Articles de revues sur le sujet « Metal carbonyl compounds »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Metal carbonyl compounds.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Metal carbonyl compounds ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Bond, Alan M., et Ray Colton. « Electrochemical studies of metal carbonyl compounds ». Coordination Chemistry Reviews 166 (novembre 1997) : 161–80. http://dx.doi.org/10.1016/s0010-8545(97)00022-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Araki, Shuki, Hirokazu Ito et Yasuo Batsugan. « Cadmium metal-mediated allylation of carbonyl compounds ». Journal of Organometallic Chemistry 347, no 1-2 (juin 1988) : 5–9. http://dx.doi.org/10.1016/0022-328x(88)80263-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lee, Ha-Eun, Dopil Kim, Ahrom You, Myung Hwan Park, Min Kim et Cheoljae Kim. « Transition Metal-Catalyzed α-Position Carbon–Carbon Bond Formations of Carbonyl Derivatives ». Catalysts 10, no 8 (2 août 2020) : 861. http://dx.doi.org/10.3390/catal10080861.

Texte intégral
Résumé :
α-Functionalization of carbonyl compounds in organic synthesis has traditionally been accomplished via classical enolate chemistry. As α-functionalized carbonyl moieties are ubiquitous in biologically and pharmaceutically valuable molecules, catalytic α-alkylations have been extensively studied, yielding a plethora of practical and efficient methodologies. Moreover, stereoselective carbon–carbon bond formation at the α-position of achiral carbonyl compounds has been achieved by using various transition metal–chiral ligand complexes. This review describes recent advances—in the last 20 years and especially focusing on the last 10 years—in transition metal-catalyzed α-alkylations of carbonyl compounds, such as aldehydes, ketones, imines, esters, and amides and in efficient carbon–carbon bond formations. Active catalytic species and ligand design are discussed, and mechanistic insights are presented. In addition, recently developed photo-redox catalytic systems for α-alkylations are described as a versatile synthetic tool for the synthesis of chiral carbonyl-bearing molecules.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gibson, Dorothy H., et Yekhlef S. El-Omrani. « Selective reductions of carbonyl compounds with group 6 metal carbonyl hydrides ». Organometallics 4, no 8 (août 1985) : 1473–75. http://dx.doi.org/10.1021/om00127a035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Jaitner, Peter, et Wolfgang Winder. « Reaction of α-Me2TeJ2 with metal carbonyl compounds ». Inorganica Chimica Acta 134, no 2 (novembre 1987) : 201–2. http://dx.doi.org/10.1016/s0020-1693(00)88080-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Aucott, Benjamin J., Anne-Kathrin Duhme-Klair, Benjamin E. Moulton, Ian P. Clark, Igor V. Sazanovich, Michael Towrie, L. Anders Hammarback, Ian J. S. Fairlamb et Jason M. Lynam. « Manganese Carbonyl Compounds Reveal Ultrafast Metal–Solvent Interactions ». Organometallics 38, no 11 (23 mai 2019) : 2391–401. http://dx.doi.org/10.1021/acs.organomet.9b00212.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

ALPER, H. « ChemInform Abstract : Metal-Catalyzed Routes to Carbonyl Compounds ». ChemInform 26, no 26 (17 août 2010) : no. http://dx.doi.org/10.1002/chin.199526303.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

BOND, A. M., et R. COLTON. « ChemInform Abstract : Electrochemical Studies of Metal Carbonyl Compounds ». ChemInform 29, no 17 (23 juin 2010) : no. http://dx.doi.org/10.1002/chin.199817281.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Nishino, Toshiki, Yutaka Nishiyama et Noboru Sonoda. « Reductive coupling of carbonyl compounds using lanthanum metal ». Heteroatom Chemistry 11, no 1 (2000) : 81–85. http://dx.doi.org/10.1002/(sici)1098-1071(2000)11:1<81 ::aid-hc12>3.0.co;2-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chen, Hong, Zi-Chao Tang, Rong-Bin Huang et Lan-Sun Zheng. « Photodissociation Mass Spectrometry of Trinuclear Carbonyl Clusters M3(CO)12 (M = Fe, Ru, Os) ». European Journal of Mass Spectrometry 6, no 1 (février 2000) : 19–22. http://dx.doi.org/10.1255/ejms.301.

Texte intégral
Résumé :
Photodissociation of trinuclear carbonyl cluster compounds of Fe, Ru and Os was studied by recording the mass spectra produced from laser ablation of the cluster compounds. Under the experimental conditions, dissociation of the cluster compounds is very extensive, but the dissociation pathway of the osmium cluster is different from those of the iron and ruthenium clusters. The iron and ruthenium clusters not only lost their carbonyl ligands, but their cluster cores were also fragmented. As the osmium cluster dissociated, it ejected three pairs of oxygen atoms, in sequence, before losing the carbonyl ligands, but the trinuclear osmium core did not fragment. This specific dissociation scheme of the osmium cluster reveals its special structural stability. Not only does it have stronger metal-metal bonds, but also a relatively stable coordination bond formed between osmium and carbonyl ligands. In addition, different distributions of positive and negative fragment ions were observed in the experiment. This difference is interpreted as the result of different stabilities of their electronic structures.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Yang, Xue-Yan, Ruizhe Wang, Lu Wang, Jianjun Li, Shuai Mao, San-Qi Zhang et Nanzheng Chen. « K2S2O8-promoted C–Se bond formation to construct α-phenylseleno carbonyl compounds and α,β-unsaturated carbonyl compounds ». RSC Advances 10, no 48 (2020) : 28902–5. http://dx.doi.org/10.1039/d0ra05927g.

Texte intégral
Résumé :
K2S2O8-promoted C–Se bond formation from the cross-coupling of C(sp3)–H bond adjacent to carbonyl group with diphenyl diselenide under metal-free conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Cheng, Jie, Jianwei Shao, Yifei Ye, Yang Zhao, Chengjun Huang, Li Wang et Mingxiao Li. « Microfluidic Preconcentration Chip with Self-Assembled Chemical Modified Surface for Trace Carbonyl Compounds Detection ». Sensors 18, no 12 (13 décembre 2018) : 4402. http://dx.doi.org/10.3390/s18124402.

Texte intégral
Résumé :
Carbonyl compounds in water sources are typical characteristic pollutants, which are important indicators in the health risk assessment of water quality. Commonly used analytical chemistry methods face issues such as complex operations, low sensitivity, and long analysis times. Here, we report a silicon microfluidic device based on click chemical surface modification that was engineered to achieve rapid, convenient and efficient capture of trace level carbonyl compounds in liquid solvent. The micro pillar arrays of the chip and microfluidic channels were designed under the basis of finite element (FEM) analysis and fabricated by the microelectromechanical systems (MEMS) technique. The surface of the micropillars was sputtered with precious metal silver and functionalized with the organic substance amino-oxy dodecane thiol (ADT) by self-assembly for capturing trace carbonyl compounds. The detection of ppb level fluorescent carbonyl compounds demonstrates that the strategy proposed in this work shows great potential for rapid water quality testing and for other samples with trace carbonyl compounds.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Grau, Benedikt W., et Svetlana B. Tsogoeva. « Iron-Catalyzed Carbonyl–Alkyne and Carbonyl–Olefin Metathesis Reactions ». Catalysts 10, no 9 (21 septembre 2020) : 1092. http://dx.doi.org/10.3390/catal10091092.

Texte intégral
Résumé :
Construction of carbon–carbon bonds is one of the most important tools for the synthesis of complex organic molecules. Among multiple possibilities are the carbonyl–alkyne and carbonyl–olefin metathesis reactions, which are used to form new carbon–carbon bonds between carbonyl derivatives and unsaturated organic compounds. As many different approaches have already been established and offer reliable access to C=C bond formation via carbonyl–alkyne and carbonyl–olefin metathesis, focus is now shifting towards cost efficiency, sustainability and environmentally friendly metal catalysts. Iron, which is earth-abundant and considered as an eco-friendly and inexpensive option in comparison to traditional metal catalysts, fulfils these requirements. Hence, the focus of this review is on recent advances in the iron-catalyzed carbonyl–alkyne, carbonyl–olefin and related C–O/C–O metathesis reactions. The still large research potential for ecologically and economically attractive and sustainable iron-based catalysts is demonstrated.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Gong, Liu-Zhu, Pu-Sheng Wang et Meng-Lan Shen. « Transition-Metal-Catalyzed Asymmetric Allylation of Carbonyl Compounds with Unsaturated Hydrocarbons ». Synthesis 50, no 05 (21 décembre 2017) : 956–67. http://dx.doi.org/10.1055/s-0036-1590986.

Texte intégral
Résumé :
The asymmetric allylation of carbonyl compounds is an important process for the formation of carbon–carbon bonds, generating optically active homoallylic alcohols that are versatile building blocks with widespread applications in organic synthesis. The use of readily available unsaturated hydrocarbons as allylating reagents in the transition-metal-catalyzed asymmetric allylation has received increasing interest as either a step- or an atom-economy alternative. This review summarizes transition-metal-catalyzed enantioselective allylations on the basis of the ‘indirect’ and ‘direct’ use of simple unsaturated hydrocarbons (include dienes, allenes, alkynes, and alkenes) as allylating reagents, with emphasis on highlighting conceptually novel reactions.1 Introduction2 ‘Indirect’ Use of Unsaturated Hydrocarbons in Asymmetric Allylation of Carbonyl Compounds2.1 Enantioselective Allylation with 1,3-Dienes2.2 Enantioselective Allylation with Allenes2.3 Enantioselective Allylation with Alkenes3 ‘Direct’ Use of Unsaturated Hydrocarbons in Asymmetric Allylation of Carbonyl Compounds3.1 Enantioselective Allylation with 1,3-Dienes3.2 Enantioselective Allylation with Allenes3.3 Enantioselective Allylation with Alkynes3.4 Enantioselective Allylation with Alkenes4 Conclusions
Styles APA, Harvard, Vancouver, ISO, etc.
15

Chen, Dao-Qian, Chun-Huan Guo, Heng-Rui Zhang, Dong-Po Jin, Xue-Song Li, Pin Gao, Xin-Xing Wu, Xue-Yuan Liu et Yong-Min Liang. « A metal-free transformation of alkynes to carbonyls directed by remote OH group ». Green Chemistry 18, no 15 (2016) : 4176–80. http://dx.doi.org/10.1039/c6gc01141a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Tang, Minhao, Fengtao Zhang, Yanfei Zhao, Yuepeng Wang, Zhengang Ke, Ruipeng Li, Wei Zeng, Buxing Han et Zhimin Liu. « A CO2-mediated base catalysis approach for the hydration of triple bonds in ionic liquids ». Green Chemistry 23, no 24 (2021) : 9870–75. http://dx.doi.org/10.1039/d1gc03865f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Law, Man Chun, Kwok-Yin Wong et Tak Hang Chan. « Metal mediated allylation of carbonyl compounds in ionic liquids ». Green Chemistry 4, no 2 (25 mars 2002) : 161–64. http://dx.doi.org/10.1039/b200924b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Cooke, Manning P., et Ioannis N. Houpis. « Metal-halogen exchange-initiated cyclization of iodo carbonyl compounds ». Tetrahedron Letters 26, no 41 (janvier 1985) : 4987–90. http://dx.doi.org/10.1016/s0040-4039(01)80833-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Smith, Alexander M. R., et King Kuok (Mimi) Hii. « Transition Metal Catalyzed Enantioselective α-Heterofunctionalization of Carbonyl Compounds ». Chemical Reviews 111, no 3 (9 mars 2011) : 1637–56. http://dx.doi.org/10.1021/cr100197z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Azhdari Tehrani, Alireza, Hamed Abbasi, Leili Esrafili et Ali Morsali. « Urea-containing metal-organic frameworks for carbonyl compounds sensing ». Sensors and Actuators B : Chemical 256 (mars 2018) : 706–10. http://dx.doi.org/10.1016/j.snb.2017.09.211.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Chaudhari, Moreshwar B., Yogesh Sutar, Shreyas Malpathak, Anirban Hazra et Boopathy Gnanaprakasam. « Transition-Metal-Free C–H Hydroxylation of Carbonyl Compounds ». Organic Letters 19, no 13 (26 juin 2017) : 3628–31. http://dx.doi.org/10.1021/acs.orglett.7b01616.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Shimada, Masayuki, Yasushi Morimoto et Shigetoshi Takahashi. « Preparation and properties of cyclodextrin-metal carbonyl inclusion compounds ». Journal of Organometallic Chemistry 443, no 1 (janvier 1993) : C8—C10. http://dx.doi.org/10.1016/0022-328x(93)80024-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Dantas, Juliana A., José Tiago M. Correia, Marcio W. Paixão et Arlene G. Corrêa. « Photochemistry of Carbonyl Compounds : Application in Metal‐Free Reactions ». ChemPhotoChem 3, no 7 (16 avril 2019) : 506–20. http://dx.doi.org/10.1002/cptc.201900044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Barik, Subrat Kumar, Dipak Kumar Roy et Sundargopal Ghosh. « Chemistry of group 9 dimetallaborane analogues of octaborane(12) ». Dalton Transactions 44, no 2 (2015) : 669–76. http://dx.doi.org/10.1039/c4dt03027c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Krishnankutty, K., Basheer Ummathur et Perumpalli Ummer. « 1-naphthylazo derivatives of some 1,3-dicarbonyl compounds and their Cu (II), Ni(II) and Zn(II) complexes ». Journal of the Serbian Chemical Society 74, no 11 (2009) : 1273–82. http://dx.doi.org/10.2298/jsc0911273k.

Texte intégral
Résumé :
The coupling of diazotized 1-aminonaphthalene with 1,3-dicarbonyl compounds (acetylacetone, methylacetoacetate and acetoacetanilide) yielded a new series of bidentate ligand systems (HL). Analytical, IR, 1H-NMR and mass spectral data indicate that the compounds exist in the intramolecularly hydrogen bonded keto-hydrazone form. With Ni(II), Cu(II) and Zn(II), these potential monobasic bidentate ligands formed [ML2] type complexes. The IR, 1H- -NMR and mass spectral data of the complexes are consistent with the replacement of the chelated hydrazone proton of the ligand by a metal ion, thus leading to a stable six-membered chelate ring involving the hydrazone nitrogen and the hydrogen bonded carbonyl oxygen. The Ni(II) and Zn(II) chelates are diamagnetic, while the Cu(II) complexes are paramagnetic. In the metal complexes of the naphthylazo derivatives of acetylacetone and methylacetoacetate, the acetyl carbonyl is involved in coordination, whereas in the chelates of the naphthylazo derivative of acetoacetanilide, the anilide carbonyl is bonded with the metal ion.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Chung, Seung-Won, Jaejung Ko, Kwonil Park, Sungil Cho et Sang Ook Kang. « N,S-Chelating Amino-ortho-carboranethiolate Complexes of Rhodium and Iridium : Synthesis and Reactivity. X-Ray Crystal Structures of (η4-C8H12)Rh[(NMe2CH2)SC2B10H10] and (CO)2Rh[(NMe2CH2)SC2B10H10] ». Collection of Czechoslovak Chemical Communications 64, no 5 (1999) : 883–94. http://dx.doi.org/10.1135/cccc19990883.

Texte intégral
Résumé :
The reaction of [M(μ-Cl)(cod)]2 (M = Rh, Ir; cod = cycloocta-1,5-diene) with two equivalents of the lithium ortho-carboranethiolate derivative LiCabN,S 2 [LiCabN,S = closo-2-(dimethylaminomethyl)-1-(lithiumthiolato)-ortho-carborane] produced the four-coordinated metallacyclic compounds, CabN,SM(cod) 3 (M = Rh 3a, Ir 3b), in which the metal atom was stabilized via intramolecular N,S-coordination. These new compounds have been isolated in high yields and characterized by IR and NMR spectroscopy. The structure consists of an amino-ortho-carboranethiolate fragment bonded to (cod)Rh(I) via nitrogen and sulfur, so as to give the metal a square-planar environment. Subsequent carbonylation reactions of 3a, 3b result in the quantitative formation of the corresponding (amino-ortho-carboranethiolato)(carbonyl)metal N,S-chelates CabN,SM(CO)2 4 (M = Rh 4a, Ir 4b). The metal carbonyl complexes 4a, 4b have been isolated and characterized by spectroscopic and compound 4a also by X-ray diffraction techniques. The molecular structure of 4a reveals that the rhodium atom is coordinated by nitrogen and sulfur atoms of the amino-ortho-carboranethiolate ligand, and two carbonyl ligands complete the coordination of the metal atom.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Sandeep, Paloth Venugopalan et Anil Kumar. « Metal Free, Direct and Selective Deoxygenation of α-Hydroxy Carbonyl Compounds : Access to α,α-Diaryl Carbonyl Compounds ». European Journal of Organic Chemistry 2020, no 17 (21 avril 2020) : 2530–36. http://dx.doi.org/10.1002/ejoc.202000142.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Fujihara, Tetsuaki, et Yasushi Tsuji. « Transition-metal Catalyzed Synthesis of Carbonyl Compounds Using Formates or Formamides as Carbonyl Sources ». Journal of the Japan Petroleum Institute 61, no 1 (1 janvier 2018) : 1–9. http://dx.doi.org/10.1627/jpi.61.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Heilweil, E. J., J. C. Stephenson et R. R. Cavanagh. « Measurements of carbonyl(v = 1) population lifetimes : metal-carbonyl cluster compounds supported on silica ». Journal of Physical Chemistry 92, no 21 (octobre 1988) : 6099–103. http://dx.doi.org/10.1021/j100332a050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Wang, Hongyan, Yaoming Xie, R. Bruce King et Henry F. Schaefer. « Vanadium Carbonyl Nitrosyl Compounds : The Carbonyl Nitrosyl Chemistry of an Oxophilic Early Transition Metal ». European Journal of Inorganic Chemistry 2009, no 12 (avril 2009) : 1647–56. http://dx.doi.org/10.1002/ejic.200801175.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Kohls, Emilija, et Matthias Stein. « VIBRATIONAL SCALING FACTORS FOR Rh(I) CARBONYL COMPOUNDS IN HOMOGENEOUS CATALYSIS ». Contributions, Section of Natural, Mathematical and Biotechnical Sciences 38, no 1 (19 juin 2017) : 43. http://dx.doi.org/10.20903/csnmbs.masa.2017.38.1.100.

Texte intégral
Résumé :
Metal carbonyl complexes are an important family of catalysts in homogeneous industrial processes. Their characteristic vibrational frequencies allow in situ tracking of catalytic progress. Structural assignment of intermedi-ates is often hampered by the lack of appropriate reference compounds. The calculation of carbonyl vibrational fre-quencies from first principles provides an alternative tool to identify such reactive intermediates. Scaling factors for computed vibrational carbonyl stretching frequencies were derived from a training set of 45 Rh-carbonyl complexes using the BP86 and B3LYP functionals. The systematic scaling of the computed C=O frequencies yields accurate calculation and assignment of the experimentally obtained 𝜈(CO) values. The vibrational scaling factors can be used to identify reaction intermediates of the industrially relevant Rh-catalyzed hydroformylation reaction. The absolute error between calculated and experimental spectra was significantly reduced and the experimental spectra were as-signed successfully.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Yan, Guobing, et Arun Jyoti Borah. « Transition-metal-catalyzed direct β-functionalization of simple carbonyl compounds ». Org. Chem. Front. 1, no 7 (2014) : 838–42. http://dx.doi.org/10.1039/c4qo00154k.

Texte intégral
Résumé :
Chemical transformations via catalytic C–H bond activation have been established as one of the most powerful tools in organic synthetic chemistry. Transition-metal-catalyzed direct functionalization of β-C(sp3)–H bonds of carbonyl compounds has been developed in recent years. This highlight will focus on recent advances in this active area and their mechanisms are also discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Reinfandt, Niklas, et Peter W. Roesky. « Reactivity of a Sterical Flexible Pentabenzylcyclopentadienyl Samarocene ». Inorganics 10, no 2 (18 février 2022) : 25. http://dx.doi.org/10.3390/inorganics10020025.

Texte intégral
Résumé :
Reactivity studies of the classical divalent lanthanide compound [CpBz52Sm] (CpBz5 = pentabenzylcyclopentadienyl-anion) towards diphenyl dichalcogenides and d-element carbonyl complexes led to remarkable results. In the compounds obtained, a different number of Sm-C(phenyl) interactions and differently oriented benzyl groups were observed, suggesting—despite the preference of these interactions in [CpBz52Sm] described in previous studies—a flexible orientation of the benzyl groups and thus a variable steric shielding of the metal center by the ligand. The obtained compounds are either present as monometallic complexes (reduction of the dichalcogenides) or tetrametallic bridged compounds in the case of the d/f-element carbonyl complexes.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Bayer, Uwe, et Reiner Anwander. « Carbonyl group and carbon dioxide activation by rare-earth-metal complexes ». Dalton Transactions 49, no 48 (2020) : 17472–93. http://dx.doi.org/10.1039/d0dt03578e.

Texte intégral
Résumé :
Not just hilariously effective baits! Rare-earth-metal compounds selectively react with aldehydes, ketones and carbon dioxide to generate isolable compounds as crucial intermediates in organic synthesis and homogenous catalysis.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Vikrant, Kumar, Yao Qu, Jan E. Szulejko, Vanish Kumar, Kowsalya Vellingiri, Danil W. Boukhvalov, Taejin Kim et Ki-Hyun Kim. « Utilization of metal–organic frameworks for the adsorptive removal of an aliphatic aldehyde mixture in the gas phase ». Nanoscale 12, no 15 (2020) : 8330–43. http://dx.doi.org/10.1039/d0nr00234h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Huang, Xi, Junjie Hu, Mengying Wu, Jiayi Wang, Yanqing Peng et Gonghua Song. « Catalyst-free chemoselective conjugate addition and reduction of α,β-unsaturated carbonyl compounds via a controllable boration/protodeboronation cascade pathway ». Green Chemistry 20, no 1 (2018) : 255–60. http://dx.doi.org/10.1039/c7gc02863f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Enow, Charles A., Charlene Marais et Barend C. B. Bezuidenhoudt. « Catalytic epoxidation of stilbenes with non-peripherally alkyl substituted carbonyl ruthenium phthalocyanine complexes ». Journal of Porphyrins and Phthalocyanines 16, no 04 (avril 2012) : 403–12. http://dx.doi.org/10.1142/s1088424612500459.

