Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Microstretch materials.

Articles de revues sur le sujet « Microstretch materials »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Microstretch materials ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Passarella, F., V. Tibullo et V. Zampoli. « On microstretch thermoviscoelastic composite materials ». European Journal of Mechanics - A/Solids 37 (janvier 2013) : 294–303. http://dx.doi.org/10.1016/j.euromechsol.2012.07.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kirchner, Nina, et E. Kirchner. « Modeling of Generalized Continua on Macroscopic Scales : Towards Computational Mechanics of Microstretch Continua ». Materials Science Forum 539-543 (mars 2007) : 2545–50. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.2545.

Texte intégral
Résumé :
First numerical results for microstretch continua, embedded in a hierarchy of generalized continuum models,will be presented. The governing equations are derived using a variational approach, providing an alternative to Eringens approach of modeling microstretch continua. A constitutive theory for linear elastic microstretch continua is formulated and used in the simulations. Simple examples will be investigated in order to demonstrate the compatibility of the model hierarchy. The results obtained so far are promising and suggest that a further in-depth analysis of (in)elastic microstretch continua based on the here proposed consistent and computationally simple approach to microstructured materials is worthwile.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Singh, Dilbag, Neela Rani et Sushil Kumar Tomar. « Dilatational waves at a microstretch solid/fluid interface ». Journal of Vibration and Control 23, no 20 (9 mars 2016) : 3448–67. http://dx.doi.org/10.1177/1077546316631158.

Texte intégral
Résumé :
The present work is concerned with the study of reflection and transmission phenomena of dilatational waves at a plane interface between a microstretch elastic solid half-space and a microstretch liquid half-space. Eringen's theory of micro-continuum materials has been employed for addressing the mathematical analysis. Reflection and transmission coefficients, corresponding to various reflected and transmitted waves, have been obtained when a plane dilatational wave strikes obliquely at the interface after propagating through the solid half-space. It is found that the reflection and transmission coefficients are functions of the angle of incidence, the frequency of the incident wave and the elastic properties of the half-spaces. Numerical calculations have been carried out for a specific model by taking an aluminum matrix with randomly distributed epoxy spheres as the microstretch solid medium, while the microstretch fluid is taken arbitrarily with suitably chosen elastic parameters. The computed results obtained have been depicted graphically. The results of earlier studies have been deduced from the present formulation as special cases.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Marin, Marin. « Lagrange identity method for microstretch thermoelastic materials ». Journal of Mathematical Analysis and Applications 363, no 1 (mars 2010) : 275–86. http://dx.doi.org/10.1016/j.jmaa.2009.08.045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

KUMAR, S., J. N. SHARMA et Y. D. SHARMA. « GENERALIZED THERMOELASTIC WAVES IN MICROSTRETCH PLATES LOADED WITH FLUID OF VARYING TEMPERATURE ». International Journal of Applied Mechanics 03, no 03 (septembre 2011) : 563–86. http://dx.doi.org/10.1142/s1758825111001135.

Texte intégral
Résumé :
In the present paper, the theory of generalized thermo-microstretch elasticity has been employed to study the propagation of straight and circular crested waves in microstretch thermoelastic plates bordered with inviscid liquid layers (or half-spaces), with varying temperature on both sides. The secular equations governing the wave motion in both rectangular and cylindrical plates have been investigated. The results in the case of thin (long wavelength) and thick (short wavelength) plates have also been obtained and discussed as special cases of this work. The secular equation in the case of microstretch coupled with thermoelastic, micropolar thermoelastic and thermoelastic plates can be obtained from the present analysis by an appropriate choice of relevant parameters. The results have been deduced and compared with the relevant publications available in the literature at the appropriate stages of this work. Finally, the analytical developments have been illustrated numerically for aluminum–epoxy-like material sandwiched in the inviscid liquid. The computer simulated results in respect of phase velocity, attenuation coefficient, specific loss factor of energy dissipation and relative frequency shift due to liquid layers on both sides of the plate are presented graphically.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Marin, Marin. « A domain of influence theorem for microstretch elastic materials ». Nonlinear Analysis : Real World Applications 11, no 5 (octobre 2010) : 3446–52. http://dx.doi.org/10.1016/j.nonrwa.2009.12.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ieşan, Dorin. « Deformation of heterogeneous microstretch elastic bars ». Journal of Mechanics of Materials and Structures 15, no 3 (12 juillet 2020) : 345–59. http://dx.doi.org/10.2140/jomms.2020.15.345.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Marin, M., I. Abbas et C. Carstea. « A Semi-Group of Contractions in Elasticity of Microstretch Materials ». Journal of Computational and Theoretical Nanoscience 14, no 3 (1 mars 2017) : 1634–39. http://dx.doi.org/10.1166/jctn.2017.6488.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kumar, Rajneesh, Sanjeev Ahuja et S. K. Garg. « Surface Wave Propagation in a Microstretch Thermoelastic Diffusion Material under an Inviscid Liquid Layer ». Advances in Acoustics and Vibration 2014 (4 août 2014) : 1–11. http://dx.doi.org/10.1155/2014/518384.

Texte intégral
Résumé :
The present investigation deals with the propagation of Rayleigh type surface waves in an isotropic microstretch thermoelastic diffusion solid half space under a layer of inviscid liquid. The secular equation for surface waves in compact form is derived after developing the mathematical model. The dispersion curves giving the phase velocity and attenuation coefficients with wave number are plotted graphically to depict the effect of an imperfect boundary alongwith the relaxation times in a microstretch thermoelastic diffusion solid half space under a homogeneous inviscid liquid layer for thermally insulated, impermeable boundaries and isothermal, isoconcentrated boundaries, respectively. In addition, normal velocity component is also plotted in the liquid layer. Several cases of interest under different conditions are also deduced and discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Nappa, Ludovico. « THERMAL STRESSES IN MICROSTRETCH ELASTIC CYLINDERS ». Journal of Thermal Stresses 18, no 5 (septembre 1995) : 537–50. http://dx.doi.org/10.1080/01495739508946319.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Kirchner, N., et P. Steinmann. « Mechanics of extended continua : modeling and simulation of elastic microstretch materials ». Computational Mechanics 40, no 4 (10 novembre 2006) : 651–66. http://dx.doi.org/10.1007/s00466-006-0131-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Chiriţă, Stan, et Cătălin Galeş. « A Mixture Theory for Microstretch Thermoviscoelastic Solids ». Journal of Thermal Stresses 31, no 11 (19 septembre 2008) : 1099–124. http://dx.doi.org/10.1080/01495730802250847.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Kumar, Arvind, et Praveen Ailawalia. « Dynamic problem in piezo-electric microstretch thermoelastic medium under laser heat source ». Multidiscipline Modeling in Materials and Structures 15, no 2 (21 février 2019) : 473–91. http://dx.doi.org/10.1108/mmms-04-2018-0077.

Texte intégral
Résumé :
Purpose The purpose of this paper is to study the thermal and mechanical disturbances in a piezo-electric microstretch thermoelastic medium due to the presence of ultra-short laser pulse as input heat source. Design/methodology/approach The medium is subjected to normal force, tangential force and thermal source. The solution of the problems is developed in terms of normal modes. Mathematical expressions have been obtained for normal stress, tangential stress, microstress, dielectric displacement vector and temperature change. Findings The numerically computed results are shown graphically. The effect of time and laser radius on temperature distribution is also shown graphically and comparison to theoretical results has been discussed. A mathematical model has been developed for the system of equations and various stress quantities have been analyzed. Some computer programs have also been written for this study. Two particular cases are also derived from the present investigation. Originality/value The effect of laser heat source is studied in piezo-electric microstretch thermoelastic medium. It is observed from the figures that the laser heat source has significant role on the values of coupled tangential stress.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Kumar,, Rajneesh, et Geeta Partap,. « Circular Crested Waves in a Microstretch Elastic Plate ». Science and Engineering of Composite Materials 14, no 4 (décembre 2007) : 251–70. http://dx.doi.org/10.1515/secm.2007.14.4.251.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Scalia, A. « Extension, Bending and Torsion of Anisotropic Microstretch Elastic Cylinders ». Mathematics and Mechanics of Solids 5, no 1 (mars 2000) : 31–40. http://dx.doi.org/10.1177/108128650000500103.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Yan, Zhen, et WenJie Feng. « Some Theorems in the Theory of Microstretch Thermomagnetoelectroelasticity ». Acta Mechanica Solida Sinica 29, no 2 (avril 2016) : 145–58. http://dx.doi.org/10.1016/s0894-9166(16)30103-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Partap, Geeta, et Nitika Chugh. « Thermoelastic damping in microstretch thermoelastic rectangular plate ». Microsystem Technologies 23, no 12 (14 mars 2017) : 5875–86. http://dx.doi.org/10.1007/s00542-017-3350-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Passarella, Francesca, et Vincenzo Tibullo. « Some Results in Linear Theory of Thermoelasticity Backward in Time for Microstretch Materials ». Journal of Thermal Stresses 33, no 6 (12 mai 2010) : 559–76. http://dx.doi.org/10.1080/01495731003772811.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Ieşan, D. « Deformation of microstretch elastic beams loaded on the lateral surface ». Mathematics and Mechanics of Solids 24, no 7 (28 janvier 2019) : 2274–94. http://dx.doi.org/10.1177/1081286518824141.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Galeş, C. « Spatial behavior in the electromagnetic theory of microstretch elasticity ». International Journal of Solids and Structures 48, no 19 (septembre 2011) : 2755–63. http://dx.doi.org/10.1016/j.ijsolstr.2011.05.025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Romeo, Maurizio. « A microstretch description of electroelastic solids with application to plane waves ». Mathematics and Mechanics of Solids 24, no 7 (7 décembre 2018) : 2181–96. http://dx.doi.org/10.1177/1081286518817810.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Aouadi, Moncef. « Thermomechanical Interactions in a Generalized Thermo-Microstretch Elastic Half Space ». Journal of Thermal Stresses 29, no 6 (juillet 2006) : 511–28. http://dx.doi.org/10.1080/01495730500373495.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Kharashvili, Maia, et Ketevan Skhvitaridze. « Problem of Statics of the Linear Thermoelasticity of the Microstretch Materials with Microtemperatures for a Half-space ». Works of Georgian Technical University, no 2(520) (25 juin 2021) : 202–19. http://dx.doi.org/10.36073/1512-0996-2021-2-202-219.

Texte intégral
Résumé :
We consider the statics case of the theory of linear thermoelasticity with microtemperatures and microstrech materials. The representation formula of differential equations obtained in the paper is expressed by the means of four harmonic and four metaharmonic functions. These formulas are very convenient and useful in many particular problems for domains with concrete geometry. Here we demonstrate an application of these formulas to the III type boundary value problem for a half-space. Uniqueness theorems are proved. Solutions are obtained in quadratures. 2010 Mathematics Subject Classification. 74A15, 74B10, 74F20.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Kiris, A., et E. Inan. « Eshelby tensors for a spherical inclusion in microstretch elastic fields ». International Journal of Solids and Structures 43, no 16 (août 2006) : 4720–38. http://dx.doi.org/10.1016/j.ijsolstr.2005.06.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Ma, Hansong, et Gengkai Hu. « Eshelby tensors for an ellipsoidal inclusion in a microstretch material ». International Journal of Solids and Structures 44, no 9 (mai 2007) : 3049–61. http://dx.doi.org/10.1016/j.ijsolstr.2006.09.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Kiris, A., et E. Inan. « On the identification of microstretch elastic moduli of materials by using vibration data of plates ». International Journal of Engineering Science 46, no 6 (juin 2008) : 585–97. http://dx.doi.org/10.1016/j.ijengsci.2008.01.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Kumar, Rajneesh, et Geeta Partap. « Wave Propagation in Microstretch Thermoelastic Plate Bordered with Layers of Inviscid Liquid ». Multidiscipline Modeling in Materials and Structures 5, no 2 (1 février 2009) : 171–84. http://dx.doi.org/10.1163/157361109787959912.

Texte intégral
Résumé :
The propagation of free vibrations in microstretch thermoelastic homogeneous isotropic, thermally conducting plate bordered with layers of inviscid liquid on both sides subjected to stress free thermally insulated and isothermal conditions is investigated in the context of Lord and Shulman (L‐S) and Green and Lindsay (G‐L) theories of thermoelasticity. The secular equations for symmetric and skewsymmetric wave mode propagation are derived. The regions of secular equations are obtained and short wavelength waves of the secular equations are also discussed. At short wavelength limits, the secular equations reduce to Rayleigh surface wave frequency equations. Finally, the numerical solution is carried out for magnesium crystal composite material plate bordered with water. The dispersion curves for symmetric and skew‐symmetric wave modes are computed numerically and presented graphically.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Kumar, R., et G. Partap. « Free vibration of microstretch thermoelastic plate with one relaxation time ». Theoretical and Applied Fracture Mechanics 48, no 3 (décembre 2007) : 238–57. http://dx.doi.org/10.1016/j.tafmec.2007.08.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Aouadi, Moncef. « Some Theorems in the Isotropic Theory of Microstretch Thermoelasticity with Microtemperatures ». Journal of Thermal Stresses 31, no 7 (19 mai 2008) : 649–62. http://dx.doi.org/10.1080/01495730801981772.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Bazarra, N., J. R. Fernández et S. Suárez. « Numerical analysis of a thermal problem arising in microstretch elastic plates ». Journal of Thermal Stresses 43, no 9 (7 mai 2020) : 1069–82. http://dx.doi.org/10.1080/01495739.2020.1758264.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Othman, Mohamed I. A., Sarhan Y. Atwa, A. Jahangir et A. Khan. « Generalized magneto‐thermo‐microstretch elastic solid under gravitational effect with energy dissipation ». Multidiscipline Modeling in Materials and Structures 9, no 2 (9 août 2013) : 145–76. http://dx.doi.org/10.1108/mmms-01-2013-0005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Singh, B. « Influence of magnetic field on wave propagation at liquid-microstretch solid interface ». Applied Mathematics and Mechanics 32, no 5 (mai 2011) : 595–602. http://dx.doi.org/10.1007/s10483-011-1441-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Tomar, S. K., et Dilbag Singh. « Propagation of Stoneley Waves at an Interface Between Two Microstretch Elastic Half-spaces ». Journal of Vibration and Control 12, no 9 (septembre 2006) : 995–1009. http://dx.doi.org/10.1177/1077546306068689.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Zhang, Peng, P. J. Wei et Yueqiu Li. « In-plane wave propagation through a microstretch slab sandwiched by two half-spaces ». European Journal of Mechanics - A/Solids 63 (mai 2017) : 136–48. http://dx.doi.org/10.1016/j.euromechsol.2017.01.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Sharma, J. N., Satish Kumar et Y. D. Sharma. « Propagation of Rayleigh Surface Waves in Microstretch Thermoelastic Continua Under Inviscid Fluid Loadings ». Journal of Thermal Stresses 31, no 1 (31 décembre 2007) : 18–39. http://dx.doi.org/10.1080/01495730701737845.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Svanadze, Merab, et Rita Tracinà. « Representations of Solutions in the Theory of Thermoelasticity with Microtemperatures for Microstretch Solids ». Journal of Thermal Stresses 34, no 2 (13 janvier 2011) : 161–78. http://dx.doi.org/10.1080/01495739.2010.511946.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Singh, Dilbag, et S. K. Tomar. « Rayleigh–Lamb waves in a microstretch elastic plate cladded with liquid layers ». Journal of Sound and Vibration 302, no 1-2 (avril 2007) : 313–31. http://dx.doi.org/10.1016/j.jsv.2006.12.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Chen, Kuo-Ching, Jeng-Yin Lan et Yih-Chin Tai. « Description of local dilatancy and local rotation of granular assemblies by microstretch modeling ». International Journal of Solids and Structures 46, no 21 (octobre 2009) : 3882–93. http://dx.doi.org/10.1016/j.ijsolstr.2009.07.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Kaur, Tanupreet, Satish Kumar Sharma, Abhishek Kumar Singh et Mriganka Shekhar Chaki. « Moving load response on the stresses produced in an irregular microstretch substrate ». Structural Engineering and Mechanics 60, no 2 (25 octobre 2016) : 175–91. http://dx.doi.org/10.12989/sem.2016.60.2.175.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Sherief, H. H., M. S. Faltas et Shreen El-Sapa. « Slow motion of a slightly deformed spherical droplet in a microstretch fluid ». Microsystem Technologies 24, no 8 (20 mars 2018) : 3245–59. http://dx.doi.org/10.1007/s00542-018-3854-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Qin Song, Ya, Mohamed I.A. Othman et Zheng Zhao. « Reflection of plane waves from a thermo-microstretch elastic solid with temperature dependent elastic properties ». Multidiscipline Modeling in Materials and Structures 10, no 2 (5 août 2014) : 228–49. http://dx.doi.org/10.1108/mmms-07-2013-0052.

Texte intégral
Résumé :
Purpose – The purpose of this paper is to study the reflection of a plane harmonic wave at the interface of thermo-microstretch elastic half space. The modulus of elasticity is taken as a linear function of reference temperature. The formulation is applied to generalized thermoelasticity theories, the Lord-Shulman and Green-Lindsay theories, as well as the classical dynamical coupled theory. Using potential function, the governing equations reduce to ten-order differential equation. Design/methodology/approach – Coefficient ratios of reflection of different waves with the angle of incidence are obtained using continuous boundary conditions. By numerical calculations, the variation of coefficient ratios of reflection with the angle of incidence is illustrated graphically for magnesium crystal micropolar material under three theories. Findings – The effect of different temperature-dependent constants and frequency on the coefficient ratios of reflection is illustrated graphically in context of Lord-Shulman theory. Originality/value – The reflection coefficient ratios are given analytically and illustrated graphically. The effects of thermal relaxation times are very small on reflection coefficient ratio. The temperature-dependent constant and wave frequency have a strong effect on the reflection coefficient ratios.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Kumar, Rajneesh, Sanjeev Ahuja et S. K. Garg. « A study of plane wave and fundamental solution in the theory of microstretch thermoelastic diffusion solid with phase-lag models ». Multidiscipline Modeling in Materials and Structures 11, no 2 (10 août 2015) : 160–85. http://dx.doi.org/10.1108/mmms-05-2014-0032.

Texte intégral
Résumé :
Purpose – The purpose of this paper is to study of propagation of plane wave and the fundamental solution of the system of differential equations in the theory of a microstretch thermoelastic diffusion medium in phase-lag models for the case of steady oscillations in terms of elementary functions. Design/methodology/approach – Wave propagation technique along with the numerical methods for computation using MATLAB software has been applied to investigate the problem. Findings – Characteristics of waves like phase velocity and attenuation coefficient are computed numerically and depicted graphically. It is found that due to the presence of diffusion effect, these characteristics get influenced significantly. However, due to decoupling of CD-I and CD-II waves from rest of other, no effect on these characteristics can be perceived. Originality/value – Basic properties of the fundamental solution are established by introducing the dual-phase-lag diffusion (DPLD) and dual-phase-lag heat transfer (DPLT) models.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Vilchevskaya, Elena N., Wolfgang H. Müller et Victor A. Eremeyev. « Extended micropolar approach within the framework of 3M theories and variations thereof ». Continuum Mechanics and Thermodynamics 34, no 2 (29 janvier 2022) : 533–54. http://dx.doi.org/10.1007/s00161-021-01072-6.

Texte intégral
Résumé :
AbstractAs part of his groundbreaking work on generalized continuum mechanics, Eringen proposed what he called 3M theories, namely the concept of micromorphic, microstretch, and micropolar materials modeling. The micromorphic approach provides the most general framework for a continuum with translational and (internal) rotational degrees of freedom (DOF), whilst the rotational DOFs of micromorphic and micropolar continua are subjected to more and more constraints. More recently, an “extended” micropolar theory has been presented by one of the authors: Eringen’s 3M theories were children of solid mechanics based on the concept of the indestructible material particle. Extended micropolar theory was formulated both ways for material systems as well as in spatial description, which is useful when describing fluid matter. The latter opens the possibility to model situations and materials with a continuum point that on the microscale consists no longer of the same elementary units during a physical process. The difference culminates in an equation for the microinertia tensor, which is no longer a kinematic identity. Rather it contains a new continuum field, namely an independent production term and, consequently, establishes a new constitutive quantity. This makes it possible to describe processes of structural change, which are difficult if not impossible to be captured within the material particle model. This paper compares the various theories and points out their communalities as well as their differences.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Kumar, Rajneesh, et Rupender. « Propagation of plane waves at the imperfect boundary of elastic and electro-microstretch generalized thermoelastic solids ». Applied Mathematics and Mechanics 30, no 11 (novembre 2009) : 1445–54. http://dx.doi.org/10.1007/s10483-009-1110-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Kumar, Rajneesh, Arvind Kumar et Devinder Singh. « Elastodynamic interactions of laser pulse in microstretch thermoelastic mass diffusion medium with dual phase lag ». Microsystem Technologies 24, no 4 (9 octobre 2017) : 1875–84. http://dx.doi.org/10.1007/s00542-017-3568-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Sherief, H. H., M. S. Faltas et Shreen El-Sapa. « A general formula for the drag on a solid of revolution body at low Reynolds numbers in a microstretch fluid ». Meccanica 52, no 11-12 (27 janvier 2017) : 2655–64. http://dx.doi.org/10.1007/s11012-017-0617-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Kumar, Rajneesh, S. K. Garg et Sanjeev Ahuja. « Propagation of plane waves at the interface of an elastic solid half-space and a microstretch thermoelastic diffusion solid half-space ». Latin American Journal of Solids and Structures 10, no 6 (novembre 2013) : 1081–108. http://dx.doi.org/10.1590/s1679-78252013000600002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Othman, I. A. Mohamed, Y. Sarhan Atwa, A. Jahangir et A. Khan. « The Effect of Rotation on Plane Waves in Generalized Thermo-Microstretch Elastic Solid for a Mode-I Crack Under Green Naghdi Theory ». Journal of Computational and Theoretical Nanoscience 12, no 11 (1 novembre 2015) : 4987–97. http://dx.doi.org/10.1166/jctn.2015.4022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Abo-Dahab, S. M., A. M. Abd-Alla, A. A. Kilany et M. Elsagheer. « Effect of rotation and gravity on the reflection of P-waves from thermo-magneto-microstretch medium in the context of three phase lag model with initial stress ». Microsystem Technologies 24, no 8 (25 janvier 2018) : 3357–69. http://dx.doi.org/10.1007/s00542-017-3697-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Marin, Marin. « Harmonic Vibrations in Thermoelasticity of Microstretch Materials ». Journal of Vibration and Acoustics 132, no 4 (25 mai 2010). http://dx.doi.org/10.1115/1.4000971.

Texte intégral
Résumé :
Consider a cylinder made of a microstretch thermoelastic material for which one plane end is subjected to plane boundary data varying harmonically in time. On the lateral surface and other base, we have zero body force and heat supply. By using a Toupin type measure associated with the corresponding steady-state vibration, and by assuming that the angular frequency of oscillations is lower than a certain critical frequency, we show that the amplitude of the vibrations decays exponentially with the distance to the base. This decay estimate is similar to that of the Saint-Venant type.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie