Littérature scientifique sur le sujet « Microcoil resonator »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Microcoil resonator ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Microcoil resonator"

1

Ismaeel, Rand, Timothy Lee, Feras Al-Saab, Yongmin Jung et Gilberto Brambilla. « A self-coupling multi-port microcoil resonator ». Optics Express 20, no 8 (28 mars 2012) : 8568. http://dx.doi.org/10.1364/oe.20.008568.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Shen, Tsung-Han, et Lon A. Wang. « A Two-Layer Microcoil Resonator With Very High Quality Factor ». IEEE Photonics Technology Letters 26, no 6 (mars 2014) : 535–37. http://dx.doi.org/10.1109/lpt.2013.2294991.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Xu, Fei, Peter Horak et Gilberto Brambilla. « Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator ». Applied Optics 46, no 4 (1 février 2007) : 570. http://dx.doi.org/10.1364/ao.46.000570.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ma, Chengju, Liyong Ren et Yiping Xu. « Slow-light element for tunable time delay based on optical microcoil resonator ». Applied Optics 51, no 26 (5 septembre 2012) : 6295. http://dx.doi.org/10.1364/ao.51.006295.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

de Jong, Matthijs H. J., Malte A. ten Wolde, Andrea Cupertino, Simon Gröblacher, Peter G. Steeneken et Richard A. Norte. « Mechanical dissipation by substrate–mode coupling in SiN resonators ». Applied Physics Letters 121, no 3 (18 juillet 2022) : 032201. http://dx.doi.org/10.1063/5.0092894.

Texte intégral
Résumé :
State-of-the-art nanomechanical resonators are heralded as a central component for next-generation clocks, filters, resonant sensors, and quantum technologies. To practically build these technologies will require monolithic integration of microchips, resonators, and readout systems. While it is widely seen that mounting microchip substrates into a system can greatly impact the performance of high-Q resonators, a systematic study has remained elusive, owing to the variety of physical processes and factors that influence the dissipation. Here, we analytically analyze a mechanism by which substrates couple to resonators manufactured on them and experimentally demonstrate that this coupling can increase the mechanical dissipation of nanomechanical resonators when resonance frequencies of resonator and substrate coincide. More generally, we then show that a similar coupling mechanism can exist between two adjacent resonators. Since the substrate–mode coupling mechanism strongly depends on both the resonator position on the substrate and the mounting of the substrate, this work provides key design guidelines for high-precision nanomechanical technologies.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sumetsky, M. « Optical fiber microcoil resonators ». Optics Express 12, no 10 (2004) : 2303. http://dx.doi.org/10.1364/opex.12.002303.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Xu, Fei, Peter Horak et Gilberto Brambilla. « Optimized Design of Microcoil Resonators ». Journal of Lightwave Technology 25, no 6 (juin 2007) : 1561–67. http://dx.doi.org/10.1109/jlt.2007.895546.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Theerawisitpong, S., et P. Pinpathomrat. « A Microstrip Diplexer Using Folded Single Stepped-Impedance Resonator for 3G Microcell Stations ». International Journal of Information and Electronics Engineering 6, no 3 (2016) : 171–74. http://dx.doi.org/10.18178/ijiee.2016.6.3.618.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Xu, Fei, Qin Wang, Jian-Feng Zhou, Wei Hu et Yan-Qing Lu. « Dispersion Study of Optical Nanowire Microcoil Resonators ». IEEE Journal of Selected Topics in Quantum Electronics 17, no 4 (juillet 2011) : 1102–6. http://dx.doi.org/10.1109/jstqe.2010.2061220.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lee, Timothy, Neil G. R. Broderick et Gilberto Brambilla. « Berry phase magnification in optical microcoil resonators ». Optics Letters 36, no 15 (21 juillet 2011) : 2839. http://dx.doi.org/10.1364/ol.36.002839.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Microcoil resonator"

1

LORENZI, ROBERTO. « Silica based functional materials : - Charge transport in nanostructured SnO2 : SiO2 thin films. - Second harmonic generation in niobium potassium silicate glasses. - Tapered silica optical microfibres for gas sensors ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2010. http://hdl.handle.net/10281/10933.

Texte intégral
Résumé :
"Charge transport in nanostructured SnO2:SiO2 thin films": Silica based nanostructured thin films grown on silicon substrates are promising materials for novel light emitter devices. In particular, tin dioxide is a wide band gap n-type semiconductor (Eg=3.6 eV) with an expected band-to-band emission centered in the ultraviolet (344 nm) region of the electromagnetic spectrum. Our group succesfully demonstrated UV emission from such systems, but at the beginning of my work many issues in charge transport processes needed to be explained. Aim of this project was to clarify electric transport and charge trapping mechanisms. As a result of a materials science approach we can now interpret the experimental data through specific relationships between synthesis conditions, clustering morphology (nanoparticle (NP) size distribution and volumic concetration, interphase substoichiometry, film thickness), and electric response. The observed phenomena have been analyzed within the percolation theory. Main results concern: electric transport of both holes and electrons is sustained by NP-to-NP hopping events and dielectric enhancement results from oscillating charges (holes) on NPs. "Second Harmonic Generation in potassium niobium silicate glasses": Second harmonic generation (SHG) is a non linear optical process largely employed in current laser technology and photonics. However in almost every application the material employed for these purposes are single crystals. Therefore the possibility to achieve large SHG in amorphous systems may lead to devices with innovative configurations. SHG may occur only if the system is non-centrosymmetric, therefore for glasses it is forbidden due to intrinsic isotropy. The inversion symmetry can be broken up with poling treatments. They consist in applying strong electrostatic field while the sample is stressed by external perturbation (typically heat, electron beam or laser light). We have explored the effect of thermal poling treatment on potassium niobium silicate glasses on inducing non linear optical properties. The results have revealed a strong SHG associated with structural modifications. The proposed mechanism involves a rearrangement of niobium oxide groups mediated by non bridging oxygen and potassium ion transport across the glass. These new charge arrangements form a non-centrosymmetric region underneath the anodic contact responsible of the detected SH signal. "Tapered silica optical microfibres for gas sensors": In the last years, tapered silica fibres have attracted much interest in photonic research, because of peculiar properties emerging in waveguides with lateral dimensions of the same order of the guided modes. In particular, in these structures the large evanescent field enables some interesting properties, such as microfluidic sensors and high Q optical resonators (coiling the tapered fibre), non-linear effects and supercontinuum generation. In this project, carried out at the University of Southampton (UK) in the group of Dr. Gilberto Brambilla, we have explored the feasibility of an innovative optical absorption device, based on ring down spectroscopy. In this case we are interested in a sensor for in-line application: a fluidic channel wrapped with tapered fibre in which the analyte can flow. The large power fraction outside the fibre interacts with the flowing medium and any change in the surrounding optical properties (refractive index or absorption coefficient) leads to a modification of the recorded light intensity propagating in the fibre. The idea is to exploit ring down time of a silica tapered microcoil resonator as an indicator of the absorption coefficient of a gas (or a liquid) flowing in the channel.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Microcoil resonator"

1

Abdul Khudus, Muhammad I. M., Rand Ismaeel, Gilberto Brambilla, Neil G. R. Broderick et Timothy Lee. « Nonlinear Effects in Microfibers and Microcoil Resonators ». Dans Nonlinear Optical Cavity Dynamics, 189–212. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527686476.ch8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Xu, Fei, et Gilberto Brambilla. « Microfiber and Microcoil Resonators and Resonant Sensors ». Dans Springer Series in Optical Sciences, 275–98. Boston, MA : Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1744-7_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gagné, Nana Okura. « Working Hard at Having Fun Through Hobbies and Community ». Dans Reworking Japan, 123–52. Cornell University Press, 2021. http://dx.doi.org/10.7591/cornell/9781501753039.003.0005.

Texte intégral
Résumé :
This chapter follows the working men's lives beyond the workplace, such as weekly volunteer cleaning in Tokyo Bay and marathon club activities. It introduces the vibrant space of the Bayside Half Marathon Club, whose active membership consisted of around fifty to sixty people who met regularly on weekends as well as after work. It also looks at the kinds of issues that arose in the club in terms of Japanese-style, highly managed leadership and provision for members versus laissez-faire-style, self-directed leadership that resonated with the kinds of tensions echoing in corporate hallways across Japan. The chapter explains how a leisure club like Bayside Half is deeply embedded in Japanese society as the social dynamics and ideologies resonate with those found in other leisure spaces and corporate spaces. It addresses the question on whether the highly institutionalized leisure space of a marathon club is a microcosm of corporate Japan.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Microcoil resonator"

1

Sumetsky, M. « Microcoil photonic resonator and waveguide ». Dans 2005 Optical Fiber Communications Conference Technical Digest. IEEE, 2005. http://dx.doi.org/10.1109/ofc.2005.193135.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Talataisong, W., R. Ismaeel, A. Masoudi, M. Beresna et G. Brambilla. « Magnetic field sensor based on multi-port microcoil resonator ». Dans 25th International Conference on Optical Fiber Sensors, sous la direction de Youngjoo Chung, Wei Jin, Byoungho Lee, John Canning, Kentaro Nakamura et Libo Yuan. SPIE, 2017. http://dx.doi.org/10.1117/12.2265634.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Xu, Fei, Peter Horak et Gilberto Brambilla. « Conical and bi-conical high-Q optical-nanofiber microcoil resonator ». Dans Passive Components and Fiber-based Devices III. SPIE, 2006. http://dx.doi.org/10.1117/12.688734.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lucas, Erwan, Su-Peng Yu, Geun Ho Ahn, Kiyoul Yang, Jelena Vuckovic et Scott B. Papp. « Inverse spectral design of Kerr microcomb pulses ». Dans Laser Resonators, Microresonators, and Beam Control XXIII, sous la direction de Andrea M. Armani, Alexis V. Kudryashov, Alan H. Paxton, Vladimir S. Ilchenko et Julia V. Sheldakova. SPIE, 2021. http://dx.doi.org/10.1117/12.2576439.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lee, Timothy, Neil G. R. Broderick et Gilberto Brambilla. « Berry's phase magnification in microcoil resonators ». Dans 12th European Quantum Electronics Conference CLEO EUROPE/EQEC. IEEE, 2011. http://dx.doi.org/10.1109/cleoe.2011.5943267.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zayhowski, J. J., A. Sanchez et T. Y. Fan. « Microchip lasers and applications* ». Dans Solid State Lasers : Materials and Applications. Washington, D.C. : Optica Publishing Group, 1997. http://dx.doi.org/10.1364/sslma.1997.fa1.

Texte intégral
Résumé :
Microchip lasers are small solid-state lasers characterized by short resonator lengths (~1 mm) and monolithic flat-flat cavities. The first feature enables solid-state lasers operating in new performance regimes while the second attribute allows inexpensive fabrication of the devices in robust packages. In the simplest of these devices, cw lasers, the laser is fabricated by polishing a wafer of gain medium with surfaces that are flat and parallel with a thickness of the desired resonator length. Resonator mirrors are deposited on the polished faces to form the cavity and then the wafer is diced. Devices with more functionality are fabricated by using two wafers to form the laser, one of which can be an electro-optic material or a saturable absorber material, that are bonded together. Frequency-modulated (>1.3-GHz modulation bandwidth) and Q-switched lasers (220-ps-long pulses with passive Q-switching) have been demonstrated using these techniques.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chen, G. Y., T. Lee, Y. Jung, M. Belal, G. Brambilla, N. Broderick et T. P. Newson. « Investigation of thermal effects on embedded microcoil resonators ». Dans 12th European Quantum Electronics Conference CLEO EUROPE/EQEC. IEEE, 2011. http://dx.doi.org/10.1109/cleoe.2011.5943059.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yu, Su-Peng, Jizhao Zang, Erwan Lucas, David R. Carlson, Travis C. Briles et Scott B. Papp. « Efficient Pump Energy Utilization with Photonic-Crystal Microcombs ». Dans CLEO : Science and Innovations. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.ss1c.2.

Texte intégral
Résumé :
We develop composite photonic crystal resonators to enhance Kerr comb en-ergy efficiency. Photonic resonators spontaneously generate dark-soliton microcomb, where accompanying build-up cavity conserves pump laser energy to enable fundamentally high efficiency and low operating power.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Tan, Mengxi, Xingyuan Xu, Yang Li, Yang Sun, Damien Hicks, Roberto Morandotti, Jiayang Wu, Arnan Mitchell et David J. Moss. « 11 Tera-OPs/s photonic convolutional accelerator and deep optical neural network based on an integrated Kerr soliton crystal microcomb ». Dans Laser Resonators, Microresonators, and Beam Control XXIV, sous la direction de Andrea M. Armani, Alexis V. Kudryashov, Alan H. Paxton, Vladimir S. Ilchenko et Julia V. Sheldakova. SPIE, 2022. http://dx.doi.org/10.1117/12.2607906.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lim, Hwan Hong, et Takunori Taira. « 37 MW peak power unstable resonator microchip laser ». Dans Advanced Solid State Lasers. Washington, D.C. : OSA, 2021. http://dx.doi.org/10.1364/assl.2021.jtu1a.21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie