Articles de revues sur le sujet « Microfluidic fuell cell »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Microfluidic fuell cell.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Microfluidic fuell cell ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Wang, Lingtian, Dajun Jiang, Qiyang Wang, Qing Wang, Haoran Hu et Weitao Jia. « The Application of Microfluidic Techniques on Tissue Engineering in Orthopaedics ». Current Pharmaceutical Design 24, no 45 (16 avril 2019) : 5397–406. http://dx.doi.org/10.2174/1381612825666190301142833.

Texte intégral
Résumé :
Background: Tissue engineering (TE) is a promising solution for orthopaedic diseases such as bone or cartilage defects and bone metastasis. Cell culture in vitro and scaffold fabrication are two main parts of TE, but these two methods both have their own limitations. The static cell culture medium is unable to achieve multiple cell incubation or offer an optimal microenvironment for cells, while regularly arranged structures are unavailable in traditional cell-laden scaffolds, which results in low biocompatibility. To solve these problems, microfluidic techniques are combined with TE. By providing 3-D networks and interstitial fluid flows, microfluidic platforms manage to maintain phenotype and viability of osteocytic or chondrocytic cells, and the precise manipulation of liquid, gel and air flows in microfluidic devices leads to the highly organized construction of scaffolds. Methods: In this review, we focus on the recent advances of microfluidic techniques applied in the field of tissue engineering, especially in orthropaedics. An extensive literature search was done using PubMed. The introduction describes the properties of microfluidics and how it exploits the advantages to the full in the aspects of TE. Then we discuss the application of microfluidics on the cultivation of osteocytic cells and chondrocytes, and other extended researches carried out on this platform. The following section focuses on the fabrication of highly organized scaffolds and other biomaterials produced by microfluidic devices. Finally, the incubation and studying of bone metastasis models in microfluidic platforms are discussed. Conclusion: The combination of microfluidics and tissue engineering shows great potentials in the osteocytic cell culture and scaffold fabrication. Though there are several problems that still require further exploration, the future of microfluidics in TE is promising.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Naher, Sumsun, Dylan Orpen, Dermot Brabazon et Muhammad M. Morshed. « An Overview of Microfluidic Mixing Application ». Advanced Materials Research 83-86 (décembre 2009) : 931–39. http://dx.doi.org/10.4028/www.scientific.net/amr.83-86.931.

Texte intégral
Résumé :
Microfluidics is a technology where application span the biomedical field and beyond. Single cell analysis, tissue engineering, capillary electrophoresis, cancer detection, and immunoassays are just some of the applications within the medical field where microfluidics have excelled. The development of microfluidic technology has lead to novel research into fuel cells, ink jet printing, microreactors and electronic component cooling areas as diverse as food, pharmaceutics, cosmetics, medicine and biotechnology have benefited from these developments. Since laminar flow is prevailing at most flow regimes in the micro-scale, thorough mixing is a challenge within microfluidics. Therefore, understanding the flow fields on the micro-scale is key to the development of methods for successfully microfluidic mixing applications.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Goel, Sanket, Lanka Tata Rao, Prakash Rewatkar, Haroon Khan, Satish Kumar Dubey, Arshad Javed, Gyu Man Kim et Sanket Goel. « Single microfluidic fuel cell with three fuels – formic acid, glucose and microbes : A comparative performance investigation ». Journal of Electrochemical Science and Engineering 11, no 4 (5 octobre 2021) : 306–16. http://dx.doi.org/10.5599/jese.1092.

Texte intégral
Résumé :
The development of microfluidic and nanofluidic devices is gaining remarkable attention due to the emphasis put on miniaturization of conventional energy conversion and storage processes. A microfluidic fuel cell can integrate flow of electrolytes, electrode-electrolyte interactions, and power generation in a microfluidic channel. Such microfluidic fuel cells can be categorized on the basis of electrolytes and catalysts used for power generation. In this work, for the first time, a single microfluidic fuel cell was harnessed by using different fuels like glucose, microbes and formic acid. Herein, multi-walled carbon nanotubes (MWCNT) acted as electrode material, and performance investigations were carried out separately on the same microfluidic device for three different types of fuel cells (formic acid, microbial and enzymatic). The fabricated miniaturized microfluidic device was successfully used to harvest energy in microwatts from formic acid, microbes and glucose, without any metallic catalyst. The developed microfluidic fuel cells can maintain stable open-circuit voltage, which can be used for energizing various low-power portable devices or applications.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Goel, Sanket, Lanka Tata Rao, Prakash Rewatkar, Haroon Khan, Satish Kumar Dubey, Arshad Javed, Gyu Man Kim et Sanket Goel. « Single microfluidic fuel cell with three fuels – formic acid, glucose and microbes : A comparative performance investigation ». Journal of Electrochemical Science and Engineering 11, no 4 (5 octobre 2021) : 306–16. http://dx.doi.org/10.5599/jese.1092.

Texte intégral
Résumé :
The development of microfluidic and nanofluidic devices is gaining remarkable attention due to the emphasis put on miniaturization of conventional energy conversion and storage processes. A microfluidic fuel cell can integrate flow of electrolytes, electrode-electrolyte interactions, and power generation in a microfluidic channel. Such microfluidic fuel cells can be categorized on the basis of electrolytes and catalysts used for power generation. In this work, for the first time, a single microfluidic fuel cell was harnessed by using different fuels like glucose, microbes and formic acid. Herein, multi-walled carbon nanotubes (MWCNT) acted as electrode material, and performance investigations were carried out separately on the same microfluidic device for three different types of fuel cells (formic acid, microbial and enzymatic). The fabricated miniaturized microfluidic device was successfully used to harvest energy in microwatts from formic acid, microbes and glucose, without any metallic catalyst. The developed microfluidic fuel cells can maintain stable open-circuit voltage, which can be used for energizing various low-power portable devices or applications.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Guima, Katia-Emiko, Pedro-Henrique L. Coelho, Magno A. G. Trindade et Cauê Alves Martins. « 3D-Printed glycerol microfluidic fuel cell ». Lab on a Chip 20, no 12 (2020) : 2057–61. http://dx.doi.org/10.1039/d0lc00351d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kamitani, Ai, Satoshi Morishita, Hiroshi Kotaki et Steve Arscott. « Microfabricated microfluidic fuel cells ». Sensors and Actuators B : Chemical 154, no 2 (juin 2011) : 174–80. http://dx.doi.org/10.1016/j.snb.2009.11.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wang, Yifei, Shijing Luo, Holly Y. H. Kwok, Wending Pan, Yingguang Zhang, Xiaolong Zhao et Dennis Y. C. Leung. « Microfluidic fuel cells with different types of fuels : A prospective review ». Renewable and Sustainable Energy Reviews 141 (mai 2021) : 110806. http://dx.doi.org/10.1016/j.rser.2021.110806.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mousavi Shaegh, Seyed Ali, Nam-Trung Nguyen et Siew Hwa Chan. « Air-breathing microfluidic fuel cell with fuel reservoir ». Journal of Power Sources 209 (juillet 2012) : 312–17. http://dx.doi.org/10.1016/j.jpowsour.2012.02.115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Phirani, J., et S. Basu. « Analyses of fuel utilization in microfluidic fuel cell ». Journal of Power Sources 175, no 1 (janvier 2008) : 261–65. http://dx.doi.org/10.1016/j.jpowsour.2007.08.099.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Feali, M. S. « Transient Response of Microfluidic Fuel Cell ». Russian Journal of Electrochemistry 56, no 5 (mai 2020) : 437–46. http://dx.doi.org/10.1134/s1023193520030040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Salloum, Kamil S., et Jonathan D. Posner. « Counter flow membraneless microfluidic fuel cell ». Journal of Power Sources 195, no 19 (octobre 2010) : 6941–44. http://dx.doi.org/10.1016/j.jpowsour.2010.03.096.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Salloum, Kamil S., et Jonathan D. Posner. « A membraneless microfluidic fuel cell stack ». Journal of Power Sources 196, no 3 (février 2011) : 1229–34. http://dx.doi.org/10.1016/j.jpowsour.2010.08.069.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Herlambang, Yusuf Dewantoro, Kurnianingsih, Anis Roihatin, Totok Prasetyo, Marliyati, Taufik et Jin-Cherng Shyu. « A Numerical Study of Bubble Blockage in Microfluidic Fuel Cells ». Processes 10, no 5 (6 mai 2022) : 922. http://dx.doi.org/10.3390/pr10050922.

Texte intégral
Résumé :
Based on fuel crossover behavior and bubble nucleation in the microfluidic fuel cell’s channel, this research numerically presents the performance of air-breathing direct formic acid microfluidic fuel cells. In the simulation, a three-dimensional microfluidic fuel cell model was used. The continuity, momentum, species transport, and charge equations were used to develop the model transport behavior, whereas the Brinkman equation represented the porous medium flow in the gas diffusion layer. The I–V and power density curves are generated using the Butler–Volmer equation. The simulation and current experimental data were compared under identical operating conditions to validate the I–V curve of the microfluidic fuel cell model. The model was used to investigate the current density distribution in the microchannel due to bubble obstruction and the reactant concentration on both electrodes. Fuel crossover resulted in a large decrease in open-circuit voltage and a reduction in fuel concentration above the anode electrode. The findings also showed that a low-flow rate air-breathing direct formic acid microfluidic fuel cell is more prone to CO2 bubble formation.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Kjeang, Erik, Ned Djilali et David Sinton. « Microfluidic fuel cells : A review ». Journal of Power Sources 186, no 2 (janvier 2009) : 353–69. http://dx.doi.org/10.1016/j.jpowsour.2008.10.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Feali, Mohammad Saeed, et Morteza Fathipour. « Multi-objective optimization of microfluidic fuel cell ». Russian Journal of Electrochemistry 50, no 6 (juin 2014) : 561–68. http://dx.doi.org/10.1134/s1023193514060044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Choban, E. « Microfluidic fuel cell based on laminar flow ». Journal of Power Sources 128, no 1 (29 mars 2004) : 54–60. http://dx.doi.org/10.1016/j.jpowsour.2003.11.052.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Kjeang, Erik, Brenton T. Proctor, Alexandre G. Brolo, David A. Harrington, Ned Djilali et David Sinton. « High-performance microfluidic vanadium redox fuel cell ». Electrochimica Acta 52, no 15 (avril 2007) : 4942–46. http://dx.doi.org/10.1016/j.electacta.2007.01.062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Safdar, M., J. Jänis et S. Sánchez. « Microfluidic fuel cells for energy generation ». Lab on a Chip 16, no 15 (2016) : 2754–58. http://dx.doi.org/10.1039/c6lc90070d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Priya, M., A. Arun, M. Elumalai, S. Kiruthika et B. Muthukumaran. « A Development of Ethanol/Percarbonate Membraneless Fuel Cell ». Advances in Physical Chemistry 2014 (29 mai 2014) : 1–8. http://dx.doi.org/10.1155/2014/862691.

Texte intégral
Résumé :
The electrocatalytic oxidation of ethanol on membraneless sodium percarbonate fuel cell using platinum electrodes in alkaline-acidic media is investigated. In this cell, ethanol is used as the fuel and sodium percarbonate is used as an oxidant for the first time in an alkaline-acidic media. Sodium percarbonate generates hydrogen peroxide in aqueous medium. At room temperature, the laminar-flow-based microfluidic membraneless fuel cell can reach a maximum power density of 18.96 mW cm−2 with a fuel mixture flow rate of 0.3 mL min−2. The developed fuel cell features no proton exchange membrane. The simple planar structured membraneless ethanol fuel cell presents with high design flexibility and enables easy integration of the microscale fuel cell into actual microfluidic systems and portable power applications.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Elumalai, M., M. Raja, A. Rajasekaran et B. Chinnaraja. « Analysis of Membranless Formic Acid Fuel Cell using E-Shaped Microfluidic Channel ». Asian Journal of Chemistry 31, no 11 (28 septembre 2019) : 2497–502. http://dx.doi.org/10.14233/ajchem.2019.22175.

Texte intégral
Résumé :
A microfluidic fuel cell has been fabricated using formic acid in an alkaline media as the fuel and sodium percarbonate in acidic media as the oxidant. Various operating conditions and different cell dimensions were applied to evaluate the fuel cell performance. The laminar flow-based membraneless fuel cell was found to reach a maximum power density of 23.60 mW cm-2 using 1.50 M HCOOH in 3 M NaOH solution as the fuel and 0.15 M percarbonate in 1.50 M H2SO4 solution as the oxidant at room temperature. The fuel cell system has no proton exchange membrane. This simple membraneless fuel cell with a planar structure has a high design flexibility, which enables its easy integration into actual microfluidic systems and miniature power applications.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Zhang, Hao, Hong Xu, Li Zhang, Dennis Y. C. Leung, Huizhi Wang et Jin Xuan. « A Counter-flow Microfluidic Fuel Cell Achieving Concentrated Fuel Operation ». Energy Procedia 75 (août 2015) : 1990–95. http://dx.doi.org/10.1016/j.egypro.2015.07.251.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Smith, Suzanne, Phophi Madzivhandila, René Sewart, Ureshnie Govender, Holger Becker, Pieter Roux et Kevin Land. « Microfluidic Cartridges for Automated, Point-of-Care Blood Cell Counting ». SLAS TECHNOLOGY : Translating Life Sciences Innovation 22, no 2 (19 novembre 2016) : 176–85. http://dx.doi.org/10.1177/2211068216677820.

Texte intégral
Résumé :
Disposable, low-cost microfluidic cartridges for automated blood cell counting applications are presented in this article. The need for point-of-care medical diagnostic tools is evident, particularly in low-resource and rural settings, and a full blood count is often the first step in patient diagnosis. Total white and red blood cell counts have been implemented toward a full blood count, using microfluidic cartridges with automated sample introduction and processing steps for visual microscopy cell counting to be performed. The functional steps within the microfluidic cartridge as well as the surrounding instrumentation required to control and test the cartridges in an automated fashion are described. The results recorded from 10 white blood cell and 10 red blood cell counting cartridges are presented and compare well with the results obtained from the accepted gold-standard flow cytometry method performed at pathology laboratories. Comparisons were also made using manual methods of blood cell counting using a hemocytometer, as well as a commercially available point-of-care white blood cell counting system. The functionality of the blood cell counting microfluidic cartridges can be extended to platelet counting and potential hemoglobin analysis, toward the implementation of an automated, point-of-care full blood count.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Jayashree, Ranga S., Lajos Gancs, Eric R. Choban, Alex Primak, Dilip Natarajan, Larry J. Markoski et Paul J. A. Kenis. « Air-Breathing Laminar Flow-Based Microfluidic Fuel Cell ». Journal of the American Chemical Society 127, no 48 (décembre 2005) : 16758–59. http://dx.doi.org/10.1021/ja054599k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Jayashree, Ranga S., Michael Mitchell, Dilip Natarajan, Larry J. Markoski et Paul J. A. Kenis. « Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte ». Langmuir 23, no 13 (juin 2007) : 6871–74. http://dx.doi.org/10.1021/la063673p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Lee, D. W., I. Doh, Y. Kim et Y. H. Cho. « Advanced combinational microfluidic multiplexer for fuel cell reactors ». Journal of Physics : Conference Series 476 (4 décembre 2013) : 012045. http://dx.doi.org/10.1088/1742-6596/476/1/012045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Chino, Isabel, Omar Muneeb, Emily Do, Vy Ho et John L. Haan. « A paper microfluidic fuel cell powered by urea ». Journal of Power Sources 396 (août 2018) : 710–14. http://dx.doi.org/10.1016/j.jpowsour.2018.06.082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Zhang, Hao, Michael K. H. Leung, Jin Xuan, Hong Xu, Li Zhang, Dennis Y. C. Leung et Huizhi Wang. « Energy and exergy analysis of microfluidic fuel cell ». International Journal of Hydrogen Energy 38, no 15 (mai 2013) : 6526–36. http://dx.doi.org/10.1016/j.ijhydene.2013.03.046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Escalona-Villalpando, R. A., A. Dector, D. Dector, A. Moreno-Zuria, S. M. Durón-Torres, M. Galván-Valencia, L. G. Arriaga et J. Ledesma-García. « Glucose microfluidic fuel cell using air as oxidant ». International Journal of Hydrogen Energy 41, no 48 (décembre 2016) : 23394–400. http://dx.doi.org/10.1016/j.ijhydene.2016.04.238.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Copenhaver, Thomas S., Krutarth H. Purohit, Kryls Domalaon, Linda Pham, Brianna J. Burgess, Natalie Manorothkul, Vicente Galvan, Samantha Sotez, Frank A. Gomez et John L. Haan. « A microfluidic direct formate fuel cell on paper ». ELECTROPHORESIS 36, no 16 (12 mars 2015) : 1825–29. http://dx.doi.org/10.1002/elps.201400554.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Li, Li, Lei Ling, Yajun Xie, Shuai Shan, Shaoyi Bei, Keqing Zheng et Qiang Xu. « Counter-flow microfluidic fuel cell with trapezoidal electrodes ». Sustainable Energy Technologies and Assessments 56 (mars 2023) : 103005. http://dx.doi.org/10.1016/j.seta.2022.103005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Gowdhamamoorthi, M., A. Arun, S. Kiruthika et B. Muthukumaran. « Enhanced Performance of Membraneless Sodium Percarbonate Fuel Cells ». Journal of Materials 2013 (22 mai 2013) : 1–7. http://dx.doi.org/10.1155/2013/548026.

Texte intégral
Résumé :
This paper presents the continuous flow operation of membraneless sodium percarbonate fuel cell (MLSPCFC) using acid/alkaline bipolar electrolyte. In the acid/alkaline bipolar electrolyte, percarbonate works both as an oxidant as well as reductant. Sodium percarbonate affords hydrogen peroxide in aqueous medium. The cell converts the energy released by H2O2 decomposition with H+ and OH− ions into electricity and produces water and oxygen. At room temperature, the laminar flow based microfluidic membraneless fuel cell can reach a maximum power density of 28 mW/cm2 with the molar ratio of [Percarbonate]/[NaOH] = 1 as fuel and [Percarbonate]/[H2SO4] = 2 as oxidant. The paper reports for the first time the use of sodium percarbonate as the oxidant and reductant. The developed fuel cell emits no CO2 and features no proton exchange membrane, inexpensive catalysts, and simple planar structure, which enables high design flexibility and easy integration of the microscale fuel cell into actual microfluidic systems and portable power applications.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Liu, Hongyan. « Review on Microfluidic Technology Based Synthesis of Fe-based Nanoparticles for Catalyst in Fuel Cell ». Academic Journal of Science and Technology 7, no 2 (27 septembre 2023) : 98–100. http://dx.doi.org/10.54097/ajst.v7i2.11950.

Texte intégral
Résumé :
Conventional combustion based energy generations, reliant on fossil fuels, poses significant environmental harm. In contrast, fuel cells offer an efficient and eco-friendly energy conversion method, capable of integrating with renewable sources and contemporary energy carriers to support sustainable development and energy security. Consequently, fuel cells are considered the promising energy conversion devices of the future. However, extensive research reveals that the cost of catalysts constitutes the most substantial portion of the overall fuel cell cost. To tackle this cost constraint, considerable advancements have been achieved in the development of cost-effective, precious metal-free electrocatalysts. Common methods for the preparation of metal nanomaterials (NPs) have more stringent requirements, lower deposition efficiency and higher costs. In addition, conventional preparation methods without precisely control of reagent concentration, mixing and temperature during the preparation process, makes it difficult to obtain the same results with poor reproducibility, restricting the industrial fabrication of high performance nanomaterials. Microfluidic reactors have advantages of efficient mixing, high heat and mass transfer, low reagent consumption, precise control of reactant components, residence time, reaction temperature and other parameters. They can also be coupled with multi-step reactions, greatly reducing the preparation time while obtaining composite nanomaterials with excellent dimensional homogeneity. In this review, we mainly discuss the microfluidic technology-based synthesis of PGM-free catalyst used in fuel cell.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Kwok, Y. H., Y. Wang, M. Wu, F. Li, Y. Zhang, H. Zhang et D. Y. C. Leung. « A dual fuel microfluidic fuel cell utilizing solar energy and methanol ». Journal of Power Sources 409 (janvier 2019) : 58–65. http://dx.doi.org/10.1016/j.jpowsour.2018.10.095.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Smaluch, Katharina, Christian Dusny, Dietrich Kohlheyer et Alexander Grünberger. « Mikroskalige Massenbilanzierung in mikrofluidischen Umgebungen ». BIOspektrum 29, no 5 (septembre 2023) : 534–35. http://dx.doi.org/10.1007/s12268-023-1978-8.

Texte intégral
Résumé :
AbstractImplementing key biochemical engineering principles based on the kinetics and stoichiometry of growth unlocks the full potential of microfluidic single-cell analysis. We introduce a unique integrative approach, using non-invasive advanced microfluidic cultivation and analysis technologies to integrate physiologic single-cell data. Our groundwork enables microscale material balancing beyond population-based average values and advances modern bioprocess modeling [1].
Styles APA, Harvard, Vancouver, ISO, etc.
35

Feali, M. S. « Y-Shaped Microfluidic Fuel Cell with Novel Cathode Structure ». Russian Journal of Electrochemistry 58, no 7 (juillet 2022) : 626–33. http://dx.doi.org/10.1134/s1023193522070060.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kjeang, Erik, Raphaelle Michel, David A. Harrington, Ned Djilali et David Sinton. « A Microfluidic Fuel Cell with Flow-Through Porous Electrodes ». Journal of the American Chemical Society 130, no 12 (mars 2008) : 4000–4006. http://dx.doi.org/10.1021/ja078248c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Salloum, Kamil S., Joel R. Hayes, Cody Friesen et Jonathan D. Posner. « Sequential Flow Membraneless Microfluidic Fuel Cell with Porous Electrodes ». ECS Transactions 13, no 25 (18 décembre 2019) : 21–38. http://dx.doi.org/10.1149/1.3007996.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Moore, Sean, David Sinton et David Erickson. « A plate-frame flow-through microfluidic fuel cell stack ». Journal of Power Sources 196, no 22 (novembre 2011) : 9481–87. http://dx.doi.org/10.1016/j.jpowsour.2011.07.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Salloum, Kamil S., Joel R. Hayes, Cody A. Friesen et Jonathan D. Posner. « Sequential flow membraneless microfluidic fuel cell with porous electrodes ». Journal of Power Sources 180, no 1 (mai 2008) : 243–52. http://dx.doi.org/10.1016/j.jpowsour.2007.12.116.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Wang, Yifei, et Dennis Y. C. Leung. « A high-performance aluminum-feed microfluidic fuel cell stack ». Journal of Power Sources 336 (décembre 2016) : 427–36. http://dx.doi.org/10.1016/j.jpowsour.2016.11.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Olivares-Ramírez, J. M., V. M. Ovando-Medina, A. Ortíz-Verdín, D. M. Amaya-Cruz, J. Coronel-Hernandez, A. Marroquín et A. Dector. « Lateral flow assay HIV-based microfluidic blood fuel cell ». Journal of Physics : Conference Series 1119 (novembre 2018) : 012022. http://dx.doi.org/10.1088/1742-6596/1119/1/012022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Rao, Lanka Tata, Satish Kumar Dubey, Arshad Javed et Sanket Goel. « Development of Membraneless Paper‐pencil Microfluidic Hydrazine Fuel Cell ». Electroanalysis 32, no 11 (20 octobre 2020) : 2581–88. http://dx.doi.org/10.1002/elan.202060191.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Qian, Fang, Zhen He, Michael P. Thelen et Yat Li. « A microfluidic microbial fuel cell fabricated by soft lithography ». Bioresource Technology 102, no 10 (mai 2011) : 5836–40. http://dx.doi.org/10.1016/j.biortech.2011.02.095.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Galvan, Vicente, Kryls Domalaon, Catherine Tang, Samantha Sotez, Alex Mendez, Mehdi Jalali-Heravi, Krutarth Purohit, Linda Pham, John Haan et Frank A. Gomez. « An improved alkaline direct formate paper microfluidic fuel cell ». ELECTROPHORESIS 37, no 3 (15 décembre 2015) : 504–10. http://dx.doi.org/10.1002/elps.201500360.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Lee, Seoung Hwan, et Yoomin Ahn. « Upscaling of microfluidic fuel cell using planar single stacks ». International Journal of Energy Research 43, no 9 (20 mai 2019) : 5027–37. http://dx.doi.org/10.1002/er.4595.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Wang, Yifei, Dennis Y. C. Leung, Jin Xuan et Huizhi Wang. « A review on unitized regenerative fuel cell technologies, part B : Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell ». Renewable and Sustainable Energy Reviews 75 (août 2017) : 775–95. http://dx.doi.org/10.1016/j.rser.2016.11.054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Bazylak, Aimy, David Sinton et Ned Djilali. « Improved fuel utilization in microfluidic fuel cells : A computational study ». Journal of Power Sources 143, no 1-2 (avril 2005) : 57–66. http://dx.doi.org/10.1016/j.jpowsour.2004.11.029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Martins, Cauê A., Omar A. Ibrahim, Pei Pei et Erik Kjeang. « “Bleaching” glycerol in a microfluidic fuel cell to produce high power density at minimal cost ». Chemical Communications 54, no 2 (2018) : 192–95. http://dx.doi.org/10.1039/c7cc08190a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Kwok, Y. H., Y. Wang, Y. Zhang, H. Zhang, F. Li, W. Pan et D. Y. C. Leung. « Boosting cell performance and fuel utilization efficiency in a solar assisted methanol microfluidic fuel cell ». International Journal of Hydrogen Energy 45, no 41 (août 2020) : 21796–807. http://dx.doi.org/10.1016/j.ijhydene.2020.05.163.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Villone, Massimiliano M., Pasquale Memmolo, Francesco Merola, Martina Mugnano, Lisa Miccio, Pier Luca Maffettone et Pietro Ferraro. « Full-angle tomographic phase microscopy of flowing quasi-spherical cells ». Lab on a Chip 18, no 1 (2018) : 126–31. http://dx.doi.org/10.1039/c7lc00943g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie