Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Mg2FeH6.

Articles de revues sur le sujet « Mg2FeH6 »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Mg2FeH6 ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Leiva, Daniel Rodrigo, André Castro De Souza Villela, Carlos de Oliveira Paiva-Santos, Daniel Fruchart, Salvatore Miraglia, Tomaz Toshimi Ishikawa et Walter José Botta Filho. « High-Yield Direct Synthesis of Mg2FeH6 from the Elements by Reactive Milling ». Solid State Phenomena 170 (avril 2011) : 259–62. http://dx.doi.org/10.4028/www.scientific.net/ssp.170.259.

Texte intégral
Résumé :
Magnesium complex hydrides as Mg2FeH6 are interesting phases for hydrogen storage in the solid state, mainly due to its high gravimetric and volumetric densities of H2. However, the synthesis of this hydride is not trivial because the intermetallic phase Mg2Fe does not exist and Mg and Fe are virtually immiscible under equilibrium conditions. In this study, we have systematically studied the influence of the most important processing parameters in reactive milling under hydrogen (RM) for Mg2FeH6 synthesis: milling time, ball-to-powder weight ratio (BPR), hydrogen pressure and type of mill. Low cost 2Mg-Fe mixtures were used as raw materials. An important control of the Mg2FeH6 direct synthesis by RM was attained. In optimized combinations of the processing parameters, very high proportions of the complex hydride could be obtained.
Styles APA, Harvard, Vancouver, ISO, etc.
2

De Lima, Gisele Ferreira, Daniel Rodrigo Leiva, Tomaz Toshimi Ishikawa, Claudemiro Bolfarini, Claudio Shyinti Kiminami, Walter José Botta Filho et Alberto Moreira Jorge. « Hydrogen Sorption Properties of the Complex Hydride Mg2FeH6 Consolidated by HPT ». Materials Science Forum 667-669 (décembre 2010) : 1053–58. http://dx.doi.org/10.4028/www.scientific.net/msf.667-669.1053.

Texte intégral
Résumé :
In the present work, we have processed 2Mg-Fe mixtures by reactive milling (RM) under hydrogen atmosphere to synthesize Mg2FeH6 phase in the powder form which were then systematically processed by High Pressure Torsion (HPT) to produce bulk samples. The bulk samples were characterized in terms of microstructural and structural analyses and of hydrogen desorption properties. The hydrogen sorption properties after HPT processing was evaluated in comparison with the Mg2FeH6 powder obtained by RM and with commercial MgH2. HPT processing of Mg2FeH6 can produce bulks with a high density of defects that drastically lower the activation barrier for hydrogen desorption. Therefore, the bulk nanocrystalline Mg2FeH6 samples show endothermic hydrogen decomposition peak at a temperature around 320°C. In addition, when compared with the Mg2FeH6 and MgH2 powders, the Mg2FeH6 HPT disks showed the same results presented by the Mg2FeH6 powders and certainly decreases the onset transition temperature by as much as 160°C when compared with the MgH2 powders.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Puszkiel, Julián, M. Castro Riglos, José Ramallo-López, Martin Mizrahi, Thomas Gemming, Claudio Pistidda, Pierre Arneodo Larochette et al. « New Insight on the Hydrogen Absorption Evolution of the Mg–Fe–H System under Equilibrium Conditions ». Metals 8, no 11 (19 novembre 2018) : 967. http://dx.doi.org/10.3390/met8110967.

Texte intégral
Résumé :
Mg2FeH6 is regarded as potential hydrogen and thermochemical storage medium due to its high volumetric hydrogen (150 kg/m3) and energy (0.49 kWh/L) densities. In this work, the mechanism of formation of Mg2FeH6 under equilibrium conditions is thoroughly investigated applying volumetric measurements, X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), and the combination of scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) and high-resolution transmission electron microscopy (HR-TEM). Starting from a 2Mg:Fe stoichiometric powder ratio, thorough characterizations of samples taken at different states upon hydrogenation under equilibrium conditions confirm that the formation mechanism of Mg2FeH6 occurs from elemental Mg and Fe by columnar nucleation of the complex hydride at boundaries of the Fe seeds. The formation of MgH2 is enhanced by the presence of Fe. However, MgH2 does not take part as intermediate for the formation of Mg2FeH6 and acts as solid-solid diffusion barrier which hinders the complete formation of Mg2FeH6. This work provides novel insight about the formation mechanism of Mg2FeH6.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Brutti, Sergio, Luca Farina, Francesco Trequattrini, Oriele Palumbo, Priscilla Reale, Laura Silvestri, Stefania Panero et Annalisa Paolone. « Extremely Pure Mg2FeH6 as a Negative Electrode for Lithium Batteries ». Energies 11, no 8 (27 juillet 2018) : 1952. http://dx.doi.org/10.3390/en11081952.

Texte intégral
Résumé :
Nanocrystalline samples of Mg-Fe-H were synthesized by mixing of MgH2 and Fe in a 2:1 molar ratio by hand grinding (MIX) or by reactive ball milling (RBM) in a high-pressure vial. Hydrogenation procedures were performed at various temperatures in order to promote the full conversion to Mg2FeH6. Pure Mg2FeH6 was obtained only for the RBM material cycled at 485 °C. This extremely pure Mg2FeH6 sample was investigated as an anode for lithium batteries. The reversible electrochemical lithium incorporation and de-incorporation reactions were analyzed in view of thermodynamic evaluations, potentiodynamic cycling with galvanostatic acceleration (PCGA), and ex situ X-ray Diffraction (XRD) tests. The Mg2FeH6 phase underwent a conversion reaction; the Mg metal produced in this reaction was alloyed upon further reduction. The back conversion reaction in a lithium cell was here demonstrated for the first time in a stoichiometric extremely pure Mg2FeH6 phase: the reversibility of the overall conversion process was only partial with an overall coulombic yield of 17% under quasi-thermodynamic control. Ex situ XRD analysis highlighted that the material after a full discharge/charge in a lithium cell was strongly amorphized. Under galvanostatic cycling at C/20, C/5 and 1 C, the Mg2FeH6 electrodes were able to supply a reversible capacity with increasing coulombic efficiency and decreasing specific capacity as the current rate increased.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Langmi, Henrietta W., G. Sean McGrady, Rebecca Newhouse et Ewa Rönnebro. « Mg2FeH6–LiBH4 and Mg2FeH6–LiNH2 composite materials for hydrogen storage ». International Journal of Hydrogen Energy 37, no 8 (avril 2012) : 6694–99. http://dx.doi.org/10.1016/j.ijhydene.2012.01.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ghaani, Mohammad R., Michele Catti et Niall J. English. « In Situ Synchrotron X-ray Diffraction Studies of Hydrogen-Desorption Properties of 2LiBH4–Mg2FeH6 Composite ». Molecules 26, no 16 (11 août 2021) : 4853. http://dx.doi.org/10.3390/molecules26164853.

Texte intégral
Résumé :
Adding a secondary complex metal hydride can either kinetically or thermodynamically facilitate dehydrogenation reactions. Adding Mg2FeH6 to LiBH4 is energetically favoured, since FeB and MgB2 are formed as stable intermediate compounds during dehydrogenation reactions. Such “hydride destabilisation” enhances H2-release thermodynamics from H2-storage materials. Samples of the LiBH4 and Mg2FeH6 with a 2:1 molar ratio were mixed and decomposed under three different conditions (dynamic decomposition under vacuum, dynamic decomposition under a hydrogen atmosphere, and isothermal decomposition). In situ synchrotron X-ray diffraction results revealed the influence of decomposition conditions on the selected reaction path. Dynamic decomposition of Mg2FeH6–LiBH4 under vacuum, or isothermal decomposition at low temperatures, was found to induce pure decomposition of LiBH4, whilst mixed decomposition of LiBH4 + Mg and formation of MgB2 were achieved via high-temperature isothermal dehydrogenation.
Styles APA, Harvard, Vancouver, ISO, etc.
7

PARKER, S. F., K. P. J. WILLIAMS, M. BORTZ et K. YVON. « ChemInform Abstract : Inelastic Neutron Scattering, Infrared, and Raman Spectroscopic Studies of Mg2FeH6 and Mg2FeD6. » ChemInform 29, no 5 (24 juin 2010) : no. http://dx.doi.org/10.1002/chin.199805010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Polanski, M., T. Płociński, I. Kunce et J. Bystrzycki. « Dynamic synthesis of ternary Mg2FeH6 ». International Journal of Hydrogen Energy 35, no 3 (février 2010) : 1257–66. http://dx.doi.org/10.1016/j.ijhydene.2009.09.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Malka, Iwona, Tomasz Czujko, Jerzy Bystrzycki et Leszek Jaroszewicz. « The role of Mg2FeH6 formation on the hydrogenation properties of MgH2-FeFx composites ». Open Chemistry 9, no 4 (1 août 2011) : 701–5. http://dx.doi.org/10.2478/s11532-011-0051-5.

Texte intégral
Résumé :
AbstractThe hydrogenation properties of magnesium hydride mechanically milled with iron fluorides (FeF2 and FeF3), were investigated by Temperature Programmed Desorption (TPD) and volumetric methods using a Sieverts-type apparatus, as prepared upon dehydrogenation and finally upon subsequent hydrogenation. The activation energy of hydrogen desorption (Ea), calculated from the Kissinger formula using TPD measurements obtained with different heating rates, showed significant decreases of Ea in comparison to that of milled MgH2 without any dopants. Moreover, the influence of these metal fluorides on the thermodynamics of the decomposition process was also examined. In the case of the FeF2 dopant, rehydrogenation following desorption caused the complete decomposition of the iron fluoride to BCC iron and the formation of a predominant MgH2 phase. In contrast to FeF2, the addition of FeF3 led to the formation of β-MgH2 as a major phase coexisting with Mg2FeH6 and MgF2 compounds. The presence of pure Fe in the MgH2+FeF2 composite, as opposed to MgH2+FeF3 containing Mg2FeH6 and MgF2, did not cause any significant influence on the sorption properties of MgH2. Moreover, the original material doped with FeF3 predominantly showed iron in the Mg2FeH6 compound, while the FeF2 dopant iron mostly showed the nearly pure BCC metallic phase
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wang, Yan, Fangyi Cheng, Chunsheng Li, Zhanliang Tao et Jun Chen. « Preparation and characterization of nanocrystalline Mg2FeH6 ». Journal of Alloys and Compounds 508, no 2 (octobre 2010) : 554–58. http://dx.doi.org/10.1016/j.jallcom.2010.08.119.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Huot, J., S. Boily, E. Akiba et R. Schulz. « Direct synthesis of Mg2FeH6 by mechanical alloying ». Journal of Alloys and Compounds 280, no 1-2 (octobre 1998) : 306–9. http://dx.doi.org/10.1016/s0925-8388(98)00725-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Retuerto, M., J. Sánchez-Benítez, E. Rodríguez-Cañas, D. Serafini et J. A. Alonso. « High-pressure synthesis of Mg2FeH6 complex hydride ». International Journal of Hydrogen Energy 35, no 15 (août 2010) : 7835–41. http://dx.doi.org/10.1016/j.ijhydene.2010.05.062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Ghaani, Mohammad R., Michele Catti et Angeloclaudio Nale. « Thermodynamics of Dehydrogenation of the 2LiBH4–Mg2FeH6 Composite ». Journal of Physical Chemistry C 116, no 51 (17 décembre 2012) : 26694–99. http://dx.doi.org/10.1021/jp310786k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Lang, Julien, Helmut Fritzche, Alexandre Augusto Cesario Asselli et Jacques Huot. « In-situ neutron diffraction investigation of Mg2FeH6 dehydrogenation ». International Journal of Hydrogen Energy 42, no 5 (février 2017) : 3087–96. http://dx.doi.org/10.1016/j.ijhydene.2016.11.157.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Polanski, Marek, Daria Nawra et Dariusz Zasada. « Mg2FeH6 synthesized from plain steel and magnesium hydride ». Journal of Alloys and Compounds 776 (mars 2019) : 1029–40. http://dx.doi.org/10.1016/j.jallcom.2018.10.310.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Deng, Shuaishuai, Xuezhang Xiao, Leyuan Han, Yun Li, Shouquan Li, Hongwei Ge, Qidong Wang et Lixin Chen. « Hydrogen storage performance of 5LiBH4 + Mg2FeH6 composite system ». International Journal of Hydrogen Energy 37, no 8 (avril 2012) : 6733–40. http://dx.doi.org/10.1016/j.ijhydene.2012.01.094.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wang, Yan, Fangyi Cheng, Chunsheng Li, Zhanliang Tao et Jun Chen. « ChemInform Abstract : Preparation and Characterization of Nanocrystalline Mg2FeH6. » ChemInform 41, no 50 (18 novembre 2010) : no. http://dx.doi.org/10.1002/chin.201050018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Kurita, Keisuke, Daiichiro Sekiba, Isao Harayama, Kenta Chito, Yoshihisa Harada, Hisao Kiuchi, Masaharu Oshima et al. « Multi-Phonon Excitations in Fe 2p RIXS on Mg2FeH6 ». Journal of the Physical Society of Japan 84, no 4 (15 avril 2015) : 043201. http://dx.doi.org/10.7566/jpsj.84.043201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Herrich, M., N. Ismail, J. Lyubina, A. Handstein, A. Pratt et O. Gutfleisch. « Synthesis and decomposition of Mg2FeH6 prepared by reactive milling ». Materials Science and Engineering : B 108, no 1-2 (avril 2004) : 28–32. http://dx.doi.org/10.1016/j.mseb.2003.10.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

XU, Chen-chen, Xue-zhang XIAO, Jie SHAO, Lang-xia LIU, Teng QIN et Li-xin CHEN. « Effects of Ti-based additives on Mg2FeH6 dehydrogenation properties ». Transactions of Nonferrous Metals Society of China 26, no 3 (mars 2016) : 791–98. http://dx.doi.org/10.1016/s1003-6326(16)64169-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Leiva, Daniel R., Guilherme Zepon, Alexandre A. C. Asselli, Daniel Fruchart, Salvatore Miraglia, Tomaz T. Ishikawa et Walter J. Botta. « Mechanochemistry and H-sorption properties of Mg2FeH6-based nanocomposites ». International Journal of Materials Research 103, no 9 (septembre 2012) : 1147–54. http://dx.doi.org/10.3139/146.110806.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Asselli, Alexandre Augusto Cesario, Walter José Botta et Jacques Huot. « Formation reaction of Mg2FeH6 : effect of hydrogen absorption/desorption kinetics ». Materials Research 16, no 6 (29 juillet 2013) : 1373–78. http://dx.doi.org/10.1590/s1516-14392013005000122.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Zhang, Xuanzhou, Rong Yang, Jianglan Qu, Wei Zhao, Lei Xie, Wenhuai Tian et Xingguo Li. « The synthesis and hydrogen storage properties of pure nanostructured Mg2FeH6 ». Nanotechnology 21, no 9 (8 février 2010) : 095706. http://dx.doi.org/10.1088/0957-4484/21/9/095706.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Li, Guanqiao, Motoaki Matsuo, Shigeyuki Takagi, Anna-Lisa Chaudhary, Toyoto Sato, Martin Dornheim et Shin-ichi Orimo. « Thermodynamic Properties and Reversible Hydrogenation of LiBH4–Mg2FeH6 Composite Materials ». Inorganics 5, no 4 (16 novembre 2017) : 81. http://dx.doi.org/10.3390/inorganics5040081.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Orgaz, E., et M. Gupta. « Theoretical study of the X-ray absorption spectra of Mg2FeH6 ». Journal of the Less Common Metals 130 (mars 1987) : 293–99. http://dx.doi.org/10.1016/0022-5088(87)90121-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

PUSZKIEL, J., P. ARNEODOLAROCHETTE et F. GENNARI. « Thermodynamic–kinetic characterization of the synthesized Mg2FeH6–MgH2 hydrides mixture ». International Journal of Hydrogen Energy 33, no 13 (juillet 2008) : 3555–60. http://dx.doi.org/10.1016/j.ijhydene.2007.11.030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Niaz, N. A., I. Ahmad, N. R. Khalid, E. Ahmed, S. M. Abbas et N. Jabeen. « Preparation of Mg2FeH6Nanoparticles for Hydrogen Storage Properties ». Journal of Nanomaterials 2013 (2013) : 1–7. http://dx.doi.org/10.1155/2013/610642.

Texte intégral
Résumé :
Magnesium (Mg) and iron (Fe) nanoparticles are prepared by thermal decomposition of bipyridyl complexes of metals. These prepared Mg-Fe (2 : 1) nanoparticles are hydrogenated under 4 MPa hydrogen pressure and 673 K for 48 hours to achieve Mg2FeH6. Their structural analysis was assessed by applying manifold techniques. The hydrogen storage properties of prepared compound were measured by Sieverts type apparatus. The desorption kinetics were measured by high pressure thermal desorption spectrometer (HP-TDS). More than 5 wt% hydrogen released was obtained by the Mg2FeH6within 5 min, and during rehydrogenation very effective hydrogen absorption rate was observed by the compound.
Styles APA, Harvard, Vancouver, ISO, etc.
28

LI, Song-lin, Sheng-long TANG, Yi LIU, Shu-ke PENG et Jian-min CUI. « Synthesis of nanostructured Mg2FeH6 hydride and hydrogen sorption properties of complex ». Transactions of Nonferrous Metals Society of China 20, no 12 (décembre 2010) : 2281–88. http://dx.doi.org/10.1016/s1003-6326(10)60641-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Gennari, F. C., F. J. Castro et J. J. Andrade Gamboa. « Synthesis of Mg2FeH6 by reactive mechanical alloying : formation and decomposition properties ». Journal of Alloys and Compounds 339, no 1-2 (juin 2002) : 261–67. http://dx.doi.org/10.1016/s0925-8388(01)02009-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Huen, Priscilla, et Dorthe B. Ravnsbæk. « All-solid-state lithium batteries – The Mg2FeH6-electrode LiBH4-electrolyte system ». Electrochemistry Communications 87 (février 2018) : 81–85. http://dx.doi.org/10.1016/j.elecom.2018.01.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Yang, Shuo, Hui Wang, Liuzhang Ouyang, Jiangwen Liu, Renzong Hu, Lichun Yang et Min Zhu. « Enhanced electrochemical lithium storage performance of Mg2FeH6 anode with TiO2 coating ». International Journal of Hydrogen Energy 43, no 20 (mai 2018) : 9803–14. http://dx.doi.org/10.1016/j.ijhydene.2018.03.209.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Baran, Agata, et Marek Polański. « Magnesium-Based Materials for Hydrogen Storage—A Scope Review ». Materials 13, no 18 (9 septembre 2020) : 3993. http://dx.doi.org/10.3390/ma13183993.

Texte intégral
Résumé :
Magnesium hydride and selected magnesium-based ternary hydride (Mg2FeH6, Mg2NiH4, and Mg2CoH5) syntheses and modification methods, as well as the properties of the obtained materials, which are modified mostly by mechanical synthesis or milling, are reviewed in this work. The roles of selected additives (oxides, halides, and intermetallics), nanostructurization, polymorphic transformations, and cyclic stability are described. Despite the many years of investigations related to these hydrides and the significant number of different additives used, there are still many unknown factors that affect their hydrogen storage properties, reaction yield, and stability. The described compounds seem to be extremely interesting from a theoretical point of view. However, their practical application still remains debatable.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Asselli, Alexandre, et Jacques Huot. « Investigation of Effect of Milling Atmosphere and Starting Composition on Mg2FeH6 Formation ». Metals 4, no 3 (14 août 2014) : 388–400. http://dx.doi.org/10.3390/met4030388.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Thiangviriya, Sophida, Praphatsorn Plerdsranoy, Annbritt Hagenah, Thi Thu Le, Pinit Kidkhunthod, Oliver Utke, Martin Dornheim, Thomas Klassen, Claudio Pistidda et Rapee Utke. « Effects of Ni-loading contents on dehydrogenation kinetics and reversibility of Mg2FeH6 ». International Journal of Hydrogen Energy 46, no 63 (septembre 2021) : 32099–109. http://dx.doi.org/10.1016/j.ijhydene.2021.06.206.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Matysina, Z. A., S. Yu Zaginaichenko, D. V. Shchur et M. T. Gabdullin. « Sorption Properties of Iron–Magnesium and Nickel–Magnesium Mg2FeH6 and Mg2NiH4 Hydrides ». Russian Physics Journal 59, no 2 (juin 2016) : 177–89. http://dx.doi.org/10.1007/s11182-016-0757-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Zhang, Weijin, Zhao Zhang, Xianchao Jia, Jianping Guo, Junhu Wang et Ping Chen. « Metathesis of Mg2FeH6 and LiNH2 leading to hydrogen production at low temperatures ». Physical Chemistry Chemical Physics 20, no 15 (2018) : 9833–37. http://dx.doi.org/10.1039/c8cp00720a.

Texte intégral
Résumé :
The metathesis reaction between Mg2FeH6 and LiNH2 produces Li4FeH6, which provides an alternative route for synthesizing Li4FeH6 under mild conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Berlouis, L. E. A., E. Cabrera, E. Hall-Barientos, P. J. Hall, S. B. Dodd, S. Morris et M. A. Imam. « Thermal analysis investigation of hydriding properties of nanocrystalline Mg–Ni- and Mg–Fe-based alloys prepared by high-energy ball milling ». Journal of Materials Research 16, no 1 (janvier 2001) : 45–57. http://dx.doi.org/10.1557/jmr.2001.0012.

Texte intégral
Résumé :
The hydrogen loading characteristics of nanocrystalline Mg, Mg–Ni (Ni from 0.1 to 10 at.%), and Mg–Fe (Fe from 1 to 10 at.%) alloys in 3 MPa H2 were examined using high pressure differential scanning calorimetry and thermogravimetric analysis. All samples showed rapid uptake of hydrogen. A decrease in the onset temperature for hydrogen absorption was observed with increasing Ni and Fe alloy content, but the thermal signatures obtained suggested that only Mg was involved in the hydriding reaction; i.e., no clear evidence was found for the intermetallic hydrides Mg2NiH4 and Mg2FeH6. Hydrogen loading capacity decreased with temperature cycling, and this was attributed to a sintering process in the alloy, leading to a reduction in the specific surface available for hydrogen absorption.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Asselli, Alexandre Augusto Cesario, Alberto Moreira Jorge Junior, Tomaz Toshimi Ishikawa et Walter José Botta Filho. « Mg2FeH6-based nanocomposites with high capacity of hydrogen storage processed by reactive milling ». Materials Research 15, no 2 (6 mars 2012) : 229–35. http://dx.doi.org/10.1590/s1516-14392012005000027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Catti, Michele, Mohammad R. Ghaani et Ilya Pinus. « Overpressure Role in Isothermal Kinetics of H2 Desorption–Absorption : the 2LiBH4–Mg2FeH6 System ». Journal of Physical Chemistry C 117, no 50 (4 décembre 2013) : 26460–65. http://dx.doi.org/10.1021/jp409009n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Asano, Kohta, Hyunjeong Kim, Kouji Sakaki, Yumiko Nakamura, Yongming Wang, Shigehito Isobe, Masaaki Doi et al. « Metallurgical Synthesis of Mg2FexSi1–x Hydride : Destabilization of Mg2FeH6 Nanostructured in Templated Mg2Si ». Inorganic Chemistry 59, no 5 (14 février 2020) : 2758–64. http://dx.doi.org/10.1021/acs.inorgchem.9b03117.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Huot, J., H. Hayakawa et E. Akiba. « Preparation of the hydrides Mg2FeH6 and Mg2CoH5 by mechanical alloying followed by sintering ». Journal of Alloys and Compounds 248, no 1-2 (février 1997) : 164–67. http://dx.doi.org/10.1016/s0925-8388(96)02705-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Castro, F. J., et F. C. Gennari. « Effect of the nature of the starting materials on the formation of Mg2FeH6 ». Journal of Alloys and Compounds 375, no 1-2 (juillet 2004) : 292–96. http://dx.doi.org/10.1016/j.jallcom.2003.11.147.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

SELVAM, P., et K. YVON. « Synthesis of Mg2FeH6, Mg2CoH5 and Mg2NiH4 by high-pressure sintering of the elements ». International Journal of Hydrogen Energy 16, no 9 (1991) : 615–17. http://dx.doi.org/10.1016/0360-3199(91)90085-w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Asselli, A. A. C., D. R. Leiva, A. M. Jorge, T. T. Ishikawa et W. J. Botta. « Synthesis and hydrogen sorption properties of Mg2FeH6–MgH2 nanocomposite prepared by reactive milling ». Journal of Alloys and Compounds 536 (septembre 2012) : S250—S254. http://dx.doi.org/10.1016/j.jallcom.2011.12.103.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Liu, Yi, Sheng-long Tang, Yu-hu Fang, Huai-fei Liu, Jian-min Cui et Song-lin Li. « Hydrogen sorption properties of nanocrystalline Mg2FeH6-based complex and catalytic effect of TiO2 ». Journal of Central South University of Technology 16, no 6 (décembre 2009) : 876–80. http://dx.doi.org/10.1007/s11771-009-0145-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Batalović, Katarina, Jana Radaković, Jelena Belošević-Čavor et Vasil Koteski. « Transition metal doping of Mg2FeH6 – a DFT insight into synthesis and electronic structure ». Phys. Chem. Chem. Phys. 16, no 24 (2014) : 12356–61. http://dx.doi.org/10.1039/c4cp01020e.

Texte intégral
Résumé :
An insight into formation and stability of Mg2Fe3/4M1/4H6 (M = Mn, Fe, Co, Ni) reveals how doping destabilizes Mg2FeH6 and reduces the band gap.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Xiao, Xuezhang, Chenchen Xu, Jie Shao, Liuting Zhang, Teng Qin, Shouquan Li, Hongwei Ge, Qidong Wang et Lixin Chen. « Remarkable hydrogen desorption properties and mechanisms of the Mg2FeH6@MgH2 core–shell nanostructure ». Journal of Materials Chemistry A 3, no 10 (2015) : 5517–24. http://dx.doi.org/10.1039/c4ta06837h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Leiva, Daniel, Santiago Figueroa, Bárbara Terra, Guilherme Zepon, Diego Lamas, Ricardo Floriano, Alberto Jorge Junior et Walter Botta. « Structural Characterization of Mg2CoH5-based Nanocomposites for Hydrogen Storage ». Acta Crystallographica Section A Foundations and Advances 70, a1 (5 août 2014) : C741. http://dx.doi.org/10.1107/s2053273314092584.

Texte intégral
Résumé :
Hydrogen is considered the ideal energy carrier, mainly due to its heating power, the highest among all chemical fuels, and to possibility of using it in fuel cells, therefore with efficiency and producing only water as by-product. However, the development of safe and effective hydrogen storage solutions remains as a challenge of applied research. MgH2, Mg2FeH6 and Mg2CoH5complex hydrides are promising materials for hydrogen storage, avoiding the inconvenient of gaseous or liquid storage alternatives. The main attractives of these phases are their volumetric and gravimetric hydrogen capacities, their reversibility during absorption/desorption cycles and the relatively low cost. Recently, we have achieved an important control of the synthesis of Mg-based complex hydrides with nanocrystalline structure, using reactive milling (RM) under hydrogen atmosphere as processing route [1, 2]. In this study, we present new results concerning the synthesis, hydrogen storage properties and structural characterization of MgH2–Mg2CoH5nanocomposites prepared by RM. The nanocomposites were produced by milling different Mg-Co starting compositions (2:1, 3:1, 5:1, 7:1, 1:0) for 12 h in a planetary mill under 3 MPa of H2. All samples were fully hydrogenated during milling, generating different MgH2–Mg2CoH5hydride mixtures. Mg presents the tendency of agglomerate during milling, so the sample that presents more MgH2shows larger agglomerates. This behavior causes a slight increase in the temperature of hydrogen desorption and the presence of two peaks, showed by DSC analysis for those samples which presents MgH2and Mg2CoH5. Using in-situ XRD and XANES during hydrogen desorption revealed that Mg and Co tend to remain coupled forming intermetallics after the complex hydride decomposition, differently from that was observed for Mg2FeH6. This effect is correlated to the high-reversibility exhibited by the Mg2CoH5phase. Furthermore, the nanocomposites of MgH2+Mg2CoH5showed better H-absorption/desorption kinetics than the Mg2CoH5or MgH2alone, as shown by volumetric measurements. The combination of MgH2and Mg2CoH5is therefore a promising strategy to produce hydrogen storage materials, matching the good reversibility and high capacity of magnesium hydride with the lower thermal stability.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Zhang, Junxian, Warda Zaïdi, Valérie Paul-Boncour, Karine Provost, Alain Michalowicz, Fermín Cuevas, Michel Latroche, Stéphanie Belin, Jean-Pierre Bonnet et Luc Aymard. « XAS investigations on nanocrystalline Mg2FeH6 used as a negative electrode of Li-ion batteries ». Journal of Materials Chemistry A 1, no 15 (2013) : 4706. http://dx.doi.org/10.1039/c3ta01482g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Khan, Darvaish, Subrata Panda, Zhewen Ma, Wenjiang Ding et Jianxin Zou. « Formation and hydrogen storage behavior of nanostructured Mg2FeH6 in a compressed 2MgH2–Fe composite ». International Journal of Hydrogen Energy 45, no 41 (août 2020) : 21676–86. http://dx.doi.org/10.1016/j.ijhydene.2020.06.025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie