Littérature scientifique sur le sujet « Metalloenzimi »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Metalloenzimi ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Metalloenzimi"
Höcker, Birte. « A metalloenzyme reloaded ». Nature Chemical Biology 8, no 3 (15 février 2012) : 224–25. http://dx.doi.org/10.1038/nchembio.800.
Texte intégralYou, Jing-Song, Xiao-Qi Yu, Xiao-Yu Su, Tao Wang, Qing-Xiang Xiang, Meng Yang et Ru-Gang Xie. « Hydrolytic metalloenzyme models ». Journal of Molecular Catalysis A : Chemical 202, no 1-2 (août 2003) : 17–22. http://dx.doi.org/10.1016/s1381-1169(03)00199-7.
Texte intégralDong, Steven D., et Ronald Breslow. « Bifunctional cyclodextrin metalloenzyme mimics ». Tetrahedron Letters 39, no 51 (décembre 1998) : 9343–46. http://dx.doi.org/10.1016/s0040-4039(98)02160-1.
Texte intégralHadianawala, Murtuza, et Bhaskar Datta. « Design and development of sulfonylurea derivatives as zinc metalloenzyme modulators ». RSC Advances 6, no 11 (2016) : 8923–29. http://dx.doi.org/10.1039/c5ra27341b.
Texte intégralKwon, Hanna, Jaswir Basran, Juliette M. Devos, Reynier Suardíaz, Marc W. van der Kamp, Adrian J. Mulholland, Tobias E. Schrader et al. « Visualizing the protons in a metalloenzyme electron proton transfer pathway ». Proceedings of the National Academy of Sciences 117, no 12 (9 mars 2020) : 6484–90. http://dx.doi.org/10.1073/pnas.1918936117.
Texte intégralDoerr, Allison. « Metalloenzyme structures in a shot ». Nature Methods 10, no 4 (28 mars 2013) : 287. http://dx.doi.org/10.1038/nmeth.2428.
Texte intégralLancaster, Kyle M. « Revving up an artificial metalloenzyme ». Science 361, no 6407 (13 septembre 2018) : 1071–72. http://dx.doi.org/10.1126/science.aau7754.
Texte intégralStoecker, Walter, Russell L. Wolz, Robert Zwilling, Daniel J. Strydom et David S. Auld. « Astacus protease, a zinc metalloenzyme ». Biochemistry 27, no 14 (12 juillet 1988) : 5026–32. http://dx.doi.org/10.1021/bi00414a012.
Texte intégralVallee, B. L. « Zinc metalloenzyme structure and function ». Journal of Inorganic Biochemistry 36, no 3-4 (août 1989) : 299. http://dx.doi.org/10.1016/0162-0134(89)84446-0.
Texte intégralValdez, Crystal E., Amanda Morgenstern, Mark E. Eberhart et Anastassia N. Alexandrova. « Predictive methods for computational metalloenzyme redesign – a test case with carboxypeptidase A ». Physical Chemistry Chemical Physics 18, no 46 (2016) : 31744–56. http://dx.doi.org/10.1039/c6cp02247b.
Texte intégralThèses sur le sujet "Metalloenzimi"
ROVALETTI, ANNA. « A computational outlook on the catalysis exerted by the unique active site of MoCu CO dehydrogenases ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/305403.
Texte intégralProduction and consumption processes in soil ecosystems contribute to the global biochemical cycles of many trace gases (CH4, CO, H2, N2O and NO) that are relevant for atmospheric chemistry and climate. Such small gas molecules play different role into the metabolism of microorganisms placed in soil that rely on specific metalloenzymes for their transformation. Among these, molybdenum-based metalloenzymes were evidenced to be crucial in such context. In particular, a specific molybdoenzyme was reported to be involved in atmospheric CO oxidation. MoCu CO dehydrogenases (MoCu CODH) is an enzyme found in aerobic carboxidobacteria, such as Oligotropha carboxidovorans which represent one of the essential components in the biogeochemical carbon monoxide (CO) consumption. In fact, they contribute to maintenance of subtoxic concentration of CO in the lower atmosphere by processing approximately 2×108 tons of it annually. This bacterial metalloprotein catalyses the oxidation of CO to CO2, while it can also split H2 in two protons and two electrons. Such reactions are performed thanks to a unique active site composed of two metals, a copper ion and a molybdenum one, linked together through a sulphur atom. Despite extended theoretical and experimental studies had been carried out concerning this enzyme, several aspects related to its reactivity have not been unravelled.In the present thesis, we focused on the in silico description of MoCu CODH in order to deepen the understanding of the reaction mechanisms catalysed by the enzyme. To do so, in the framework of density functional theory (DFT), we applied models of different sizes to obtain an accurate description of the system. In the context of CO oxidation catalysis, we evidenced that if a previously proposed thiocarbonate like intermediate is formed along the catalytic path, it does not represent a rate limiting species on the enzymatic energy landscape, differently from results of previous theoretical studies. Moreover, we were able to suggest an alternative catalytic mechanism for the oxidation of CO that involves the direct role of a water molecule, activated by the sourrounding active site. As for the MoCu CODH hydrogenase activity, two plausible mechanisms for the splitting of H2 were presented. For the first time we suggested that the MoCu CODH active site may be viewed as a Frustrated Lewis Pair (FLP), and we proposed a FLP-like mechanism for oxidation of the dihydrogen. Alternatively, a protonation event–e.g. Cu-bound cysteine residue protonation – prior to binding of H2 to the active site proved to be necessary to present a plausible reactive channel.
Kluge, Stefan. « Modellierung sequentieller Metalloenzyme auf Magnesiumbasis ». lizenzfrei, 2007. http://www.db-thueringen.de/servlets/DocumentServlet?id=10371.
Texte intégralKung, Yan. « Structural studies of metalloenzyme complexes in acetogenic carbon fixation ». Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65474.
Texte intégralVita. Cataloged from PDF version of thesis.
Includes bibliographical references.
Acetogenic bacteria use the Wood-Ljungdahl carbon fixation pathway to produce cellular carbon from CO₂. This process requires several metalloenzymes that employ transition metals such as iron, nickel, and cobalt towards the production of acetyl-CoA, the final product. In one stage of the pathway, the cobalt-containing B₁₂ cofactor harbored by the corrinoid iron-sulfur protein (CFeSP) transfers a methyl group from methyltetrahydrofolate (CH₃-H₄folate), which is bound by a methyltransferase enzyme (MeTr), to a nickel-containing metallocluster called the A-cluster of the downstream enzyme, acetyl-CoA synthase (ACS). Such B12-dependent methyl transfer reactions require the construction of large, multimodular enzyme complexes whose threedimensional assemblies are, at present, largely uncharacterized. X-ray crystallography was used to solve the structure of a CFeSP/MeTr complex, the first crystal structure of a B12-dependent methyltransferase to depict all protein domains required for B12 binding, activation, protection, and catalysis. This structure, along with in crystallo activity data, illustrates how conformational movements, which can occur within protein crystals, enable the B12 cofactor to alternate between a sequestered conformation for cofactor protection and an active conformation for catalysis. Small-angle X-ray scattering (SAXS) experiments were also conducted to explore the quaternary composition of the complex in solution and revealed that multiple CFeSP/MeTr complexes can be formed. In another reaction of the Wood-Ljungdahl carbon fixation pathway, a nickel and iron containing metallocluster called the C-cluster of carbon monoxide dehydrogenase (CODH) reduces a second molecule of CO₂ to CO, an intermediate that is channeled to the ACS A-cluster. Although the structure of the C-cluster was first described a decade ago, its catalytic mechanism remained unresolved. To provide mechanistic insight into the chemistry employed at the C-cluster, crystal structures were determined with substrate and inhibitor molecules bound to the C-cluster of the CODH/ACS complex. These structures capture states of the C-cluster at key steps in the reaction and contribute to a consensus model for C-cluster chemistry. With structural descriptions for both CFeSP/MeTr and CODH/ACS complexes, this work has illuminated the molecular details for metalloenzyme complex assembly and catalysis in the acetogenic Wood-Ljungdahl carbon fixation pathway.
by Yan Kung.
Ph.D.
Murray, Jill Isobel. « A metalloenzyme model for the biotransformation of nitroglycerin to nitric oxide ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2002. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ63344.pdf.
Texte intégralSchweitzer, Dirk. « Biomimetic models of the active site of the metalloenzyme nitrile hydratase / ». Thesis, Connect to this title online ; UW restricted, 2001. http://hdl.handle.net/1773/8692.
Texte intégralNeupane, Kosh Prasad. « Nickel superoxide dismutase insight into the metalloenzyme gained from functional metallopeptide models / ». abstract and full text PDF (UNR users only), 2009. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3355593.
Texte intégralKeppetipola, Niroshika. « Characterization of DNA and RNA end modifying enzymes and a triphosphate tunnel metalloenzyme / ». Access full-text from WCMC, 2009. http://proquest.umi.com/pqdweb?did=1619359881&sid=5&Fmt=2&clientId=8424&RQT=309&VName=PQD.
Texte intégralSaysell, Colin G. « Reactivity of the copper containing enzyme galactose oxidase ». Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307890.
Texte intégralBenini, Stefano. « Structure and function relationships of urease and cytochrome c-553 from Bacillus pasteurii ». Thesis, University of York, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325599.
Texte intégralHuang, Qiongying. « In Vitro Study of Two Virulence Factors of Listeria monocytogenes : Cytolysin LLO and Metalloenzyme PC-PLC ». Thesis, Boston College, 2014. http://hdl.handle.net/2345/bc-ir:103619.
Texte intégralThesis advisor: Jianmin Gao
The research reported in this thesis focused on three proteinaceous virulence factors of the intracellular bacterial pathogen Listeria monocytogenes: listeriolysin O (LLO), broad-range phospholipase C (PC-PLC), and phosphatidylinositol-specific phospholipase C (PI-PLC). Based on sequence homology of LLO with other cholesterol-dependent cytolysins (CDC), the protein has four domains of which domain 4 is thought to anchor the protein to cholesterol-containing surfaces while domain 3 mediates protein-protein binding on the membrane and contributes α-helices that convert to two β-strands that form the large β-barrel pore. It was previously assumed that the sequential and cooperative behaviors of domain 3 in each LLO monomer required D4 to bind to cholesterol-enriched membranes. By cloning and expressing a separate protein containing domains 1, 2, and 3 (D123) and the isolated domain 4 (D4) of LLO, I could uncouple some of the events in its membrane binding and pore-formation. Flow cytometry, used to investigate protein binding to vesicles and to red blood cells, showed that D123 had no membrane affinity on its own, but became membrane-bound when sub-lytic amounts of LLO were added. D123, not membrane-lytic by itself, became hemolytic when trace amounts of LLO were present to provide a membrane anchor for D123 proteins. FRET and fluorescence correlation spectroscopy were used to show that D123 and LLO formed oligomers at nanomolar concentration and could also associate with one another in the solution. These results suggest that D4 provides an initial membrane attachment but need not be present on all monomers to trigger the cooperative conformational change that leads to membrane insertion and pore formation. The gene for L. monocytogenes PC-PLC was obtained, expressed in E. coli and the product protein purified and characterized. The zinc content of this metalloenzyme was analyzed with ICP-MS. The dissociation constants of the three zinc ions proposed as necessary for PC-PLC activity ranged from 0.05 to 60 μM. Enzymatic activities of PC-PLC were analyzed for various substrates, include long-chain phospholipid in vesicles (LUVs, SUVs) and micelles (Triton X-100), and short-chain lipids (diC4PC, diC6PC, diC7PC) mono-dispersed in solutions. Key results include the following: (1) the L. monocytogenes PC-PLC has an acidic pH optimum (in contrast to other bacterial PC-PLC enzymes) consistent with its role in vacuole lysis upon acidification; (2) the preference of PC-PLC for longer chain monomeric substrates is not because of a higher kcat but a reduced Km suggesting some amount of hydrophobicity is important for substrate binding in the active site; (3) the apparent Kd of PC-PLC for Zn2+ derived from kinetics at pH 6.0 (1.94 ± 0.22 μM) is lower that that from ICP-MC; and (4) PC-PLC enzymatic activity is not enhanced by added LLO that generates pores in vesicles (likewise, PC-PLC does not affect the membrane lytic activity of LLO) indicating no synergism between the two virulence factors. These results should aid in understanding the function of PC-PLC in L. monocytogenes pathogenicity. The L. monocytogenes PI-PLC and a variant with reduced catalytic activity were expressed and are currently used in a collaborative project with the Portnoy laboratory at the University of California at Berkeley
Thesis (PhD) — Boston College, 2014
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Livres sur le sujet "Metalloenzimi"
Likhtenshtein, Gertz I. Chemical Physics of Redox Metalloenzyme Catalysis. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73100-6.
Texte intégralI, Likhtenshteĭn G. Chemical physics of redox metalloenzyme catalysis. Berlin : Springer-Verlag, 1988.
Trouver le texte intégralHanson, Graeme, et Lawrence Berliner, dir. Future Directions in Metalloprotein and Metalloenzyme Research. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59100-1.
Texte intégral1943-, Reedijk Jan, et Bouwman Elisabeth 1963-, dir. Bioinorganic catalysis. 2e éd. New York : Marcel Dekker, Inc., 1999.
Trouver le texte intégralF, Riordan James, et Vallee Bert L, dir. Metallobiochemistry. San Diego : Academic Press, 1988.
Trouver le texte intégralLikhtenshtein, Gertz I., et Artavaz Beknazarov. Chemical Physics of Redox Metalloenzyme Catalysis. Springer, 2011.
Trouver le texte intégralBerliner, Lawrence, et Graeme Hanson. Future Directions in Metalloprotein and Metalloenzyme Research. Springer International Publishing AG, 2017.
Trouver le texte intégralBerliner, Lawrence, et Graeme Hanson. Future Directions in Metalloprotein and Metalloenzyme Research. Springer, 2018.
Trouver le texte intégralBrandt, Jeffrey J. The structural and kinetic characterization of VanX : A metalloenzyme conferring high-level vancomycin resistance. 2000.
Trouver le texte intégralGellman, Samuel H. Metalloenzyme models : Part I. Nitrogen analogues of cytochrome P-450 model reactions : Part II. Zinc-based catalysts for phosphate triester hydrolysis. 1986.
Trouver le texte intégralChapitres de livres sur le sujet "Metalloenzimi"
Meißner, D., et T. Arndt. « Metalloenzyme ». Dans Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg : Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_2110-1.
Texte intégralMeißner, D., et T. Arndt. « Metalloenzyme ». Dans Springer Reference Medizin, 1619–20. Berlin, Heidelberg : Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_2110.
Texte intégralKimura, Eiichi, et Mitsuhiko Shionoya. « Macrocyclic Polyamine Complex Beyond Metalloenzyme Models ». Dans Transition Metals in Supramolecular Chemistry, 245–59. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8380-0_13.
Texte intégralGoldberg, David P., et Stephen J. Lippard. « Modeling Phenoxyl Radical Metalloenzyme Active Sites ». Dans Advances in Chemistry, 61–81. Washington, DC : American Chemical Society, 1996. http://dx.doi.org/10.1021/ba-1995-0246.ch003.
Texte intégralLikhtenshtein, Gertz I. « General Information on Metalloenzymes and Metal Carriers ». Dans Chemical Physics of Redox Metalloenzyme Catalysis, 3–14. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73100-6_1.
Texte intégralLikhtenshtein, Gertz I. « Energy, Entropy and Molecular-Dynamic Relationships in Enzyme Catalysis ». Dans Chemical Physics of Redox Metalloenzyme Catalysis, 223–49. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73100-6_10.
Texte intégralLikhtenshtein, Gertz I. « Mechanisms of the Elementary Acts of Redox and Coupled Processes Involving Metalloenzymes and Carriers ». Dans Chemical Physics of Redox Metalloenzyme Catalysis, 250–91. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73100-6_11.
Texte intégralLikhtenshtein, Gertz I. « Physical Methods of Investigation of Metalloenzymes ». Dans Chemical Physics of Redox Metalloenzyme Catalysis, 15–44. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73100-6_2.
Texte intégralLikhtenshtein, Gertz I. « Physical Label Techniques ». Dans Chemical Physics of Redox Metalloenzyme Catalysis, 45–75. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73100-6_3.
Texte intégralLikhtenshtein, Gertz I. « Kinetic Methods in Enzyme Catalysis ». Dans Chemical Physics of Redox Metalloenzyme Catalysis, 76–88. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73100-6_4.
Texte intégralActes de conférences sur le sujet "Metalloenzimi"
Collinsová, Michaela, Carmen Castro, Timothy Garrow, Vincent Dive, Athanasios Yiotakis et Jiří Jiráček. « Development of novel inhibitors of Zn-metalloenzyme betaine : Homocysteine S-methyltransferase ». Dans VIIth Conference Biologically Active Peptides. Prague : Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2001. http://dx.doi.org/10.1135/css200104049.
Texte intégralBorn, Benjamin, Matthias Heyden, Moran Grossman, Irit Sagi et Martina Havenith. « Protein-water network dynamics during metalloenzyme hydrolysis observed by kinetic THz absorption (KITA) ». Dans SPIE BiOS, sous la direction de Gerald J. Wilmink et Bennett L. Ibey. SPIE, 2013. http://dx.doi.org/10.1117/12.2000715.
Texte intégralKirby, Edward P., Mary Ann Mascelli, Carol Silverman et Daniel W. Karl. « LOCALIZATION OF THE PLATELET-BINDING AND HEPARIN-BINDING DOMAINS OF BOVINE VON WILLEBRAND FACTOR ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644097.
Texte intégralRapports d'organisations sur le sujet "Metalloenzimi"
Balch, William. Purification and characterization of dihydroorotase from Clostridium oroticum, a zinc-containing metalloenzyme. Portland State University Library, janvier 2000. http://dx.doi.org/10.15760/etd.1687.
Texte intégral