Littérature scientifique sur le sujet « MICROCELLULAR PROPAGATION »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « MICROCELLULAR PROPAGATION ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "MICROCELLULAR PROPAGATION"

1

Schaubach, K. R., et N. J. Davis. « Microcellular radio-channel propagation prediction ». IEEE Antennas and Propagation Magazine 36, no 4 (août 1994) : 25–34. http://dx.doi.org/10.1109/74.317764.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kanatas, A. G., I. D. Kountouris, G. B. Kostaras et P. Constantinou. « A UTD propagation model in urban microcellular environments ». IEEE Transactions on Vehicular Technology 46, no 1 (1997) : 185–93. http://dx.doi.org/10.1109/25.554751.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rustako, A. J., N. Amitay, G. J. Owens et R. S. Roman. « Propagation results at 11 GHz for microcellular radio ». Electronics Letters 25, no 7 (1989) : 453. http://dx.doi.org/10.1049/el:19890311.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Biebuma, J. J., B. O. Omijeh et M. M. M.Nathaniel. « Signal Coverage Estimation Model for Microcellular Network Propagation ». IOSR Journal of Electronics and Communication Engineering 9, no 6 (2014) : 45–53. http://dx.doi.org/10.9790/2834-09654553.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Har, D., et H. L. Bertoni. « Effect of anisotropic propagation modeling on microcellular system design ». IEEE Transactions on Vehicular Technology 49, no 4 (juillet 2000) : 1303–13. http://dx.doi.org/10.1109/25.875247.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sánchez, M. G., L. de Haro, A. G. Pino et M. Calvo. « Exhaustive ray tracing algorithm for microcellular propagation prediction models ». Electronics Letters 32, no 7 (1996) : 624. http://dx.doi.org/10.1049/el:19960453.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Davies, R., A. Simpson et J. P. McGreehan. « Propagation measurements at 1.7 GHz for microcellular urban communications ». Electronics Letters 26, no 14 (1990) : 1053. http://dx.doi.org/10.1049/el:19900682.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

A.Shrawankar, J., et K. D. Kulat. « Propagation Prediction Model for Land Mobile Communication in Microcellular Environment ». International Journal of Computer Applications 84, no 15 (18 décembre 2013) : 38–41. http://dx.doi.org/10.5120/14656-2993.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Gennarelli, Gianluca, et Giovanni Riccio. « A UAPO-BASED MODEL FOR PROPAGATION PREDICTION IN MICROCELLULAR ENVIRONMENTS ». Progress In Electromagnetics Research B 17 (2009) : 101–16. http://dx.doi.org/10.2528/pierb09072305.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Shiun-Chi Jan et Shyh-Kang Jeng. « A novel propagation modeling for microcellular communications in urban environments ». IEEE Transactions on Vehicular Technology 46, no 4 (1997) : 1021–26. http://dx.doi.org/10.1109/25.653075.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "MICROCELLULAR PROPAGATION"

1

Chia, S. T. S. « Propagation studies for microcellular mobile radio ». Thesis, University of Southampton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380149.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Green, Edward. « Propagation characteristics of a narrowband microcellular radio channel ». Thesis, University of Southampton, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.480724.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Unar, Manzoor Hussain. « Wideband mobile propagation channels : modelling, measurements and characterisation for microcellular environments ». Thesis, University of Bath, 2006. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.436766.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wiart, Joe. « Propagation des ondes radioelectriques en milieu urbain dans un contexte microcellulaire. Analyse par la gtd et validation experimentale ». Paris 6, 1995. http://www.theses.fr/1995PA066488.

Texte intégral
Résumé :
La propagation des ondes radio electriques est etudiee en milieu urbain quand l'antenne d'emission est sous le niveau des toits. Les caracteristiques principales du signal radio et les methodes de calcul du champ electromagnetique sont etudies. Les mecanismes qui gouvernent la propagation des ondes dans ce contexte sont analyses a l'aide de la theorie des rayons et de la theorie uniforme de la diffraction. Les resultats qui decoulent de cette etude sont utilises dans la mise en uvre d'un outil de prediction de l'affaiblissement et de couverture radio. L'ensemble des resultats est valide experimentalement par comparaison a des mesures
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wiart, Joe. « Propagation des ondes radio-électriques en milieu urbain dans un contexte microcellulaire : analyse par la GTD et validation expérimentale / ». Paris : École nationale supérieure des télécommunications, 1996. http://catalogue.bnf.fr/ark:/12148/cb35827751c.

Texte intégral
Résumé :
Th. doct.--Électron. et communications--Paris--ENST, 1995.
Thèse délivrée en association avec l'Université de Paris 6. Annexes en français et en anglais. Notes bibliogr. Résumés en français et en anglais.
Styles APA, Harvard, Vancouver, ISO, etc.
6

GOYAL, MANISH. « TIME-DOMAIN CHANNEL MODELING OF MICROCELLULAR PROPAGATION ENVIRONMENTS ». Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/14973.

Texte intégral
Résumé :
A comparative analysis of time-domain (TD) solution, based on an established UTD diffraction model, are presented for modeling of Ultra-wideband (UWB) signal for lossy dielectric obstacles which gives accurate result to any arbitrary position of transmitter and receiver in a complex channel environment. Obstacles considered in the work include dielectric Wedge with homogenous, isotropic, low-loss dielectric characteristics. Different UTD-TD Diffraction Coefficients are proposed and compared with the IFFT of rigorous (i.e., Maliuzhinets) diffraction coefficient (RDC). The proposed work provides an in-depth analysis of the UTD model and presents an accurate and computationally more efficient TD solution for the available UTD diffraction coefficients for lossy dielectric medium, for both soft and hard polarizations. Moreover the reciprocity and symmetry for the diffraction coefficient in the time-domain have been proven for different position of transmitter and receiver. The time-domain modeling for transmission and reflection of UWB signals for 2-D & 3-D multi-modeled obstacle is also done. The obstacle is called multi-modeled since the obstacle consists of two entirely different structure i.e. dielectric wedge followed by dielectric slab. The comparison between the TD solution and the numerical inverse fast Fourier transform of the FD (IFFT-FD) solution proves the accuracy of the proposed solution. The significant gain in the computational speed achieved through the proposed TD solution is demonstrated by comparing its computation time with that of the exact IFFT-FD solution.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jan, Shiun-Chi, et 詹勳琪. « Outdoor Microcellular Radio Wave Propagation Modeling and Characteristics Analysis ». Thesis, 1997. http://ndltd.ncl.edu.tw/handle/63967372115841567409.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ju, Kung-Min, et 朱康民. « Mechanisms of UHF Radio Propagation in Microcellular Urban Environments ». Thesis, 1999. http://ndltd.ncl.edu.tw/handle/30067734786382641898.

Texte intégral
Résumé :
博士
國立交通大學
電子工程系
87
This thesis presents a site-specific and a statistically scattering models to investigate the characteristics of UHF radio propagation in microcellular urban environments. First, a novel 3-D site-specific scattering model is developed to evaluate the average path loss of a microcellular radio channel in an urban environment. The analytical scattering model combined with a patched-wall model predicts the median path loss more accurately than the conventional analytical ray-tracing model in the cases studied. Comparing the path loss with the measured one at 1.8-GHz demonstrates the effectiveness of the scattering model. The scattering model includes three major propagation modes: (1) a direct-path wave; (2) a ground-reflected wave; and (3) the scattered field from the walls aligned along a street. The proposed model, with a polarization scattering matrix associated with the patched-wall model, aptly describes the third mode, which is usually neglected or oversimplified. Second, an analytical hybrid scattering model, combining a site-specific scattering model and a statistically scattering model, is developed to evaluate the statistical characteristics of received power for microcellular radio channel. The former model yields a deterministic prediction of the received power. The later model describes the scattered field due to the randomly positioned scatterers around the receiver. From this study, it is found that the randomly scattered field gives a significant effect on localized fading distribution. The mean power of the randomly scattered field is linearly dependent on logarithm of propagation distance and the decay factors at three different sites are similar. From the simulation results, it is also found that changing transmitting antenna height may yield a significant effect on the small-scale fading characteristics. However, varying the patch size or street width may have little effect on the fading distribution. In addition, a model of the random distribution of the Rician factor is suggested from the measurement of 1.8 GHz radio propagation in outdoor urban microcells. It is found that the probability density function (pdf) of the Rician factor for low tier systems in urban environments follows a lognormal distribution.
Styles APA, Harvard, Vancouver, ISO, etc.
9

« UHF propagation channel characterization for tunnel microcellular and personal communications ». Chinese University of Hong Kong, 1996. http://library.cuhk.edu.hk/record=b5888872.

Texte intégral
Résumé :
by Yue Ping Zhang.
Publication date from spine.
Thesis (Ph.D.)--Chinese University of Hong Kong, 1995.
Includes bibliographical references (leaves 194-200).
DEDICATION
ACKNOWLEDGMENTS
Chapter
Chapter 1. --- Introduction --- p.1
Chapter 1.1 --- Brief Description of Tunnels --- p.1
Chapter 1.2 --- Review of Tunnel Imperfect Waveguide Models --- p.2
Chapter 1.3 --- Review of Tunnel Geometrical Optical Model --- p.4
Chapter 1.4 --- Review of Tunnel Propagation Experimental Results --- p.6
Chapter 1.5 --- Review of Existing Tunnel UHF Radio Communication Systems --- p.13
Chapter 1.6 --- Statement of Problems to be Studied --- p.15
Chapter 1.7 --- Organization --- p.15
Chapter 2 --- Propagation in Empty Tunnels --- p.18
Chapter 2.1 --- Introduction --- p.18
Chapter 2.2 --- Propagation in Empty Tunnels --- p.18
Chapter 2.2.1 --- The Imperfect Empty Straight Rectangular Waveguide Model --- p.19
Chapter 2.2.2 --- The Hertz Vectors for Empty Straight Tunnels --- p.20
Chapter 2.2.3 --- The Propagation Modal Equations for Empty Straight Tunnels --- p.23
Chapter 2.2.4 --- The Propagation Characteristics of Empty Straight Tunnels --- p.26
Chapter 2.2.5 --- Propagation Numerical Results in Empty Straight Tunnels --- p.30
Chapter 2.3 --- Propagation in Empty Curved Tunnels --- p.36
Chapter 2.3.1 --- The Imperfect Empty Curved Rectangular Waveguide Model --- p.37
Chapter 2.3.2 --- The Hertz Vectors for Empty Curved Tunnels --- p.39
Chapter 2.3.3 --- The Propagation Modal Equations for Empty Curved Tunnels --- p.41
Chapter 2.3.4 --- The Propagation Characteristics of Empty Curved Tunnels --- p.43
Chapter 2.2.5 --- Propagation Numerical Results in Empty Curved Tunnels --- p.47
Chapter 2.4 --- Summary --- p.50
Chapter 3 --- Propagation in Occupied Tunnels --- p.53
Chapter 3.1 --- Introduction --- p.53
Chapter 3.2 --- Propagation in Road Tunnels --- p.53
Chapter 3.2.1 --- The Imperfect Partially Filled Rectangular Waveguide Model --- p.54
Chapter 3.2.2 --- The Scalar Potentials for Road tunnels --- p.56
Chapter 3.2.3 --- The Propagation Modal Equations for Road Tunnels --- p.59
Chapter 3.2.4 --- Propagation Numerical Results in Road Tunnels --- p.61
Chapter 3.3 --- Propagation in Railway Tunnels --- p.64
Chapter 3.3.1 --- The Imperfect Periodically Loaded Rectangular Waveguide Model --- p.65
Chapter 3.3.2 --- The Surface Impedance Approximation --- p.66
Chapter 3.3.2.1 --- The Surface Impedance of a Semi-infinite Lossy Dielectric Medium --- p.66
Chapter 3.3.2.2 --- The Surface Impedance of a Thin Lossy Dielectric Slab --- p.67
Chapter 3.3.2.3 --- The Surface Impedance of a Three-layered Half Space --- p.69
Chapter 3.3.2.4 --- The Surface Impedance of the Sidewall of a Train in a Tunnel --- p.70
Chapter 3.3.3 --- The Hertz Vectors for Railway Tunnels --- p.71
Chapter 3.3.4 --- The Propagation Modal Equations for Railway Tunnels --- p.73
Chapter 3.3.5 --- The Propagation Characteristics of Railway Tunnels --- p.76
Chapter 3.3.6 --- Propagation Numerical Results in Railway Tunnels --- p.78
Chapter 3.4 --- Propagation in Mine Tunnels --- p.84
Chapter 3.4.1 --- The Imperfect periodically Loaded Rectangular Waveguide Model --- p.85
Chapter 3.4.2 --- The Hertz Vectors for Mine Tunnels --- p.86
Chapter 3.4.3 --- The Propagation modal Equations for Mine Tunnels --- p.88
Chapter 3.4.4 --- The Propagation Characteristics of Mine Tunnels --- p.95
Chapter 3.4.5 --- Propagation Numerical Results in Mine Tunnels --- p.96
Chapter 3.5 --- Summary --- p.97
Chapter 4 --- Statistical and Deterministic Models of Tunnel UHF Propagation --- p.100
Chapter 4.1 --- Introduction --- p.100
Chapter 4.2 --- Statistical Model of Tunnel UHF Propagation --- p.100
Chapter 4.2.1 --- Experiments --- p.101
Chapter 4.2.1.1 --- Experimental Set-ups --- p.102
Chapter 4.2.1.2 --- Experimental Tunnels --- p.104
Chapter 4.2.1.3 --- Experimental Techniques --- p.106
Chapter 4.2.2 --- Statistical Parameters --- p.109
Chapter 4.2.2.1 --- Parameters to Characterize Narrow Band Radio Propagation Channels --- p.109
Chapter 4.2.2.2 --- Parameters to Characterize Wide Band Radio Propagation Channels --- p.111
Chapter 4.2.3 --- Propagation Statistical Results and Discussion --- p.112
Chapter 4.2.3.1 --- Tunnel Narrow Band Radio Propagation Characteristics --- p.112
Chapter 4.2.3.1.1 --- Power Distance Law --- p.114
Chapter 4.2.3.1.2 --- The Slow Fading Statistics --- p.120
Chapter 4.2.3.1.3 --- The Fast Fading Statistics --- p.122
Chapter 4.2.3.2 --- Tunnel Wide Band Radio Propagation Characteristics --- p.125
Chapter 4.2.3.2.1 --- RMS Delay Spread --- p.126
Chapter 4.2.3.2.2 --- RMS Delay Spread Statistics --- p.130
Chapter 4.3 --- Deterministic Model of Tunnel UHF Propagation --- p.132
Chapter 4.3.1 --- The Tunnel Geometrical Optical Propagation Model --- p.134
Chapter 4.3.2 --- The Tunnel Impedance Uniform Diffracted Propagation Model --- p.141
Chapter 4.3.2.1 --- Determination of Diffraction Points --- p.146
Chapter 4.3.2.2 --- Diffraction Coefficients for Impedance Wedges --- p.147
Chapter 4.3.3 --- Comparison with Measurements --- p.151
Chapter 4.3.3.1 --- Narrow Band Comparison of Simulated and Measured Results --- p.151
Chapter 4.3.3.1.1 --- Narrow Band Propagation in Empty Straight Tunnels --- p.151
Chapter 4.3.3.1.2 --- Narrow Band Propagation in Curved or Obstructed Tunnels --- p.154
Chapter 4.3.3.2 --- Wide Band Comparison of Simulated and Measured Results --- p.158
Chapter 4.3.3.2.1 --- Wide Band Propagation in Empty Straight Tunnels --- p.159
Chapter 4.3.3.2.2 --- Wide Band Propagation in an Obstructed Tunnel --- p.163
Chapter 4.4 --- Summary --- p.165
Chapter 5 --- Propagation in Tunnel and Open Air Transition Region --- p.170
Chapter 5.1 --- Introduction --- p.170
Chapter 5.2 --- Radiation of Radio Waves from a Rectangular Tunnel into Open Air --- p.171
Chapter 5.2.1 --- Radiation Formulation Using Equivalent Current Source Concept --- p.171
Chapter 5.2.2 --- Radiation Numerical Results --- p.175
Chapter 5.3 --- Propagation Characteristics of UHF Radio Waves in Cuttings --- p.177
Chapter 5.3.1 --- The Attenuation Constant due to the Absorption --- p.178
Chapter 5.3.2 --- The Attenuation Constant due to the Roughness of the Sidewalls --- p.182
Chapter 5.3.3 --- The Attenuation Constant due to the tilts of the Sidewalls --- p.183
Chapter 5.3.4 --- Propagation Numerical Results in Cuttings --- p.184
Chapter 5.4 --- Summary --- p.187
Chapter 6 --- Conclusion and Recommendation for Future Work --- p.189
APPENDIX --- p.193
The Approximate Solution of a Transcendental Equation --- p.193
REFERENCES --- p.194
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chang, Yung-Chao, et 張永照. « Mechanisms of UHF Radio Wave propagation into Multistory Buildings for Microcellular Environment ». Thesis, 1998. http://ndltd.ncl.edu.tw/handle/28693259592116896953.

Texte intégral
Résumé :
碩士
國立交通大學
電信工程研究所
86
Mechanism of UHF radiowave propagation into multistory office buildings is explored by using ray-tracing based models, which include a three-dimensional (3-D) ray-tracing model and a direct-transmitted ray (DTR) model. Prediction accuracy of the models is ascertained by the measured data and the measurements are carried out at many specific sites with different propagation scenario. Their measured results also demonstrate some important propagation phenomena. It is found that (1) the direct transmitted wave may be the dominant mode; (2) the path loss neither increases nor decreases monotonically as a function of increasing floor level; and (3) there is not much difference of the average path loss among the receiving positions in the same room.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "MICROCELLULAR PROPAGATION"

1

Brown, Philip George. Deterministic modelling of radiowave propagation in urban microcellular environments using ray methods. Birmingham : University of Birmingham, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "MICROCELLULAR PROPAGATION"

1

Qingping Chen et Michel Lecours. « Modeling wave propagation for microcellular networks ». Dans Proceedings of Canadian Conference on Electrical and Computer Engineering CCECE-94. IEEE, 1994. http://dx.doi.org/10.1109/ccece.1994.405769.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Vitucci, Enrico M., Veli-Matti Kolmonen, Vittorio Degli-Esposti et Pertti Vainikainen. « Analysis of X-pol propagation in microcellular environment ». Dans 2009 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2009. http://dx.doi.org/10.1109/iceaa.2009.5297387.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nechayev, Y. I. « Scattering by trees in microcellular environments ». Dans 11th International Conference on Antennas and Propagation (ICAP 2001). IEE, 2001. http://dx.doi.org/10.1049/cp:20010339.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Mizuno, M., S. Sekizawa et K. Taira. « Measurement of spatiotemporal propagation characteristics in urban microcellular environment ». Dans Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No.99CH36324). IEEE, 1999. http://dx.doi.org/10.1109/vetecf.1999.797341.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bas, C. Umit, Rui Wang, Seun Sangodoyin, Sooyoung Hur, Kuyeon Whang, Jeongho Park, Jianzhong Zhang et Andreas F. Molisch. « 28 GHz propagation channel measurements for 5G microcellular environments ». Dans 2018 International Applied Computational Electromagnetics Society Symposium (ACES). IEEE, 2018. http://dx.doi.org/10.23919/ropaces.2018.8364139.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Denegri, Livio, Luca Bixio, Fabio Lavagetto, Alessandro Iscra et Carlo Braccini. « An Analytical Model of Microcellular Propagation in Urban Canyons ». Dans 2007 IEEE 65th Vehicular Technology Conference. IEEE, 2007. http://dx.doi.org/10.1109/vetecs.2007.94.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Silva, Edgar, Elisson A. D. Lima et Gilberto A. Carrijo. « A microcellular Line-of-Sight propagation model using UTD ». Dans 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC). IEEE, 2009. http://dx.doi.org/10.1109/imoc.2009.5427525.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wang, Peng, Li-Xin Guo et Yong-Sheng Feng. « A fast ray-tracing algorithm for microcellular propagation prediction models ». Dans 2012 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE - 2012). IEEE, 2012. http://dx.doi.org/10.1109/isape.2012.6408799.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Athanasiadou, G. E. « A ray tracing algorithm for microcellular and indoor propagation modelling ». Dans Ninth International Conference on Antennas and Propagation (ICAP). IEE, 1995. http://dx.doi.org/10.1049/cp:19950421.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Unar, M. H., G. Vaccaro et I. A. Glover. « Ray-tracer for outdoor microcellular propagation modelling and channel characterisation ». Dans 2nd European Conference on Antennas and Propagation (EuCAP 2007). Institution of Engineering and Technology, 2007. http://dx.doi.org/10.1049/ic.2007.0946.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie