Articles de revues sur le sujet « Metallic lithium »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Metallic lithium.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Metallic lithium ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Zhang, Rui, An Li, Lei Zhang et Xun Yong Jiang. « Research on Metallic Silicon Used as Lithium Ion Battery Anode Material ». Advanced Materials Research 463-464 (février 2012) : 764–68. http://dx.doi.org/10.4028/www.scientific.net/amr.463-464.764.

Texte intégral
Résumé :
In this research, metallic silicon was used as anode material of lithium ion batteries. Electrochemical lithium storage property of metallic silicon was studied which is compared with pure silicon. The results show that for different content of electrical conductors in electrode, the first discharging and charging specific capacity of metallic silicon is similar to pure silicon. The attenuation on capacity of metallic silicon is slower than pure silicon. The lithium storage mechanism of metallic silicon is similar with pure silicon. The testing results of metallic silicon under different charging and discharging rate show that the lithium storage property of metallic silicon is better under lower charging and discharging rate.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Shi, Lei, Zou Peng, Ping Ning, Xin Sun, Kai Li, Huan Zhang et Tao Qu. « Clean and Efficient Recovery of Lithium from Al-Li Alloys via Vacuum Fractional Condensation ». Separations 10, no 7 (26 juin 2023) : 374. http://dx.doi.org/10.3390/separations10070374.

Texte intégral
Résumé :
Al-Li alloys are ideal structural materials for the aerospace industry. However, an increasing number of Al-Li alloys have reached the end of their service life and must be recycled. Unfortunately, when vacuum distillation is used to separate Al-Li alloys, metallic lithium is difficult to condense and collect. Therefore, theoretical and experimental research on lithium condensation conditions under vacuum and vacuum distillation and condensation of Al-Li alloy to prepare metallic lithium were carried out. The results show that the optimal condensation temperature range for lithium is between 523 and 560 K. More than 99.5% metallic lithium and more than 99.97% aluminum were obtained from the Al-7.87%wt Li alloy through vacuum distillation condensation. The direct yield of lithium was above 80%. This paper, therefore, provides a new and improved method for the preparation of metallic lithium.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Auborn, J. J., et Y. L. Barberio. « Lithium Intercalation Cells Without Metallic Lithium : and ». Journal of The Electrochemical Society 134, no 3 (1 mars 1987) : 638–41. http://dx.doi.org/10.1149/1.2100521.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Park, Jesik, Jaeo Lee et C. K. Lee. « Synthesis of Lithium Thin Film by Electrodeposition from Ionic Liquid ». Applied Mechanics and Materials 217-219 (novembre 2012) : 1049–52. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.1049.

Texte intégral
Résumé :
Synthesis of metallic lithium thin film was investigated from two ionic liquid of [EMIM]Tf2N and PP13Tf2N with LiTFSI as a lithium source. Cyclic voltammograms on Au electrode showed the possibility of the electrodeposition of metallic lithium, the reduction current in [EMIM]Tf2N was higher than the value in PP13Tf2N. The metallic lithium thin film could be synthesized on the Au electrode by the potentiostatic condition, which was confirmed by various analytical techniques including x-ray diffraction and scanning electron microscopy with energy dispersive spectroscopy. The lithium surface electrodeposited was uniformly without dendrite, any impurity was not detected except trace oxygen contaminated during handling for analyses.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Li, Wenjun, Hao Zheng, Geng Chu, Fei Luo, Jieyun Zheng, Dongdong Xiao, Xing Li et al. « Effect of electrochemical dissolution and deposition order on lithium dendrite formation : a top view investigation ». Faraday Discuss. 176 (2014) : 109–24. http://dx.doi.org/10.1039/c4fd00124a.

Texte intégral
Résumé :
Rechargeable metallic lithium batteries are the ultimate solution to electrochemical storage due to their high theoretical energy densities. One of the key technological challenges is to control the morphology of metallic lithium electrode during electrochemical dissolution and deposition. Here we have investigated the morphology change of metallic lithium electrode after charging and discharging in nonaqueous batteries by ex situ SEM techniques from a top view. Formation of the hole structure after lithium dissolution and the filling of dendrite-like lithium into the holes has been observed for the first time. In addition, an in situ SEM investigation using an all-solid Li/Li2O/super aligned carbon nanotube set-up indicates that lithium ions could diffuse across through the surface oxide layer and grow lithium dendrites after applying an external electric field. The growth of lithium dendrites can be guided by electron flow when the formed lithium dendrite touches the carbon nanotube.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Manickam, M., et M. Takata. « Lithium intercalation cells LiMn2O4/LiTi2O4 without metallic lithium ». Journal of Power Sources 114, no 2 (mars 2003) : 298–302. http://dx.doi.org/10.1016/s0378-7753(02)00586-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Fauteux, D., et R. Koksbang. « Rechargeable lithium battery anodes : alternatives to metallic lithium ». Journal of Applied Electrochemistry 23, no 1 (janvier 1993) : 1–10. http://dx.doi.org/10.1007/bf00241568.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Fu, Qiang Wei, et Xun Yong Jiang. « Lithium Storage Property of Metallic Silicon Treated by Mechanical Alloying ». Materials Science Forum 847 (mars 2016) : 29–32. http://dx.doi.org/10.4028/www.scientific.net/msf.847.29.

Texte intégral
Résumé :
Theoretical capacity of silicon is 4200mAhg-1, but pure silicon had huge volume change during lithium insertion, which reduces the cycle life of silicon. In this paper, pure silicon was replaced of metallic silicon to relieve volume effect. Metallic silicon contains some alloying elements which improve the conductivity of the electrode material. The elements in metallic silicon will relief the volume change of silicon substrate during lithium insertion/ de-lithiation process. Metallic silicon was treated by mechanical alloying (MA) which is an effective method to reduce particle sizes of metallic silicon. The results show that MA can improve cycle performance of metallic silicon. Metallic silicon treated by MA performs a better cycling performance compared with the unsettled materials and a higher discharge capacity in the first cycle.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Heilingbrunner, Andrea, et Gernot Stollhoff. « Abinitiocorrelation calculation for metallic lithium ». Journal of Chemical Physics 99, no 9 (novembre 1993) : 6799–809. http://dx.doi.org/10.1063/1.465823.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cheng, Hao, Yangjun Mao, Yunhao Lu, Peng Zhang, Jian Xie et Xinbing Zhao. « Trace fluorinated-carbon-nanotube-induced lithium dendrite elimination for high-performance lithium–oxygen cells ». Nanoscale 12, no 5 (2020) : 3424–34. http://dx.doi.org/10.1039/c9nr09749j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Li, Sipei, Han Wang, Wei Wu, Francesca Lorandi, Jay F. Whitacre et Krzysztof Matyjaszewski. « Solvent-Processed Metallic Lithium Microparticles for Lithium Metal Batteries ». ACS Applied Energy Materials 2, no 3 (11 mars 2019) : 1623–28. http://dx.doi.org/10.1021/acsaem.9b00107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Zhang, Ke, Zhaoxi Chen, Hanke Feng, Wing-Han Wong, Edwin Yue-Bun Pun et Cheng Wang. « High-Q lithium niobate microring resonators using lift-off metallic masks [Invited] ». Chinese Optics Letters 19, no 6 (2021) : 060010. http://dx.doi.org/10.3788/col202119.060010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Suriyakumar, Shruti, M. Kanagaraj, N. Angulakshmi, Murugavel Kathiresan, Kee Suk Nahm, Mariusz Walkowiak, Krzysztof Wasiński, Paulina Półrolniczak et A. Manuel Stephan. « Charge–discharge studies of all-solid-state Li/LiFePO4 cells with PEO-based composite electrolytes encompassing metal organic frameworks ». RSC Advances 6, no 99 (2016) : 97180–86. http://dx.doi.org/10.1039/c6ra17962b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Vanleeuw, D., D. Sapundjiev, G. Sibbens, S. Oberstedt et P. Salvador Castiñeira. « Physical vapour deposition of metallic lithium ». Journal of Radioanalytical and Nuclear Chemistry 299, no 2 (2 août 2013) : 1113–20. http://dx.doi.org/10.1007/s10967-013-2669-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Ahmad, N., P. C. Klipstein, S. D. Obertelli, E. A. Marseglia et R. H. Friend. « Metallic properties of lithium-intercalated ZrS2 ». Journal of Physics C : Solid State Physics 20, no 26 (20 septembre 1987) : 4105–14. http://dx.doi.org/10.1088/0022-3719/20/26/013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Sugiyama, G., G. Zerah et B. J. Alder. « Ground-state properties of metallic lithium ». Physica A : Statistical Mechanics and its Applications 156, no 1 (mars 1989) : 144–68. http://dx.doi.org/10.1016/0378-4371(89)90114-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Nanda, Sanjay, et Arumugam Manthiram. « Lithium degradation in lithium–sulfur batteries : insights into inventory depletion and interphasial evolution with cycling ». Energy & ; Environmental Science 13, no 8 (2020) : 2501–14. http://dx.doi.org/10.1039/d0ee01074j.

Texte intégral
Résumé :
Anode-free full cells enable a quantitative estimate of lithium inventory loss rates, which is correlated with the growth of an electrolyte decomposition layer, even as metallic lithium stays intact with cycling.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Chen, Rusong, Adelaide M. Nolan, Jiaze Lu, Junyang Wang, Xiqian Yu, Yifei Mo, Liquan Chen, Xuejie Huang et Hong Li. « The Thermal Stability of Lithium Solid Electrolytes with Metallic Lithium ». Joule 4, no 4 (avril 2020) : 812–21. http://dx.doi.org/10.1016/j.joule.2020.03.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Liu, Yue, Bin Li, Jianhua Liu, Songmei Li et Shubin Yang. « Pre-planted nucleation seeds for rechargeable metallic lithium anodes ». Journal of Materials Chemistry A 5, no 35 (2017) : 18862–69. http://dx.doi.org/10.1039/c7ta04932c.

Texte intégral
Résumé :
Pre-planted nano copper particles not only played as nucleation seeds but also regulated the Li+ flux during lithium striping/plating process, leading to high cycling stability for rechargeable metallic lithium batteries.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Fu, Sha, Lan-Lan Zuo, Peng-Sheng Zhou, Xue-Jiao Liu, Qiang Ma, Meng-Jie Chen, Jun-Pei Yue, Xiong-Wei Wu et Qi Deng. « Recent advancements of functional gel polymer electrolytes for rechargeable lithium–metal batteries ». Materials Chemistry Frontiers 5, no 14 (2021) : 5211–32. http://dx.doi.org/10.1039/d1qm00096a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Kim, Hyunwoo, Chang-Dae Lee, Dong In Kim, Woosung Choi, Dong-Hwa Seo et Won-Sub Yoon. « Bonding dependent lithium storage behavior of molybdenum oxides for next-generation Li-ion batteries ». Journal of Materials Chemistry A 10, no 14 (2022) : 7718–27. http://dx.doi.org/10.1039/d2ta00356b.

Texte intégral
Résumé :
Metallic lithium storage occurs in MoO2, whereas MoO3 store lithium by conversion reaction. First-principles calculations demonstrate that the different electrochemical properties originated from the different metal–oxygen bonding of MoO2 and MoO3.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Radin, Maxwell D., Jill F. Rodriguez, Feng Tian et Donald J. Siegel. « Lithium Peroxide Surfaces Are Metallic, While Lithium Oxide Surfaces Are Not ». Journal of the American Chemical Society 134, no 2 (28 décembre 2011) : 1093–103. http://dx.doi.org/10.1021/ja208944x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Li, Wen-jun, Quan Li, Jie Huang, Jia-yue Peng, Geng Chu, Ya-xiang Lu, Jie-yun Zheng et Hong Li. « Gas treatment protection of metallic lithium anode ». Chinese Physics B 26, no 8 (août 2017) : 088202. http://dx.doi.org/10.1088/1674-1056/26/8/088202.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Yang, Chih-Kai. « A metallic graphene layer adsorbed with lithium ». Applied Physics Letters 94, no 16 (20 avril 2009) : 163115. http://dx.doi.org/10.1063/1.3126008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Stassen, I., et G. Hambitzer. « Metallic lithium batteries for high power applications ». Journal of Power Sources 105, no 2 (mars 2002) : 145–50. http://dx.doi.org/10.1016/s0378-7753(01)00933-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Hayashi, Hisashi, Yasuo Udagawa, Chi-Chang Kao, Jean-Pascal Rueff et Francesco Sette. « Plasmon dispersion in metallic lithium–ammonia solutions ». Journal of Electron Spectroscopy and Related Phenomena 120, no 1-3 (octobre 2001) : 113–19. http://dx.doi.org/10.1016/s0368-2048(01)00313-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Sato, Yuzuru. « Electrowinning of Metallic Lithium from Molten Salts ». ECS Proceedings Volumes 2002-19, no 1 (janvier 2002) : 771–78. http://dx.doi.org/10.1149/200219.0771pv.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Lewandowski, Andrzej, Agnieszka Swiderska-Mocek et Lukasz Waliszewski. « Solid electrolyte interphase formation on metallic lithium ». Journal of Solid State Electrochemistry 16, no 10 (8 juin 2012) : 3391–97. http://dx.doi.org/10.1007/s10008-012-1786-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Mosharafa, A. A., et A. M. Radwan. « Momentum distribution of electrons in metallic lithium ». Crystal Research and Technology 23, no 8 (août 1988) : 1013–16. http://dx.doi.org/10.1002/crat.2170230811.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Fu, Kun (Kelvin), Yunhui Gong, Jiaqi Dai, Amy Gong, Xiaogang Han, Yonggang Yao, Chengwei Wang et al. « Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries ». Proceedings of the National Academy of Sciences 113, no 26 (15 juin 2016) : 7094–99. http://dx.doi.org/10.1073/pnas.1600422113.

Texte intégral
Résumé :
Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium’s highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion–conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10−4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium–sulfur batteries.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Pindar, Sanjay, et Nikhil Dhawan. « Evaluation of carbothermic processing for mixed discarded lithium-ion batteries ». Metallurgical Research & ; Technology 117, no 3 (2020) : 302. http://dx.doi.org/10.1051/metal/2020025.

Texte intégral
Résumé :
The limited life span and huge demand for lithium-ion batteries, environment concerns, and the consumption of rare metals such as lithium and cobalt are the key facts for the worldwide recycling efforts. In this study, the cathode material of discarded lithium-ion batteries was carbothermally reduced using recovered graphite. A comparative evaluation of reduction behavior of single-phase (LiCoO2) and mixed-phase (LiCoO2.LiNi0.5Mn1.5O4.LiMn2O4) cathode materials was investigated under an ambient and inert atmosphere. Processing of single-phase cathode material in inert atmosphere yielded pure metallic cobalt, whereas, higher metallic recoveries and metal purity were obtained by processing of mixed cathode material in ambient conditions. The excellent product obtained under ambient conditions comprises 68% Co, 21% Mn, 2.5% Ni with saturation magnetization: 106 emu/g, and a precursor for the synthesis of cathode material. The process yield is 46.2% and lithium extraction 83%. In terms of metal purity and recovery, graphite was found to be better for reduction than activated charcoal. The process followed is simple, adaptable, and cost-effective for metals recovery from discarded lithium-ion batteries.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Schöniger, Maik, Stefan R. Kachel, Jan Herritsch, Philipp Schröder, Mark Hutter et J. Michael Gottfried. « Direct synthesis of dilithium tetraphenylporphyrin : facile reaction of a free-base porphyrin with vapor-deposited lithium ». Chemical Communications 55, no 91 (2019) : 13665–68. http://dx.doi.org/10.1039/c9cc07170a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Liu, Sisi, Jun Yang, Lichao Yin, Zhiming Li, Jiulin Wang et Yanna Nuli. « Lithium-rich Li2.6BMg0.05 alloy as an alternative anode to metallic lithium for rechargeable lithium batteries ». Electrochimica Acta 56, no 24 (octobre 2011) : 8900–8905. http://dx.doi.org/10.1016/j.electacta.2011.07.109.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Karaoglu, Gozde, et Burak Ulgut. « (Digital Presentation) Electrochemical Noise Measurement in Batteries with Metallic Lithium Anode ». ECS Meeting Abstracts MA2022-01, no 1 (7 juillet 2022) : 89. http://dx.doi.org/10.1149/ma2022-01189mtgabs.

Texte intégral
Résumé :
Electrochemical noise measurements are well known in corrosion literature where the noise that is to be measured is appreciable in amplitude. From the measured noise, it is possible to identify the mode of corrosion and distinguish between localized corrosion types from the uniform ones. This is mainly because localized modes of corrosion are stochastic in nature, typically studied in conjunction with post-mortem studies. In recent years, the increase in the use of batteries demands that the tests to be performed on the batteries are faster, easier, cheaper and, if possible, non-destructive and non-perturbing. Although some electrochemical noise studies have begun to be carried out on batteries, the literature on this subject is scarce and questionable. Electrochemical noise measurement of Li batteries can be ultimately used as a non-invasive tool to diagnose the battery health and we have already shown that non-rechargeable batteries with Li/MnO2 chemistry shows increase in voltage noise after being exposed to a short circuit. On the other hand, if the battery is properly discharged, voltage noise does not increase. As a result, morphological changes on metallic lithium can be detected by electrochemical noise measurements and this method can be used as non-invasive diagnosis tool.[1] Lithium metal-based chemistries have a much higher capacity than rechargeable chemistries because of the use of Lithium-aluminum alloy or graphite in rechargeable chemistries, as opposed to metallic Lithium used at the anode. It is known that charging of lithium metal electrode to result in the formation of lithium dendrites and/or mossy structures. These end up creating safety and performance issues. For this reason, pre-detection is both academically interesting and industrially important. Some preliminary studies show that noise level increase drastically after charging. Moreover, the anodes of the charged batteries were also examined with SEM and serious deterioration was observed in the anode of the battery after charging. (Figure 1) Just like noise measurements on non-rechargeable batteries with lithium chemistry exposed to short circuits, it is worthy to study on and develop pre-detection method for in lithium batteries that are prone to form dendrite during charging and discharging cycles by using electrochemical noise measurements. For this reason, we also conduct noise studies with symmetrical and asymmetric cells (Li/Li, Cu/Cu and Li/Cu) prepared in the glove box and examine the details of the noise increase in a controlled and detailed manner. In this talk, how the electrochemical noise of metallic lithium-based batteries is measured, under what conditions it increases and what are the sources of the noise will be discussed both with noise measurements and imaging with optical microscope in situ and after death with spectroscopic analysis. References [1] Karaoglu G; Uzundal CB; Ulgut B; “Uneven Discharge of Metallic Lithium Causes Increased Voltage Noise in Li/MnO2 Primary Batteries upon Shorting, submitted. Figure 1
Styles APA, Harvard, Vancouver, ISO, etc.
35

Jiang, Zhanguo, Tiefeng Liu, Lijing Yan, Jie Liu, Feifei Dong, Min Ling, Chengdu Liang et Zhan Lin. « Metal-organic framework nanosheets-guided uniform lithium deposition for metallic lithium batteries ». Energy Storage Materials 11 (mars 2018) : 267–73. http://dx.doi.org/10.1016/j.ensm.2017.11.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Titov, R. A. « Influence of the complexing ability of b3+ cations in the composition of B2O3 flux on the characteristics of LiNbO3:b crystals ». Transaction Kola Science Centre 12, no 2-2021 (13 décembre 2021) : 261–67. http://dx.doi.org/10.37614/2307-5252.2021.2.5.052.

Texte intégral
Résumé :
The Gibbs energy of the borates formation of trace amounts of metallic impurities (Al4B2O9, CaB2O4, CaB4O7, Ca2B2O5, Ca3B2O6, PbB2O4) in the lithium niobate charge is calculated. It is shown that the element boron, as an active complexing agent, in the composition of the B2O3 flux can prevent the transition of impurity metals, inevitably present in trace amounts in the charge of lithium niobate, into the structure of the lithium niobate crystal.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Dessantis, Davide, Piera Di Prima, Daniele Versaci, Julia Amici, Carlotta Francia, Silvia Bodoardo et Massimo Santarelli. « Aging of a Lithium-Metal/LFP Cell : Predictive Model and Experimental Validation ». Batteries 9, no 3 (24 février 2023) : 146. http://dx.doi.org/10.3390/batteries9030146.

Texte intégral
Résumé :
Actual market requirements for storage systems highlight the limits of graphite as an anode for Li-ion batteries. Lithium metal can represent a suitable alternative to graphite due to its high theoretical specific capacity (about 3860 mAh g−1) and low negative redox potential. However, several aging mechanisms, such as dendrite growth, lithium loss and the formation of an unstable SEI, decrease the performances of Li-based batteries. A suitable strategy to better understand and study these mechanisms could be the development of an electrochemical model that forecasts the aging behaviour of a lithium-metal battery. In this work, a P2D aging electrochemical model for an Li-based cell was developed. The main innovation is represented by the combination of two aspects: the substitution of graphite with metallic lithium as an anode and the implementation of SEI growth on the metallic lithium surface. The calibration of the model, based on experimental measurements and the successive validation, led to us obtaining a good accuracy between the simulated and experimental curves. This good accuracy makes the developed P2D aging model a versatile and suitable approach for further investigations on Li-based batteries considering all the aging phenomena involved.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Smolinski, Maciej, Aleksandra Ossowska, Anna Szczęsna-Chrzan, Adam Łaszcz, Maciej Marczewski et Marek Marcinek. « Metallic Organic Framework (MOF) Applications in Novel Lithium-Sulfur Batteries ». ECS Meeting Abstracts MA2023-01, no 1 (28 août 2023) : 420. http://dx.doi.org/10.1149/ma2023-011420mtgabs.

Texte intégral
Résumé :
Today lithium-ion batteries are the basis of portable energy source. Wildly used in electronic devices and electric vehicles lithium-ion type of batteries became a standard. Despite good electrochemical performance and their universality, fast development of the market for efficient power sources makes them unable to meet this challenge. As a promising competitor or even a successor of lithium-ion batteries often named are lithium-sulfur batteries. It’s mostly because of their high specific capacity (1675 mAh g-1) and relatively big deposit of sulfur on Earth. The main reason, why this type of batteries is not commercialized yet is the problem with the application and stability of the sulfur electrode. The expansion of the sulfur when charging, its insulation and dissolution in organic solvents from the electrolyte, resulting the creation of polysulfides chains, are the remaining problems to solve before lithium-sulfur batteries could be spread in the commerce devices. To solve these issues many additives and compounds have been examined. One of the idea is to use metal-organic frameworks (MOFs) as a sulfur host on the electrode. Because of the porosity of the structure of these materials they are able to “hold” sulfur inside them. Not only it improves the electronic conductivity but also can be a solution to reduce the electrode expansion and sulfur reactions with electrolyte. This report presents a few methods of the possible ways of doping MOFs with sulfur and electrode slurry preparation. All the research was made in cooperation of Warsaw University of Technology from Poland and NTNU and SINTEF from Norway in M-ERA.NET 2 MOGLiS project.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Liu, Jinyun, Xirong Lin, Tianli Han, Qianqian Lu, Jiawei Long, Huigang Zhang, Xi Chen, Junjie Niu et Jinjin Li. « An artificial sea urchin with hollow spines : improved mechanical and electrochemical stability in high-capacity Li–Ge batteries ». Nanoscale 12, no 10 (2020) : 5812–16. http://dx.doi.org/10.1039/c9nr09107f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Zhang, Xiaolin, Weikun Wang, Anbang Wang, Yaqin Huang, Keguo Yuan, Zhongbao Yu, Jingyi Qiu et Yusheng Yang. « Improved cycle stability and high security of Li-B alloy anode for lithium–sulfur battery ». J. Mater. Chem. A 2, no 30 (2014) : 11660–65. http://dx.doi.org/10.1039/c4ta01709a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Zavadil, K. R., N. R. Armstrong et C. H. F. Peden. « Reactions at the interface between multi-component glasses and metallic lithium films ». Journal of Materials Research 4, no 4 (août 1989) : 978–89. http://dx.doi.org/10.1557/jmr.1989.0978.

Texte intégral
Résumé :
The reactions of vacuum deposited thin films of lithium with various complex glasses have been explored using x-ray photoelectron spectroscopy (XPS). In contrast to lithium reactions with simple glasses such as silica or boron oxides, the reactions are predominantly those of the network modifiers such as sodium, potassium, and magnesium. XPS and x-ray induced Auger lineshapes indicate the migration of the network modifier to the near surface region followed by its reduction. In the case of magnesium, there is evidence for stable alloy formation with unreacted lithium following these migration and reduction steps.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Han, Qigang, Yalan Sheng, Zhiwu Han, Xiang Li, Wenqiang Zhang, Yao Li et Xu Zhang. « Metallic Sb nanoparticles embedded into a yolk–shell Sb2O3@TiO2 composite as anode materials for lithium ion batteries ». New Journal of Chemistry 44, no 31 (2020) : 13430–38. http://dx.doi.org/10.1039/c9nj05947d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Lu, Jian, Guoliang Xia, Shipeng Gong, Changlai Wang, Peng Jiang, Zhiyu Lin, Dongdong Wang, Yang Yang et Qianwang Chen. « Metallic 1T phase MoS2 nanosheets decorated hollow cobalt sulfide polyhedra for high-performance lithium storage ». Journal of Materials Chemistry A 6, no 26 (2018) : 12613–22. http://dx.doi.org/10.1039/c8ta02716a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Liu, Jie, Xiaoyin Li, Qian Wang, Yoshiyuki Kawazoe et Puru Jena. « A new 3D Dirac nodal-line semi-metallic graphene monolith for lithium ion battery anode materials ». Journal of Materials Chemistry A 6, no 28 (2018) : 13816–24. http://dx.doi.org/10.1039/c8ta04428g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Hood, Zachary D., Hui Wang, Amaresh Samuthira Pandian, Jong Kahk Keum et Chengdu Liang. « Li2OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes ». Journal of the American Chemical Society 138, no 6 (27 janvier 2016) : 1768–71. http://dx.doi.org/10.1021/jacs.5b11851.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Larcher, Dominique, A. S. Prakash, Juliette Saint, Mathieu Morcrette et Jean-Marie Tarascon. « Electrochemical Reactivity of Mg2Sn Phases with Metallic Lithium ». Chemistry of Materials 16, no 25 (décembre 2004) : 5502–11. http://dx.doi.org/10.1021/cm040132h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Prem, M., G. Krexner, F. Beuneu et P. Vajda. « Metallic colloids in lithium oxide after electron irradiation ». Physica B : Condensed Matter 350, no 1-3 (juillet 2004) : E999—E1002. http://dx.doi.org/10.1016/j.physb.2004.03.275.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Knitter, R., M. H. H. Kolb et C. Odemer. « Synthesis of tritium breeder ceramics from metallic lithium ». Journal of Nuclear Materials 420, no 1-3 (janvier 2012) : 268–72. http://dx.doi.org/10.1016/j.jnucmat.2011.10.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Oukassi, Sami, Nicolas Dunoyer, Raphael Salot et Steve Martin. « Microfabrication process for patterning metallic lithium encapsulated electrodes ». Applied Surface Science 256, no 3 (novembre 2009) : S58—S60. http://dx.doi.org/10.1016/j.apsusc.2009.04.144.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Veretenkin, E. P., V. N. Gavrin et E. A. Yanovich. « Use of metallic lithium for detecting solar neutrinos ». Soviet Atomic Energy 58, no 1 (janvier 1985) : 82–83. http://dx.doi.org/10.1007/bf01123252.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie