Articles de revues sur le sujet « Microbunch »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Microbunch.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 49 meilleurs articles de revues pour votre recherche sur le sujet « Microbunch ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Adli, Erik, et Patric Muggli. « Proton-Beam-Driven Plasma Acceleration ». Reviews of Accelerator Science and Technology 09 (janvier 2016) : 85–104. http://dx.doi.org/10.1142/s1793626816300048.

Texte intégral
Résumé :
We describe the main ideas, promises and challenges related to proton-driven plasma wakefield acceleration. Existing high-energy proton beams have the potential to accelerate electron beams to the TeV scale in a single plasma stage. In order to drive a wake effectively the available beams must be either highly compressed or microbunched. The self-modulation instability has been suggested as a way to microbunch the proton beams. The AWAKE project at CERN is currently the only planned proton-driven plasma acceleration experiment. A self-modulated CERN SPS beam will be used to drive a plasma wake. We describe the design choices and experimental setup for AWAKE, and discuss briefly the short-term objectives as well as longer-term ideas for the project.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Schächter, Levi, et Wayne D. Kimura. « Quasi-monoenergetic ultrashort microbunch electron source ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 875 (décembre 2017) : 80–86. http://dx.doi.org/10.1016/j.nima.2017.08.041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Shields, W., R. Bartolini, G. Boorman, P. Karataev, A. Lyapin, J. Puntree et G. Rehm. « Microbunch Instability Observations from a THz Detector at Diamond Light Source ». Journal of Physics : Conference Series 357 (3 mai 2012) : 012037. http://dx.doi.org/10.1088/1742-6596/357/1/012037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Huang, Z., et T. Shaftan. « Impact of beam energy modulation on rf zero-phasing microbunch measurements ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 528, no 1-2 (août 2004) : 345–49. http://dx.doi.org/10.1016/j.nima.2004.04.065.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Carlsten, Bruce E., Kip A. Bishofberger, Leanne D. Duffy, John W. Lewellen, Quinn R. Marksteiner et Nikolai A. Yampolsky. « Using Emittance Partitioning Instead of a Laser Heater to Suppress the Microbunch Instability ». IEEE Transactions on Nuclear Science 63, no 2 (avril 2016) : 921–29. http://dx.doi.org/10.1109/tns.2015.2498619.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Petzoldt, J., K. E. Roemer, W. Enghardt, F. Fiedler, C. Golnik, F. Hueso-González, S. Helmbrecht et al. « Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility ». Physics in Medicine and Biology 61, no 6 (4 mars 2016) : 2432–56. http://dx.doi.org/10.1088/0031-9155/61/6/2432.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kaufmann, Pierre, et Jean-Pierre Raulin. « Can microbunch instability on solar flare accelerated electron beams account for bright broadband coherent synchrotron microwaves ? » Physics of Plasmas 13, no 7 (juillet 2006) : 070701. http://dx.doi.org/10.1063/1.2244526.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Carlsten, Bruce E., Petr M. Anisimov, Cris W. Barnes, Quinn R. Marksteiner, River R. Robles et Nikolai Yampolsky. « High-Brightness Beam Technology Development for a Future Dynamic Mesoscale Materials Science Capability ». Instruments 3, no 4 (29 septembre 2019) : 52. http://dx.doi.org/10.3390/instruments3040052.

Texte intégral
Résumé :
A future capability in dynamic mesoscale materials science is needed to study the limitations of materials under irreversible and extreme conditions, where these limitations are caused by nonuniformities and defects in the mesoscale. This capability gap could potentially be closed with an X-ray free-electron laser (XFEL), producing 5 × 1010 photons with an energy of 42 keV, known as the Matter–Radiation Interactions in Extremes (MaRIE) XFEL. Over the last few years, researchers at the Los Alamos National Laboratory have developed a preconceptual design for a MaRIE-class XFEL based on existing high-brightness beam technologies, including superconducting L-band cryomodules. However, the performance of a MaRIE-class XFEL can be improved and the risk of its operation reduced by investing in emerging high-brightness beam technologies, such as the development of high-gradient normal conducting radio frequency (RF) structures. Additionally, an alternative XFEL architecture, which generates a series of high-current microbunches instead of a single bunch with uniformly high current along it, may suppress the most important emittance degradation effects in the accelerator and in the XFEL undulator. In this paper, we describe the needed dynamic mesoscale materials science capability, a MaRIE-class XFEL, and the proposed microbunched XFEL accelerator architecture in detail.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Seo, Yoonho, et Wonhyung Lee. « Stimulated Superradiance Emitted from Periodic Microbunches of Electrons ». Japanese Journal of Applied Physics 49, no 11 (22 novembre 2010) : 116402. http://dx.doi.org/10.1143/jjap.49.116402.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lumpkin, A. H. « Coherent optical transition radiation imaging for compact accelerator electron-beam diagnostics ». International Journal of Modern Physics A 34, no 34 (10 décembre 2019) : 1943013. http://dx.doi.org/10.1142/s0217751x19430139.

Texte intégral
Résumé :
Application of coherent optical transition radiation (COTR) diagnostics to compact accelerators has been demonstrated for the laser-driven plasma accelerator case recently. It is proposed that such diagnostics for beam size, beam divergence, microbunching fraction, spectral content, and bunch length would be useful before and after any subsequent acceleration in crystals or nanostructures. In addition, there are indications that under some scenarios a microbunched beam could resonantly excite wake fields in nanostructures that might lead to an increased acceleration gradient.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Aginian, M. A., K. A. Ispirian, M. K. Ispiryan et M. I. Ivanyan. « Coherent X-ray Cherenkov radiation produced by microbunched beams ». Journal of Physics : Conference Series 517 (30 mai 2014) : 012040. http://dx.doi.org/10.1088/1742-6596/517/1/012040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Hemsing, E., et J. B. Rosenzweig. « Coherent transition radiation from a helically microbunched electron beam ». Journal of Applied Physics 105, no 9 (mai 2009) : 093101. http://dx.doi.org/10.1063/1.3121207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Schaap, B. H., T. D. C. de Vos, P. W. Smorenburg et O. J. Luiten. « Photon yield of superradiant inverse Compton scattering from microbunched electrons ». New Journal of Physics 24, no 3 (1 mars 2022) : 033040. http://dx.doi.org/10.1088/1367-2630/ac59eb.

Texte intégral
Résumé :
Abstract Compact x-ray sources offering high-brightness radiation for advanced imaging applications are highly desired. We investigate, analytically and numerically, the photon yield of superradiant inverse Compton scattering from microbunched electrons in the linear Thomson regime, using a classical electrodynamics approach. We show that for low electron beam energy, which is generic to inverse Compton sources, the single electron radiation distribution does not match well to collective amplification pattern induced by a density modulated electron beam. Consequently, for head-on scattering from a visible laser, the superradiant yield is limited by the transverse size of typical electron bunches driving Compton sources. However, by simultaneously increasing the electron beam energy and introducing an oblique scattering geometry, the superradiant yield can be increased by orders of magnitude.
Styles APA, Harvard, Vancouver, ISO, etc.
14

He, Zhigang, Yuanfang Xu, Weiwei Li et Qika Jia. « Generation of quasiequally spaced ultrashort microbunches in a photocathode rf gun ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 775 (mars 2015) : 77–83. http://dx.doi.org/10.1016/j.nima.2014.12.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Zhang, Haoran, Wenxing Wang, Shimin Jiang, Cheng Li, Zhigang He, Shancai Zhang, Qika Jia, Lin Wang et Duohui He. « Coherent terahertz radiation with orbital angular momentum by helically microbunched electron beam ». AIP Advances 11, no 5 (1 mai 2021) : 055115. http://dx.doi.org/10.1063/5.0052083.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Gevorgian, L. A., K. A. Ispirian et A. H. Shamamian. « Crystalline undulator radiation of microbunched beams taking into account the medium polarization ». Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms 309 (août 2013) : 63–66. http://dx.doi.org/10.1016/j.nimb.2013.02.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Parodi, K., P. Crespo, H. Eickhoff, T. Haberer, J. Pawelke, D. Schardt et W. Enghardt. « Random coincidences during in-beam PET measurements at microbunched therapeutic ion beams ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 545, no 1-2 (juin 2005) : 446–58. http://dx.doi.org/10.1016/j.nima.2005.02.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Ispirian, K. A. « Coherent X-ray radiation produced by microbunched beams in amorphous and crystalline radiators ». Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms 309 (août 2013) : 4–9. http://dx.doi.org/10.1016/j.nimb.2013.01.072.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Zhang, Huibo, Ivan Konoplev et George Doucas. « A tunable source of coherent terahertz radiation driven by the microbunched electron beam ». Journal of Physics D : Applied Physics 53, no 10 (24 décembre 2019) : 105501. http://dx.doi.org/10.1088/1361-6463/ab5d69.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Kulipanov, G. N., A. S. Sokolov et N. A. Vinokurov. « Coherent undulator radiation of an electron beam, microbunched for the FEL power outcoupling ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 375, no 1-3 (juin 1996) : 576–79. http://dx.doi.org/10.1016/0168-9002(96)00038-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Geloni, Gianluca, Vitali Kocharyan et Evgeni Saldin. « On radiation emission from a microbunched beam with wavefront tilt and its experimental observation ». Optics Communications 410 (mars 2018) : 180–86. http://dx.doi.org/10.1016/j.optcom.2017.10.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lumpkin, A. H., M. Erdmann, J. W. Lewellen, Y. C. Chae, R. J. Dejus, P. Den Hartog, Y. Li, S. V. Milton, D. W. Rule et G. Wiemerslage. « First observations of COTR due to a microbunched beam in the VUV at 157nm ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 528, no 1-2 (août 2004) : 194–98. http://dx.doi.org/10.1016/j.nima.2004.04.045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Tsai, Cheng-Ying, et Weilun Qin. « Semi-analytical analysis of high-brightness microbunched beam dynamics with collective and intrabeam scattering effects ». Physics of Plasmas 28, no 1 (janvier 2021) : 013112. http://dx.doi.org/10.1063/5.0038246.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Stöckli, Martin P. « Production of microbunched beams of very highly charged ions with an electron beam ion source ». Review of Scientific Instruments 69, no 2 (février 1998) : 649–51. http://dx.doi.org/10.1063/1.1148463.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Kimura, W. D., N. E. Andreev, M. Babzien, I. Ben-Zvi, D. B. Cline, C. E. Dilley, S. C. Gottschalk et al. « Inverse free electron lasers and laser wakefield acceleration driven by CO 2 lasers ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 364, no 1840 (24 janvier 2006) : 611–22. http://dx.doi.org/10.1098/rsta.2005.1726.

Texte intégral
Résumé :
The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e -beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e -beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e -beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO 2 laser beam.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Aginian, M. A., K. A. Ispirian et M. K. Ispiryan. « Coherent X-ray diffraction radiation produced by microbunched beams passing close to the edge of a slab ». Journal of Contemporary Physics (Armenian Academy of Sciences) 47, no 2 (28 février 2012) : 53–57. http://dx.doi.org/10.3103/s1068337212020028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Xu, Haoran, Petr M. Anisimov, Bruce E. Carlsten, Leanne D. Duffy, Quinn R. Marksteiner et River R. Robles. « X-ray Free Electron Laser Accelerator Lattice Design Using Laser-Assisted Bunch Compression ». Applied Sciences 13, no 4 (10 février 2023) : 2285. http://dx.doi.org/10.3390/app13042285.

Texte intégral
Résumé :
We report the start-to-end modeling of our accelerator lattice design employing a laser-assisted bunch compression (LABC) scheme in an X-ray free electron laser (XFEL), using the proposed Matter-Radiation Interactions in Extremes (MaRIE) XFEL parameters. The accelerator lattice utilized a two-stage bunch compression scheme, with the first bunch compressor performing a conventional bulk compression enhancing the beam current from 20 A to 500 A, at 750 MeV. The second bunch compression was achieved by modulating the beam immediately downstream of the first bunch compressor by a laser with 1-μm wavelength in a laser modulator, accelerating the beam to the final energy of 12 GeV, and compressing the individual 1-μm periods of the modulated beam into a sequence of microbunches with 3-kA current spikes by the second bunch compressor. The LABC architecture presented had been developed based on the scheme of enhanced self-amplified spontaneous emission (ESASE), but operated in a disparate regime of parameters. Enabled by the novel technology of the cryogenic normal conducting radiofrequency photoinjector, we investigated an electron beam with ultra-low emittance at the starting point of the lattice design. Our work aimed at mitigating the well-known beam instabilities to preserve the beam emittance and suppress the energy spread growth.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Appel, Sabrina, et Oliver Boine-Frankenheim. « Microbunch dynamics and multistream instability in a heavy-ion synchrotron ». Physical Review Special Topics - Accelerators and Beams 15, no 5 (17 mai 2012). http://dx.doi.org/10.1103/physrevstab.15.054201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

MacArthur, James P., Alberto A. Lutman, Jacek Krzywinski et Zhirong Huang. « Microbunch Rotation and Coherent Undulator Radiation from a Kicked Electron Beam ». Physical Review X 8, no 4 (29 novembre 2018). http://dx.doi.org/10.1103/physrevx.8.041036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Cousineau, S., V. Danilov, J. Holmes et R. Macek. « Space-charge-sustained microbunch structure in the Los Alamos Proton Storage Ring ». Physical Review Special Topics - Accelerators and Beams 7, no 9 (8 septembre 2004). http://dx.doi.org/10.1103/physrevstab.7.094201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Ricci, Kenneth N., et Todd I. Smith. « Longitudinal electron beam and free electron laser microbunch measurements using off-phase rf acceleration ». Physical Review Special Topics - Accelerators and Beams 3, no 3 (27 mars 2000). http://dx.doi.org/10.1103/physrevstab.3.032801.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Shevelev, M., A. Aryshev, N. Terunuma et J. Urakawa. « Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson interferometer ». Physical Review Accelerators and Beams 20, no 10 (4 octobre 2017). http://dx.doi.org/10.1103/physrevaccelbeams.20.103401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Li, Y., W. Decking, B. Faatz et J. Pflueger. « Microbunch preserving bending system for a helical radiator at the European X-ray Free Electron Laser ». Physical Review Special Topics - Accelerators and Beams 13, no 8 (10 août 2010). http://dx.doi.org/10.1103/physrevstab.13.080705.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Tsai, Cheng-Ying, Alexander Wu Chao, Yi Jiao, Hao-Wen Luo, Make Ying et Qinghong Zhou. « Coherent-radiation-induced longitudinal single-pass beam breakup instability of a steady-state microbunch train in an undulator ». Physical Review Accelerators and Beams 24, no 11 (29 novembre 2021). http://dx.doi.org/10.1103/physrevaccelbeams.24.114401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Stupakov, G., et P. Baxevanis. « Microbunched electron cooling with amplification cascades ». Physical Review Accelerators and Beams 22, no 3 (20 mars 2019). http://dx.doi.org/10.1103/physrevaccelbeams.22.034401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Baxevanis, P., et G. Stupakov. « Transverse dynamics considerations for microbunched electron cooling ». Physical Review Accelerators and Beams 22, no 8 (23 août 2019). http://dx.doi.org/10.1103/physrevaccelbeams.22.081003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Baxevanis, P., et G. Stupakov. « Hadron beam evolution in microbunched electron cooling ». Physical Review Accelerators and Beams 23, no 11 (6 novembre 2020). http://dx.doi.org/10.1103/physrevaccelbeams.23.111001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Ratner, D. « Microbunched Electron Cooling for High-Energy Hadron Beams ». Physical Review Letters 111, no 8 (20 août 2013). http://dx.doi.org/10.1103/physrevlett.111.084802.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Stupakov, G. « Cooling rate for microbunched electron cooling without amplification ». Physical Review Accelerators and Beams 21, no 11 (2 novembre 2018). http://dx.doi.org/10.1103/physrevaccelbeams.21.114402.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Xiang, Dao, Erik Hemsing, Michael Dunning, Carsten Hast et Tor Raubenheimer. « Femtosecond Visualization of Laser-Induced Optical Relativistic Electron Microbunches ». Physical Review Letters 113, no 18 (30 octobre 2014). http://dx.doi.org/10.1103/physrevlett.113.184802.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Muggli, P., V. Yakimenko, M. Babzien, E. Kallos et K. P. Kusche. « Generation of Trains of Electron Microbunches with Adjustable Subpicosecond Spacing ». Physical Review Letters 101, no 5 (29 juillet 2008). http://dx.doi.org/10.1103/physrevlett.101.054801.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Hacker, K., R. Molo, S. Khan, L. L. Lazzarino, C. Lechner, Th Maltezopoulos, T. Plath et al. « Measurements and simulations of seeded electron microbunches with collective effects ». Physical Review Special Topics - Accelerators and Beams 18, no 9 (30 septembre 2015). http://dx.doi.org/10.1103/physrevstab.18.090704.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Ispirian, K. A., et M. Ispiryan. « Coherent x-ray transition and diffraction radiation of microbunched beams ». Physical Review Special Topics - Accelerators and Beams 16, no 2 (5 février 2013). http://dx.doi.org/10.1103/physrevstab.16.020702.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Schönenberger, Norbert, Anna Mittelbach, Peyman Yousefi, Joshua McNeur, Uwe Niedermayer et Peter Hommelhoff. « Generation and Characterization of Attosecond Microbunched Electron Pulse Trains via Dielectric Laser Acceleration ». Physical Review Letters 123, no 26 (26 décembre 2019). http://dx.doi.org/10.1103/physrevlett.123.264803.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Zhou, F., D. B. Cline et W. D. Kimura. « Beam dynamics analysis of femtosecond microbunches produced by the staged electron laser acceleration experiment ». Physical Review Special Topics - Accelerators and Beams 6, no 5 (29 mai 2003). http://dx.doi.org/10.1103/physrevstab.6.054201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Sedaghat, M., S. Barzegar et A. R. Niknam. « Quasi-phase-matched laser wakefield acceleration of electrons in an axially density-modulated plasma channel ». Scientific Reports 11, no 1 (26 juillet 2021). http://dx.doi.org/10.1038/s41598-021-94751-y.

Texte intégral
Résumé :
AbstractQuasi-phase matching in corrugated plasma channels has been proposed as a way to overcome the dephasing limitation in laser wakefield accelerators. In this study, the phase-lock dynamics of a relatively long electron bunch injected in an axially-modulated plasma waveguide is investigated by performing particle simulations. The main objective here is to obtain a better understanding of how the transverse and longitudinal components of the wakefield as well as the initial properties of the beam affect its evolution and qualities. The results indicate that the modulation of the electron beam generates trains of electron microbunches. It is shown that increasing the initial energy of the electron beam leads to a reduction in its final energy spread and produces a more collimated electron bunch. For larger bunch diameters, the final emittance of the electron beam increases due to the stronger experienced transverse forces and the larger diameter itself. Increasing the laser power improves the maximum energy gain of the electron beam. However, the stronger generated focusing and defocusing fields degrade the collimation of the bunch.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Schaap, B. H., P. W. Smorenburg et O. J. Luiten. « Isolated attosecond X-ray pulses from superradiant thomson scattering by a relativistic chirped electron mirror ». Scientific Reports 12, no 1 (17 novembre 2022). http://dx.doi.org/10.1038/s41598-022-24288-1.

Texte intégral
Résumé :
AbstractTime-resolved investigation of electron dynamics relies on the generation of isolated attosecond pulses in the (soft) X-ray regime. Thomson scattering is a source of high energy radiation of increasing prevalence in modern labs, complementing large scale facilities like undulators and X-ray free electron lasers. We propose a scheme to generate isolated attosecond X-ray pulses based on Thomson scattering by colliding microbunched electrons on a chirped laser pulse. The electrons collectively act as a relativistic chirped mirror, which superradiantly reflects the laser pulse into a single localized beat. As such, this technique extends chirped pulse compression, developed for radar and applied in optics, to the X-ray regime. In this paper we theoretically show that, by using this approach, attosecond soft X-ray pulses with GW peak power can be generated from pC electron bunches at tens of MeV electron beam energy. While we propose the generation of few cycle X-ray pulses on a table-top system, the theory is universally scalable over the electromagnetic spectrum.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Marinelli, A., M. Dunning, S. Weathersby, E. Hemsing, D. Xiang, G. Andonian, F. O’Shea, Jianwei Miao, C. Hast et J. B. Rosenzweig. « Single-Shot Coherent Diffraction Imaging of Microbunched Relativistic Electron Beams for Free-Electron Laser Applications ». Physical Review Letters 110, no 9 (1 mars 2013). http://dx.doi.org/10.1103/physrevlett.110.094802.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Sharma, Ashutosh, et Christos Kamperidis. « High energy proton micro-bunches from a laser plasma accelerator ». Scientific Reports 9, no 1 (25 septembre 2019). http://dx.doi.org/10.1038/s41598-019-50348-0.

Texte intégral
Résumé :
Abstract Recent advances on laser-driven ion accelerators have sparked an increased interest in such energetic particle sources, particularly towards the viability of their usage in a breadth of applications, such as high energy physics and medical applications. Here, we identify a new ion acceleration mechanism and we demonstrate, via particle-in-cell simulations, for the first time the generation of high energy, monochromatic proton micro-bunches while witnessing the acceleration and self-modulation of the accelerated proton beam in a dual-gas target, consisting of mixed ion species. In the proposed ion acceleration mechanism due to the interaction of an ultra-short, ultra-intense (2 PW, 20 fs) laser pulses with near-critical-density partially ionized plasmas (C & H species), we numerically observed high energy monochromatic proton microbunches of high quality (peak proton energy 350 MeV, laser to proton conversion efficiency ~10−4 and angular divergence <10 degree), which can be of high relevance for medical applications. We envisage that through this scheme, the range of attained energies and the monochromaticity of the accelerated protons can be increased with existing laser facilities or allow for laser-driven ion acceleration investigations to be pursued at moderate energies in smaller scale laser laboratories, hence reducing the size of the accelerators. The use of mixed-gas targets will enable high repetition rate operation of these accelerators, free of plasma debris and electromagnetic pulse disruptions.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie