Articles de revues sur le sujet « Microcapsulated phase change materials »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Microcapsulated phase change materials.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Microcapsulated phase change materials ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Zhang, Hui, Yeting Shi, Baoqing Shentu et Zhixue Weng. « Synthesis and Thermal Performance of Polyurea Microcapsulated Phase Change Materials by Interfacial Polymerization ». Polymer Science, Series B 59, no 6 (novembre 2017) : 689–96. http://dx.doi.org/10.1134/s1560090417060124.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wang, Hao, Jie Luo, Yanyang Yang, Liang Zhao, Guolin Song et Guoyi Tang. « Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance ». Solar Energy 139 (décembre 2016) : 591–98. http://dx.doi.org/10.1016/j.solener.2016.10.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Park, Ji-Won, Jae-Ho Shin, Gyu-Seong Shim, Kyeng-Bo Sim, Seong-Wook Jang et Hyun-Joong Kim. « Mechanical Strength Enhancement of Polylactic Acid Hybrid Composites ». Polymers 11, no 2 (17 février 2019) : 349. http://dx.doi.org/10.3390/polym11020349.

Texte intégral
Résumé :
In recent years, there has been an increasing need for materials that are environmentally friendly and have functional properties. Polylactic acid (PLA) is a biomass-based polymer, which has attracted research attention as an eco-friendly material. Various studies have been conducted on functionality imparting and performance improvement to extend the field of application of PLA. Particularly, research on natural fiber-reinforced composites have been conducted to simultaneously improve their environmental friendliness and mechanical strength. Research interest in hybrid composites using two or more fillers to realize multiple functions are also increasing. Phase change materials (PCMs) absorb and emit energy through phase transition and can be used as a micro encapsulated structure. In this study, we fabricated hybrid composites using microcapsulated PCM (MPCM) and the natural fibrous filler, kenaf. We aimed to fabricate a composite material with improved endothermic characteristics, mechanical performance, and environmental friendliness. We analyzed the endothermic properties of MPCM and the structural characteristics of two fillers and finally produced an eco-friendly composite material. The PCM and kenaf contents were varied to observe changes in the performance of the hybrid composites. The endothermic properties were determined through differential scanning calorimetry, whereas changes in the physical properties of the hybrid composite were determined by measuring the mechanical properties.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Goel, Manish, S. K. Roy et S. Sengupta. « Laminar forced convection heat transfer in microcapsulated phase change material suspensions ». International Journal of Heat and Mass Transfer 37, no 4 (mars 1994) : 593–604. http://dx.doi.org/10.1016/0017-9310(94)90131-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zhang, Jian, Liang Wang, Yu Jie Xu, Yi Fei Wang, Zheng Yang et Hai Sheng Chen. « Natural Convective Heat Transfer Characteristics of the Bundle Heat Exchanger in the Latent Heat Microcapsulated Phase Change Material Slurry ». Materials Science Forum 852 (avril 2016) : 969–76. http://dx.doi.org/10.4028/www.scientific.net/msf.852.969.

Texte intégral
Résumé :
As a novel latent functionally thermal fluid, microcapsulated phase change material slurry (MPCMS) has many potential applications in the fields of energy storage, air-conditioning, refrigeration and heat exchanger, etc. In order to investigate the heat storage and heat transfer performance of MPCMS, natural convection in a rectangular enclosure heated by bundle heat exchanger has been studied numerically in this paper. The effects of mass concentration (Cm) of MPCMS, the vertical spaces of bundle heat exchanger on the natural convective heat transfer are investigated. The results indicate that, MPCMS with Cm=30% shows the best natural convectionperformance, and a lower position of bundle heat exchanger can strengthen the natural convection.
Styles APA, Harvard, Vancouver, ISO, etc.
6

INABA, Hideo, Chuanshan DAI et Akihiko HORIBE. « 303 Natural Convection of Microcapsulated Phase Change Slurry Layer with Heating from the Bottom and Cooling from the Top ». Proceedings of Conference of Chugoku-Shikoku Branch 2001.39 (2001) : 85–86. http://dx.doi.org/10.1299/jsmecs.2001.39.85.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Raoux, Simone, Feng Xiong, Matthias Wuttig et Eric Pop. « Phase change materials and phase change memory ». MRS Bulletin 39, no 8 (août 2014) : 703–10. http://dx.doi.org/10.1557/mrs.2014.139.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Raoux, Simone, Daniele Ielmini, Matthias Wuttig et Ilya Karpov. « Phase change materials ». MRS Bulletin 37, no 2 (février 2012) : 118–23. http://dx.doi.org/10.1557/mrs.2011.357.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

FLEURY, ALFRED F. « Phase-Change Materials ». Heat Transfer Engineering 17, no 2 (avril 1996) : 72–74. http://dx.doi.org/10.1080/01457639608939875.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Raoux, Simone. « Phase Change Materials ». Annual Review of Materials Research 39, no 1 (août 2009) : 25–48. http://dx.doi.org/10.1146/annurev-matsci-082908-145405.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Arman Kandirmaz, Emine, Arif Ozcan et Duygu Er Ulusoy. « Production of thermochromic microcapsulated inks for smart packaging and examination of printability properties ». Pigment & ; Resin Technology 49, no 4 (25 avril 2020) : 273–81. http://dx.doi.org/10.1108/prt-12-2019-0116.

Texte intégral
Résumé :
Purpose Stimulant-sensitive materials exhibit physical or chemical reversible changes in their properties as a result of environmental variables. One of these materials is thermochromic materials. Materials with thermochromic sensitivity change their color with heat exchange. For this reason, it can be used in many different fields such as security inks. Such substances decompose rapidly by being affected by weather conditions. Furthermore, the particle sizes are larger than normal pigments, and therefore, it is difficult to stabilize thermochromic dyes. Because of all these adverse conditions, thermochromic colorants must be protected before use in the ink. This protection is planned to be provided by the microcapsulation technique. The purpose of this study is to determine the thermochromic printing inks that can be stored stably by microcapsulation technique, to protect it from environmental conditions and the determination of printability parameters. Design/methodology/approach In this study, capsules with a core material of thermochromic dyeing with polyurea formaldehyde (PUF) or poly-phenolmelamine formaldehyde (PMF) shell were synthesized at appropriate pH and temperature using the appropriate solvent and mixing speed. The chemical structure and dimensions of the obtained capsules were examined by ATR-FTIR and scanning electron microscopy, respectively. The produced thermochromic microcapsules were mixed with alkyd resin and mineral oil and screen printing ink was obtained. Printability tests such as surface morphology, color, gloss and light fastness were applied. Findings As a result, it was determined that PMF is not a suitable encapsulation technique for thermochromic dyes under suitable conditions and eliminates thermochromic property by providing heat stability. It was found that PUF microcapsulation can be used in thermochromic dyestuff encapsulation and does not lose the thermochromic property. It has also been found that PUF microcapsules increase the lightfastness and stability of thermochromic dye ink. Originality/value This study provides experimental research on the encapsulation of a thermochromic dye and its use in ink.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Park, Sung-Jin, In-Soo Kim, Sang-Kyun Kim et Se-Young Choi. « Phase Change Characteristics of Sb-Based Phase Change Materials ». Korean Journal of Materials Research 18, no 2 (25 février 2008) : 61–64. http://dx.doi.org/10.3740/mrsk.2008.18.2.061.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Rodenbach, Peter, Raffaella Calarco, Karthick Perumal, Ferhat Katmis, Michael Hanke, André Proessdorf, Wolfgang Braun et al. « Epitaxial phase-change materials ». physica status solidi (RRL) - Rapid Research Letters 6, no 11 (22 octobre 2012) : 415–17. http://dx.doi.org/10.1002/pssr.201206387.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Lu, Li Bing, Jing Wang, Meng Gao et Dong Li. « Slope Effect of Phase Change Materials in Phase Change Roof ». Advanced Materials Research 671-674 (mars 2013) : 1835–38. http://dx.doi.org/10.4028/www.scientific.net/amr.671-674.1835.

Texte intégral
Résumé :
Under summer climatic features of Daqing area in China, numerical simulation on the unsteady heat transfer characteristic of phase change roof was investigated, considering direct influence of solar radiation. The main influencing factor of roof slope in the phase change roof was analyzed in this paper. The results show that, increasing the roof slope is beneficial to promote the effect of heat-insulating and temperature-reducing of phase change roof, whereas the extent of the ascension is weak. Different slopes in roof structure have basically no influence on the delay effect.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Krebs, Daniel, Simone Raoux, Charles T. Rettner, Geoffrey W. Burr, Robert M. Shelby, Martin Salinga, C. Michael Jefferson et Matthias Wuttig. « Characterization of phase change memory materials using phase change bridge devices ». Journal of Applied Physics 106, no 5 (septembre 2009) : 054308. http://dx.doi.org/10.1063/1.3183952.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

SONG, ZhiTang, LiangCai WU, Feng RAO, SongLin FENG et XiLin ZHOU. « Study of phase change materials for phase change random access memory ». SCIENTIA SINICA Physica, Mechanica & ; Astronomica 46, no 10 (6 septembre 2016) : 107309. http://dx.doi.org/10.1360/sspma2016-00216.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Yamada, Noboru. « Erasable Phase-Change Optical Materials ». MRS Bulletin 21, no 9 (septembre 1996) : 48–50. http://dx.doi.org/10.1557/s0883769400036368.

Texte intégral
Résumé :
Almost all stones on a lane will become glassy if they are melted and quenched. They will become transparent and quite different in appearance from before vitrification. This visible change constitutes the recording of information. We might refer to the stone as “1 bit.” If the vitrified stone is subsequently kept at a high temperature under its melting point, it will lose its transparency and turn back to the appearance it had before melting and quenching. Thus the “1 bit” is erased. This is the simple mechanism of an erasable phase-change optical memory. In practical systems, a laser beam focused into a diffraction-limited spot is used for recording. This enables the spatial size of the “1 bit” to be very small (of submicron order) so that the recording density is very high.Figure 1 shows a transmission-electron-microscope (TEM) photograph of an actual optical disk. The elliptical smooth areas are recording marks in the amorphous state that were formed by high-power and short-duration laser irradiation. The shortest mark length is about 0.5 μm. The area surrounding the amorphous marks is in the crystalline state and consists of small grains. The two states differ from each other in optical properties such as refractive indices and optical absorption coefficients. Accordingly when the bits are illuminated with low-intensity laser light, the reflected light from the amorphous and crystalline regions is different and may be detected as information signals.The amorphous marks are erased by heating above the glass-transition temperature by laser irradiation, but with lower power than is used in the case of recording.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Piarristeguy, Andrea, Annie Pradel et Jean-Yves Raty. « Phase-change materials and rigidity ». MRS Bulletin 42, no 01 (janvier 2017) : 45–49. http://dx.doi.org/10.1557/mrs.2016.302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Liu, Kai, et Zhiting Tian. « Advances in phase-change materials ». Journal of Applied Physics 130, no 7 (21 août 2021) : 070401. http://dx.doi.org/10.1063/5.0064189.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Caldwell, Marissa A., Rakesh Gnana David Jeyasingh, H. S. Philip Wong et Delia J. Milliron. « Nanoscale phase change memory materials ». Nanoscale 4, no 15 (2012) : 4382. http://dx.doi.org/10.1039/c2nr30541k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Zhou, Xilin, Liangcai Wu, Zhitang Song, Feng Rao, Kun Ren, Cheng Peng, Sannian Song, Bo Liu, Ling Xu et Songlin Feng. « Phase transition characteristics of Al-Sb phase change materials for phase change memory application ». Applied Physics Letters 103, no 7 (12 août 2013) : 072114. http://dx.doi.org/10.1063/1.4818662.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Raoux, Simone, Cyril Cabral, Lia Krusin-Elbaum, Jean L. Jordan-Sweet, Kumar Virwani, Martina Hitzbleck, Martin Salinga, Anita Madan et Teresa L. Pinto. « Phase transitions in Ge–Sb phase change materials ». Journal of Applied Physics 105, no 6 (15 mars 2009) : 064918. http://dx.doi.org/10.1063/1.3091271.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Kohary, Krisztian, et C. David Wright. « Modelling the phase-transition in phase-change materials ». physica status solidi (b) 250, no 5 (20 mars 2013) : 944–48. http://dx.doi.org/10.1002/pssb.201248584.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Cabeza, Luisa F., Gabriel Zsembinszki et Marc Martín. « Evaluation of volume change in phase change materials during their phase transition ». Journal of Energy Storage 28 (avril 2020) : 101206. http://dx.doi.org/10.1016/j.est.2020.101206.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Hu, Chi, Lishan Sha, Chongxing Huang, Wanru Luo, Bo Li, Haohe Huang, Chenglong Xu et Kaikai Zhang. « Phase change materials in food : Phase change temperature, environmental friendliness, and systematization ». Trends in Food Science & ; Technology 140 (octobre 2023) : 104167. http://dx.doi.org/10.1016/j.tifs.2023.104167.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Gaspard, Jean-Pierre. « Vanishing‐Harmonicity and Phase‐Change Materials ». physica status solidi (RRL) – Rapid Research Letters 15, no 3 (24 février 2021) : 2000536. http://dx.doi.org/10.1002/pssr.202000536.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Gong, Zilun, Fuyi Yang, Letian Wang, Rui Chen, Junqiao Wu, Costas P. Grigoropoulos et Jie Yao. « Phase change materials in photonic devices ». Journal of Applied Physics 129, no 3 (21 janvier 2021) : 030902. http://dx.doi.org/10.1063/5.0027868.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Tominaga, Junji. « Topological memory using phase-change materials ». MRS Bulletin 43, no 5 (mai 2018) : 347–51. http://dx.doi.org/10.1557/mrs.2018.94.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Feng, Guohui, Tianyu Wang, Na He et Gang Wang. « A Review of Phase Change Materials ». E3S Web of Conferences 356 (2022) : 01062. http://dx.doi.org/10.1051/e3sconf/202235601062.

Texte intégral
Résumé :
Phase change materials (PCMs) use latent heat of phase change to store heat, which has the advantages of high energy storage density and low-temperature fluctuation. And it can be applied to many fields such as the building envelope and the Heating Ventilation and Air Conditioning (HVAC) system. The PCM is a kind of energy storage material with great potential, which positively impacts energy conservation and indoor environment improvement. In this paper, the relevant research on PCMs in recent years is reviewed, three common classification methods of PCMs are summarized, and the phase change temperature range is re-divided. The temperature of PCMs is less than 80°C for low-temperature PCMs, between 80°C and 200°C for medium-temperature PCMs, and above 200°C for high-temperature PCMs. Then, the characteristics and thermal properties of some commonly used PCMs are listed, including organic PCMs, inorganic PCMs, and some composite phase change materials (CPCMs). By summarizing the thermal properties of PCMs, it can provide a reference for the selection of PCMs. Finally, the article also introduces several kinds of preparation methods for CPCMs. The solutions to the problems of low thermal conductivity, supercooling, phase separation, and leakage of PCMs are discussed. And the future research topics of PCMs are prospected.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Liu, Panpan, Yan Gao et Xiao Chen. « Magnetically tightened multifunctional phase change materials ». Matter 5, no 6 (juin 2022) : 1639–42. http://dx.doi.org/10.1016/j.matt.2022.05.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Li, Zhou, Xiu-Wen Wu, Nan Wu, Yi-Yuan Fan, Xiao-Chen Sun, Ting-Ting Song et Qi Zhong. « Shape-Stabilized Thermochromic Phase-Change Materials ». Journal of Thermophysics and Heat Transfer 32, no 1 (janvier 2018) : 269–72. http://dx.doi.org/10.2514/1.t5088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Liu, Panpan, Xiao Chen et Ge Wang. « Advanced 3D-printed phase change materials ». Matter 4, no 11 (novembre 2021) : 3374–76. http://dx.doi.org/10.1016/j.matt.2021.10.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Grigor’ev, I. S., A. V. Dedov et A. V. Eletskii. « Phase Change Materials and Power Engineering ». Thermal Engineering 68, no 4 (avril 2021) : 257–69. http://dx.doi.org/10.1134/s0040601521040029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Rahman, Asif, Tadafumi Adschiri et Mohammed Farid. « Microindentation of Microencapsulated Phase Change Materials ». Advanced Materials Research 275 (juillet 2011) : 85–88. http://dx.doi.org/10.4028/www.scientific.net/amr.275.85.

Texte intégral
Résumé :
Due to the small size of microcapsules (1-1000 µm) used in a large number of applications, the individual rupture force of an individual particle has been difficult to obtain. A new technique involving nanomechanical testing was used in this study. We propose a standard method of testing the individual rupture force of Micronal®DS5008 microcapsules with an average size of approximately 11.2µm. Microcapsules were subjected to compressive force testing to determine the amount of force required to rupture the microcapsules. In order to find the mechanical properties of these microcapsules a standard nanoindentation system was setup with a 10µm radius diamond head cone indentation tip and the individual microcapsules were compressed till rupture occurred.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Boucíguez, A., L. T. Villa et M. A. Lara. « THERMAL CONDITIONING USING PHASE CHANGE MATERIALS ». Revista de Engenharia Térmica 2, no 1 (30 juin 2003) : 71. http://dx.doi.org/10.5380/reterm.v2i1.3521.

Texte intégral
Résumé :
A combined procedure using a classical qualitative result for initial and boundary problems associated to parabolic equations, numerical treatment and computational simulation, have been used to obtain some results on the dynamic behavior of the function that provides the position of the melting interface or moving front of the phase change material at each time. This material is used in a special device that is designed in order to get thermal conditioning in physical - chemical systems of practical importance. A monotone dependence of the melting interface upon some parameters is also shown.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Wójcik, Tadeusz M., Robert Pastuszko, Marta Wojda et Wojciech Kalawa. « Transitional Phenomena on Phase Change Materials ». EPJ Web of Conferences 67 (2014) : 02130. http://dx.doi.org/10.1051/epjconf/20146702130.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Gholipour, Behrad. « The promise of phase-change materials ». Science 366, no 6462 (10 octobre 2019) : 186–87. http://dx.doi.org/10.1126/science.aaz1129.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Li, Hai Jian, Zhi Jiang Ji, Zhi Jun Xin et Jing Wang. « Preparation of Phase Change Building Materials ». Advanced Materials Research 96 (janvier 2010) : 161–64. http://dx.doi.org/10.4028/www.scientific.net/amr.96.161.

Texte intégral
Résumé :
The types and characteristics of phase change materials were discussed. With respect to application in building materials, the PCM should have more attractive properties including high latent heat values, stability and proper melting point, inflammability, corrosiveness and supercooling. Phase change building material (PCBM) was prepared using vacuum absorption method and tested by means of Differential Scanning Calorimetry(DSC) and Scanning Electron Microscopy(SEM). The testing results have shown that organic PCM was absorbed into the holes of inorganic carriers completely and distributed evenly with stable performances. It is concluded that the composite PCM has steady temperature-adjusting function and the preparation means is acceptable.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Shim, H., E. A. McCullough et B. W. Jones. « Using Phase Change Materials in Clothing ». Textile Research Journal 71, no 6 (juin 2001) : 495–502. http://dx.doi.org/10.1177/004051750107100605.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Liu, Feng Q., Chenhao Ge, Kun Xu, Mengqi Ye, Yuchun Wang, Yufei Chen, Sherry Xia et al. « CMP Process for Phase Change Materials ». ECS Transactions 19, no 7 (18 décembre 2019) : 73–79. http://dx.doi.org/10.1149/1.3123776.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Kiwan, Suhil, Hisham Ahmad, Ammar Alkhalidi, Wahib O. Wahib et Wael Al-Kouz. « Photovoltaic Cooling Utilizing Phase Change Materials ». E3S Web of Conferences 160 (2020) : 02004. http://dx.doi.org/10.1051/e3sconf/202016002004.

Texte intégral
Résumé :
A theoretical analysis based on mathematical formulations and experimental test to a photovoltaic system cooled by Phase Change Material (PCM) is carried out and documented. The PCM is attached to the back of the PV panel to control the temperature of cells in the PV panel. The experimental tests were done to solar systems with and without using PCM for comparison purposes. A PCM of paraffin graphite panels of thickness15 mm has covered the back of the panel. This layer was covered with an aluminum sheet fixed tightly to the panel frame. In the experimental test, it was found that when the average cell temperature exceeds the melting point temperature of the PCM, the efficiency of the system increases. However, when the cell temperature did not exceed the melting temperature of the PCM, the use of the PCM will affect negatively the system efficiency.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Wełnic, Wojciech, et Matthias Wuttig. « Reversible switching in phase-change materials ». Materials Today 11, no 6 (juin 2008) : 20–27. http://dx.doi.org/10.1016/s1369-7021(08)70118-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

O'Neil, Gregory W., Tian Qing Yen, Michael A. Leitch, Gary R. Wilson, Emily A. Brown, David A. Rider et Christopher M. Reddy. « Alkenones as renewable phase change materials ». Renewable Energy 134 (avril 2019) : 89–94. http://dx.doi.org/10.1016/j.renene.2018.11.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Sittisart, Pongphat, et Mohammed M. Farid. « Fire retardants for phase change materials ». Applied Energy 88, no 9 (septembre 2011) : 3140–45. http://dx.doi.org/10.1016/j.apenergy.2011.02.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Zmeškal, O., et L. Dohnalová. « Thermal Properties of Phase Change Materials ». International Journal of Thermophysics 35, no 9-10 (24 avril 2013) : 1900–1911. http://dx.doi.org/10.1007/s10765-013-1436-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Lencer, Dominic, Martin Salinga, Blazej Grabowski, Tilmann Hickel, Jörg Neugebauer et Matthias Wuttig. « A map for phase-change materials ». Nature Materials 7, no 12 (16 novembre 2008) : 972–77. http://dx.doi.org/10.1038/nmat2330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Zheng, Qinghui, Yuxi Wang et Jia Zhu. « Nanoscale phase-change materials and devices ». Journal of Physics D : Applied Physics 50, no 24 (24 mai 2017) : 243002. http://dx.doi.org/10.1088/1361-6463/aa70b0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Luckas, Jennifer, Daniel Krebs, Stephanie Grothe, Josef Klomfaß, Reinhard Carius, Christophe Longeaud et Matthias Wuttig. « Defects in amorphous phase-change materials ». Journal of Materials Research 28, no 9 (9 mai 2013) : 1139–47. http://dx.doi.org/10.1557/jmr.2013.72.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Voit, Wolfgang, Werner Zapka, Andreas Menzel, Florian Mezger et Tom Sutter. « Inkjet Printing of Phase-Change Materials ». NIP & ; Digital Fabrication Conference 24, no 1 (1 janvier 2008) : 678–83. http://dx.doi.org/10.2352/issn.2169-4451.2008.24.1.art00057_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

王, 执乾. « Preparation and Properties of Phase Change Microcapsules and Thermal Conductive Phase Change Materials ». Journal of Advances in Physical Chemistry 11, no 03 (2022) : 167–71. http://dx.doi.org/10.12677/japc.2022.113019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie