of Cell Science 113, no 22 (15 novembre 2000) : 3907–19. http://dx.doi.org/10.1242/jcs.113.22.3907.
Texte intégralUyeda, T. Q., et M. Furuya. « Evidence for active interactions between microfilaments and microtubules in myxomycete flagellates. » Journal of Cell Biology 108, no 5 (1 mai 1989) : 1727–35. http://dx.doi.org/10.1083/jcb.108.5.1727.
Texte intégralThèses sur le sujet "Microtubules"
Schaedel, Laura. « Les propriétés mécaniques des microtubules ». Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY010/document.
Texte intégralMicrotubules—which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport—can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules’ adaptation to mechanical stresses
Barlukova, Ayuna. « Dynamic instability of microtubules and effect of microtubule targeting agents ». Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0064.
Texte intégralThe aim of this thesis is to design new mathematical models that are able to appropriately describe dynamic instability of a population of microtubules (MTs) and effect of drugs on MT dynamics. MT dynamic instability play an important role in the processes of mitosis and cell migration and, thus, in cancer progression. Dynamic instability is a complex process that involves different states of tubulin (polymerized or non-polymerized, GTP-tubulin or GDPtubulin that correspond to two different energetic states of tubulin dimers) that resulted from chemical processes (polymerization, depolymerization, hydrolysis, recycling, nucleation) linking these different states of tubulin. Description of this complexity by mathematical models enables one to test biological hypotheses concerning the impact of each process and action of drugs on microtubule dynamics. Recent observations show that MT dynamics depends on aging of MT. One of the aims of the work is to test the hypothesis that MT aging results from the acceleration of the GTP hydrolysis. We construct for that new models that couple two multidimensional transport equations with two ordinary differential equations involving integral terms. We have calibrated our models on the basis of experimental data; tested biological hypothesis on mechanism of aging process; performed a sensitivity analysis of the model with respect to parameters describing chemical processes; and tested hypotheses concerning actions of drugs
Paez, Claudia. « Etude fonctionnelle de la protéine associée aux microtubules XMAP215/ch-TOG ». Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00597065.
Texte intégralRovini, Amandine. « De l'extrémité des microtubules aux mitochondries dans la neuroprotection mediee par l'olesoxime : vers une meilleure compréhension des mécanismes d'action des agents anti-microtubules ». Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM5512.
Texte intégralNowadays, the so-called Microtubule Targeting Agents (MTAs) remain benchmark clinical treatments displaying high efficiency and are still widely used against a broad spectrum of tumors and hemopathies. The new compounds in clinical development and the discovery of their anti-angiogenic properties make them a family booming. However, MTAs treatment is limited by the occurrence of neurological toxicities that greatly impair patients quality of life and which mechanisms of action are still poorly understood. The current absence of really efficient curative of preventive strategies underline the complexity of MTA mechanisms of action. In the framework of the “MitoTarget” project from the 7th PCRD,lead by the industrial partner Trophos, we aimed to precise MTA neurotoxic mechanisms and to evaluate neuroprotective potential of olesoxime, a compound that already showed to be efficient in various models of neurodegenerative diseases. Our data show that microtubular (microtubule dynamics parameters, EB1 protein localization) and mitochondria (mitochondria) networks, MTA targeted compartments in cancer cells, are damaged in neuronal-like cells. Interestingly, olesoxime neuroprotective activity implies preservation of both microtubule and mitochondria from MTA-induced damages. This work highlights the original mechanism of action of olesoxime as the first neuroprotective agent able to act on both microtubule and mitochondria and underlines the strengthened link existing between these compartments. It thus gave rise to two side projects with the aim to (i) decipher microtubule-mitochondria interconnections in response to MTA treatment; (ii) precise the importance and regulation of EB1 in the anti-migratory efficacy of MTA by looking at EB1 post-translational modifications. Altogether, the data obtained incite to keep on characterizing mechanisms involved in response to MTA in order to optimize the existing therapeutic strategies
Gaidar, Sergii, et Stefan Diez. « Dancing along microtubules ». Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-182537.
Texte intégralPeronne, Lauralie. « Caractérisation d'un nouveau composé pharmacologique qui potentialise la réponse des cellules au paclitaxel (Taxol®) ». Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAV003.
Texte intégralMicrotubules (MTs) targeting agents are a powerful weapon in the war against aggressive cancers. Paclitaxel (PTX) has been used successfully for the treatment of solid tumors for decades. Several features, including side-effects and resistance of some cancers make this drug not always effective. With the aim to identify new chemical compounds that sensitize cells to paclitaxel we screened a library of 8,000 compounds, to select those not toxic for cell cultures when applied alone, that become toxic when applied in combination with a non-toxic dose of paclitaxel. This lead to the selection of a carbazole derivative: carba1. In cells, the carba1/PTX combination has a greater cytotoxic effect than the addition of the effects of each drug assayed separately, indicating a synergistic effect. In addition, in-depth phenotypic analyzes indicate that the administration of carba1 amplify the effects of PTX.High doses of carba1 induce a cell blockade in prometaphase, but do not alter the MT network in interphase or mitosis. In contrast, in vitro, carba1 targets the tubulin colchicine binding site, causing a delay and a decrease in MT polymerization. Genetic studies conducted on yeast indicated other potential additional targets including CENP-E, an essential kinesin for chromosome alignment during mitosis.Studies conducted on a preclinical mouse model of aggressive breast cancer (orthotopic grafts) revealed that carba1 alone and carba1/PTX showed no toxicity. In addition, the anti-tumor and anti-metastatic effects of the carba1/PTX combination on these models have been encouraging, but an optimization of the posology is still needed. Carba1 is a new molecule, with previously unknown applications. This is why a declaration of invention, with a view to filing a patent, has been submitted to the CNRS
Le, Grand Marion. « La protéine Akt, lien entre mitochondries et microtubules dans le mécanisme d'action des agents anti-microtubules ou quand les MTA s'invitent dans de nouvelles stratégies thérapeutiques ». Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM5017/document.
Texte intégralMicrotubule-Targeting Agents (MTA) are a broad group of anticancer drugs that are currently administered in a lot of cancers. Nevertheless, they can cause undesired side effects and can lose their effectiveness as a result of resistance development. The main objective of my PhD work was to characterize the MTA’s mechanism of action in order to optimize their administration in the future. In the first part, we demonstrated the important role of the kinase Akt in MTA effects. In the second part, we evaluated the interest to combine MTA with anti-Akt drugs. We observed that MTA efficacy is highly important with Akt targeting drugs, particularly in lung adenocarcinoma. These promising results will need further explorations in order to develop more convenient cancer therapy strategies
Gallaud, Emmanuel. « Caractérisation du rôle d'Ensconsine / MAP7 dans la dynamique des microtubules et des centrosomes ». Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S004/document.
Texte intégralMitosis is a key step of the cell cycle that allows the mother cell to segregate its replicated genome equally into the two daughter cells. To do so, the cell assembles a highly dynamic structure composed of microtubules called the mitotic spindle. Additionally to its role in the faithful segregation of chromosomes, the mitotic spindle defines the axis of cell division. This phenomenon is particularly important for the asymmetric cell division in which cell fate determinants have to be unequally distributed between the two daughter cells. Spindle assembly and dynamics are subtly regulated by numerous microtubules-associated proteins. During my PhD, we identified using mass spectrometry, 855 proteins establishing the Drosophila embryo microtubule interactome. An RNAi screen was performed in the larval central nervous system for 96 poorly described genes, in order to identify new mitotic regulators. Based on microtubule interaction and mitotic phenotype, among 18 candidates we focused on Ensconsin/MAP7. We have shown that Ensconsin is associated with spindle microtubules and promotes their polymerization. Neuroblasts from mutant larvae display shorter spindles and a longer mitosis duration. This mitotic delay is a consequence of an extended activation of the spindle assembly checkpoint, which is essential for the proper chromosome segregation in the absence of Ensconsin. This study also showed that, in association with its interphase partner Kinesin-1, Ensconsin is involved in centrosome separation during interphase. As a result, mother and daughter centrosomes are randomly distributed between the daughter cells. In conclusion, we highlighted two news functions of Ensconsin : first, this protein promotes microtubule polymerization and is involved in spindle assembly ; second, Ensconsin and its partner Kinesin-1 regulate centrosome dynamics
A, S. Jijumon. « Systematic characterization of a large number of Microtubule-Associated Proteins using purification-free TIRF-reconstitution assays Purification of tubulin with controlled post-translational modifications by polymerization–depolymerization cycles Microtubule-Associated Proteins : Structuring the Cytoskeleton Purification of custom modified tubulin from cell lines and mouse brains by polymerization-depolymerization cycles ». Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASL007.
Texte intégralMicrotubules (MTs) are dynamic filaments involved in a plethora of functions such as cell division, cell shape, ciliary beating, neuronal differentiation. Strict regulation of MT functions is therefore of high importance for the cellular homeostasis, and any perturbations could potentially lead to diseases like cancer, ciliopathies and neurodegeneration. At the protein level, there are accumulating studies showing that MT properties can be controlled via interaction with a large variety of MT-associated proteins (MAPs). Our knowledge of MAPs has been enriched over time, but up to this date no systematic studies exist that aim to describe and categorize these proteins according to their binding mechanisms and structural effects on MTs. In my PhD project, I have developed an assay for rapid and systematic analysis of MAPs using cleared lysates of cultured human cells in which I overexpress a variety of different MAPs. The dynamic behaviour of growing MTs in the presence of those MAPs were imaged using TIRF microscopy. This allows me to study the behaviour of around 50 MAP candidates in a situation close to their natural environment, but eliminating complexity coming from different organelles and crammed cytoskeleton filaments inside the confined intracellular space. Indeed, most MAPs were nicely soluble in the extract approach, while purification attempts of several of them led to protein precipitation, thus making classical invitro reconstitution approaches impossible. This novel approach allowed me to compare many MAPs under similar experimental conditions, and helped to define several novel proteins as bona-fide MAPs. I demonstrate that previously uncharacterized MAPs have strikingly different effects on MT polymerization and MT structure, thus creating a variety of distinct MT arrays. I further extended this cell-free pipeline to study structures of MAPs bound to MTs by cryo-electron microscopy, or to study the MT interactions of MAPs carrying patient mutations. Finally, I demonstrated that my approach can be used to test the sensitivity of MAPs to tubulin PTMs, as well as to study the role of MAPs in actin-MT crosstalk. In the future, this novel approach will allow for a better mechanistic understanding of how MAPs and MTs together control cytoskeleton functions
Nouar, Roqiya. « Caractérisation de l'intéraction de la stathmine avec les microtubules : une analyse par imagerie FRET dans la cellule ». Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM5505.
Texte intégralLivres sur le sujet "Microtubules"
S, Hyams Jeremy, et Lloyd Clive W, dir. Microtubules. New York : Wiley-Liss, 1994.
Trouver le texte intégralInternational Symposium on Microtubules and Microtubule Inhibitors (3rd 1985 Beerse, Belgium). Microtubules and microtubule inhibitors, 1985 : Proceedings of the 3rd International Symposium on Microtubules and Microtubule Inhibitors, Beerse, Belgium, 3-6 September, 1985. Sous la direction de Brabander M. de, Mey J. de, Janssen Research Foundation et Belgian Society for Cell Biology. Amsterdam : Elsevier Science, 1985.
Trouver le texte intégralNick, Peter, dir. Plant Microtubules. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77178-4.
Texte intégralNick, Peter, dir. Plant Microtubules. Berlin, Heidelberg : Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-22300-0.
Texte intégralInternational Symposium on Microtubules and Microtubule Inhibitors (3rd 1985 Beerse). Microtubules and microtubule inhibitors, 1985 : Proceedings on the 3rd International Symposium on Microtubules and Microtubule Inhibitors. Beerse, Belgium, 3-6 September, 1985. Sous la direction de Brabander M. de, Mey J. de, Janssen Research Foundation et Belgian Society for Cell Biology. Oxford : Elsevier, 1985.
Trouver le texte intégralservice), ScienceDirect (Online, dir. Microtubules : In vivo. Amsterdam : Elsevier/Academic Press, 2010.
Trouver le texte intégralservice), ScienceDirect (Online, dir. Microtubules, in vitro. Amsterdam : Elsevier/Academic Press, 2010.
Trouver le texte intégralLutz, Regina Anna. Regulation of Polarity by Microtubules. [New York, N.Y.?] : [publisher not identified], 2015.
Trouver le texte intégralSutton, Michael Mark. The Influence of Microtubules and Microtubule-Based Structures on Osteoclast and CD4+ T Cell Function. [New York, N.Y.?] : [publisher not identified], 2022.
Trouver le texte intégralWróbel, Zygmunt. Automatyczne metody analizy orientacji mikrotubul. Katowice : Wydawn. Uniwersytetu Śląskiego, 2007.
Trouver le texte intégralChapitres de livres sur le sujet "Microtubules"
Wade, Richard H. « Microtubules ». Dans Methods in Molecular Medicine™, 1–16. Totowa, NJ : Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-442-1_1.
Texte intégralWasteneys, Geoffrey O., et Bettina Lechner. « Microtubules ». Dans Cellular Domains, 229–43. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118015759.ch14.
Texte intégralSabnis, D. D. « Microtubules ». Dans Cell Components, 375–94. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82587-3_18.
Texte intégralVisintin, Rosella. « Microtubules ». Dans Encyclopedia of Systems Biology, 1358. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1432.
Texte intégralSchliwa, Manfred. « Microtubules ». Dans The Cytoskeleton, 47–82. Vienna : Springer Vienna, 1986. http://dx.doi.org/10.1007/978-3-7091-7667-2_3.
Texte intégralGooch, Jan W. « Microtubules ». Dans Encyclopedic Dictionary of Polymers, 907. New York, NY : Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14230.
Texte intégralDráber, Pavel, et Eduarda Dráberová. « Microtubules ». Dans Cytoskeleton and Human Disease, 29–53. Totowa, NJ : Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-788-0_2.
Texte intégralGupta, G. S. « Microtubules ». Dans Proteomics of Spermatogenesis, 167–90. Boston, MA : Springer US, 2005. http://dx.doi.org/10.1007/0-387-27655-6_8.
Texte intégralIwanski, Malina K., Eugene A. Katrukha et Lukas C. Kapitein. « Lattice Light-Sheet Motor-PAINT : A Method to Map the Orientations of Microtubules in Complex Three-Dimensional Arrays ». Dans Single Molecule Analysis, 151–74. New York, NY : Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3377-9_8.
Texte intégralHeinlein, Manfred. « Microtubules and Viral Movement ». Dans Plant Microtubules, 141–73. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/7089_2007_147.
Texte intégralActes de conférences sur le sujet "Microtubules"
Sinha, S., et D. D. Wagner. « INTACT MICROTUBULES ARE NECESSARY FOR COMPLETE PROCESSING, STORAGE AND REGULATED SECRETION OF VON WILLEBRAND FACTOR BY ENDOTHELIAL CELLS ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642914.
Texte intégralGhavanoo, E., F. Daneshmand et M. Amabili. « Two-Dimensional Shell Vibration of Microtubule in Living Cell ». Dans ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30636.
Texte intégralAllen, Kathleen B., et Bradley E. Layton. « Mechanical Neural Growth Models ». Dans ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79445.
Texte intégralKuznetsov, A. V., A. A. Avramenko et D. G. Blinov. « Simulation of Traffic Jam Formation in Fast Axonal Transport ». Dans ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88345.
Texte intégralMehrbod, Mehrdad, et Mohammad R. K. Mofrad. « On the Mechanics of Microtubule Filaments ». Dans ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53896.
Texte intégralAprodu, Iuliana, Alfonso Gautieri, Franco M. Montevecchi, Alberto Redaelli et Monica Soncini. « What Molecular Dynamics Simulations Can Tell Us About Mechanical Properties of Kinesin and Its Interaction With Tubulin ». Dans ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176316.
Texte intégralTan, X. Gary, Andrzej J. Przekwas et Raj K. Gupta. « Macro-Micro Biomechanics Finite Element Modeling of Brain Injury Under Concussive Loadings ». Dans ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66218.
Texte intégralOswald, Elizabeth S., Pen-hsiu Grace Chao, J. Chloe Bulinski, Gerard A. Ateshian et Clark T. Hung. « The Role of Microtubule Organization in Chondrocyte Response to Osmotic Loading ». Dans ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176634.
Texte intégralXu, Gang, Kate S. Wilson, Ruth J. Okamoto, Jin-Yu Shao, Susan K. Dutcher et Philip V. Bayly. « The Apparent Flexural Rigidity of the Flagellar Axoneme Depends on Resistance to Inter-Doublet Sliding ». Dans ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80220.
Texte intégralHuang, Y., M. Uppalapati, W. Hancock et T. Jackson. « Movement Control of Confined Microtubules ». Dans 2006 64th Device Research Conference. IEEE, 2006. http://dx.doi.org/10.1109/drc.2006.305158.
Texte intégralRapports d'organisations sur le sujet "Microtubules"
Frisch, Steven M. Are Microtubules Involved in Anoikis. Fort Belvoir, VA : Defense Technical Information Center, août 2001. http://dx.doi.org/10.21236/ada397720.
Texte intégralBrumlik, Charles J., et Charles R. Martin. Template Synthesis of Metal Microtubules. Fort Belvoir, VA : Defense Technical Information Center, mars 1991. http://dx.doi.org/10.21236/ada232827.
Texte intégralMargerum, J. D. Applications Research Studies of Microtubules. Fort Belvoir, VA : Defense Technical Information Center, août 1990. http://dx.doi.org/10.21236/ada225694.
Texte intégralFisher, D. D., et R. J. Cyr. Calmodulin immunolocalization to cortical microtubules is calcium independent. Office of Scientific and Technical Information (OSTI), décembre 1992. http://dx.doi.org/10.2172/10156994.
Texte intégralFisher, D. D., et R. J. Cyr. Calmodulin immunolocalization to cortical microtubules is calcium independent. Office of Scientific and Technical Information (OSTI), janvier 1992. http://dx.doi.org/10.2172/6434308.
Texte intégralCyr, R. Role of Ca[sup ++]/calmodulin in the regulation of microtubules in higher plants. Office of Scientific and Technical Information (OSTI), janvier 1991. http://dx.doi.org/10.2172/7137008.
Texte intégralCyr, R. Role of Ca[sup ++]/calmodulin in the regulation of microtubules in higher plants. Office of Scientific and Technical Information (OSTI), janvier 1992. http://dx.doi.org/10.2172/6528240.
Texte intégralCyr, R. Role of Ca{sup ++}/calmodulin in the regulation of microtubules in higher plants. Progress report, FY91. Office of Scientific and Technical Information (OSTI), décembre 1991. http://dx.doi.org/10.2172/10109506.
Texte intégralCyr, R. Role of Ca{sup ++}/calmodulin in the regulation of microtubules in higher plants. Progress report, FY 1992. Office of Scientific and Technical Information (OSTI), décembre 1992. http://dx.doi.org/10.2172/10159592.
Texte intégralBulinski, Chloe J. Novel Microtubule-Stabilizing Reagents. Fort Belvoir, VA : Defense Technical Information Center, septembre 2005. http://dx.doi.org/10.21236/ada446411.
Texte intégral