Texte intégral
Résumé :
A number of novel carbonyl(1,4,8,11,15,18,22,25-octaalkylphthalocyaninato)-ruthenium(II) complexes were prepared by metal insertion with Ru3(CO)12. The new compounds have been characterized by1H NMR,13C NMR, IR, UV-vis and mass spectroscopy. This study demonstrated that this type of complexes and specifically carbonyl(1,4,8,11,15,18,22,25-octahexylphthalo-cyaninato)ruthenium(II) and carbonyl[1,4,8,11,15,18,22,25-octa(2-cyclohexylethyl)phthalocyaninato]-ruthenium(II), exhibit high catalytic activity and stability in the epoxidation of stilbenes with 2,6-dichloropyridine N-oxide as oxidant.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Massolo, Elisabetta, Margherita Pirola, Sergio Rossi et Tiziana Benincori. « Metal-Free Alpha Trifluoromethylselenolation of Carbonyl Derivatives under Batch and Flow Conditions ». Molecules 24, no 4 (18 février 2019) : 726. http://dx.doi.org/10.3390/molecules24040726.

Texte intégral
Résumé :
Trifluoromethylselenolated carbonyl compounds represent an emerging class with potential applications in several fields; however, a widespread use of such compound is hampered by the very limited number of strategies for their preparation. In this study we developed a method for the preparation of α-SeCF3 substituted carbonyl derivatives using an in situ generated electrophilic ClSeCF3 species. We also implemented an in-flow protocol to improve the safety features of the process.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Hall, Dennis G. « New preparative methods for allylic boronates and their application in stereoselective catalytic allylborations ». Pure and Applied Chemistry 80, no 5 (1 janvier 2008) : 913–27. http://dx.doi.org/10.1351/pac200880050913.

Texte intégral
Résumé :
Stereocontrolled additions of allylic metal reagents to carbonyl compounds constitute one of the most useful classes of transformations in organic synthesis. The recent development of Lewis and Brønsted acid-catalyzed manifolds for the allylboration of carbonyl compounds has opened doors toward an ideal carbonyl allylation methodology using stable and nontoxic allylic boronates as reagents. This paper describes the development of acid-catalyzed allylborations, mechanistic investigations of these new processes, and ongoing efforts toward general catalytic enantioselective allylboration methodologies. The preparation of optically enriched α-substituted allylic boronate reagents is discussed, as well as their applications in Lewis acid-catalyzed additions to afford skeletally diverse products like propionate units, polysubstituted furans, vinylcyclopropanes, and larger ring systems.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Knorr, Rudolf, et Barbara Schmidt. « Nucleofugal behavior of a β-shielded α-cyanovinyl carbanion ». Beilstein Journal of Organic Chemistry 14 (11 décembre 2018) : 3018–24. http://dx.doi.org/10.3762/bjoc.14.281.

Texte intégral
Résumé :
Sterically well-shielded against unsolicited Michael addition and polymerization reactions, α-metalated α-(1,1,3,3-tetramethylindan-2-ylidene)acetonitriles added reversibly to three small aldehydes and two bulky ketones at room temperature. Experimental conditions were determined for transfer of the nucleofugal title carbanion unit between different carbonyl compounds. These readily occurring retro-additions via C–C(O) bond fission may also be used to generate different metal derivatives of the nucleofugal anions as equilibrium components. Fluoride-catalyzed, metal-free desilylation admitted carbonyl addition but blocked the retro-addition.
Styles APA, Harvard, Vancouver, ISO, etc.
41

van Hal, Jaap W., Lawrence B. Alemany et Kenton H. Whitmire. « Solution Dynamics of Thallium−Metal Carbonyl Compounds Using205Tl NMR Spectroscopy ». Inorganic Chemistry 36, no 14 (juillet 1997) : 3152–59. http://dx.doi.org/10.1021/ic961203k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Sivaramakrishna, Akella, Paul Mushonga, Ian L. Rogers, Feng Zheng, Raymond J. Haines, Ebbe Nordlander et John R. Moss. « Selective isomerization of 1-alkenes by binary metal carbonyl compounds ». Polyhedron 27, no 7 (mai 2008) : 1911–16. http://dx.doi.org/10.1016/j.poly.2008.02.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Mead, Keith, et Timothy L. Macdonald. « Metal ion controlled addition to .alpha.,.beta.-dialkoxy carbonyl compounds ». Journal of Organic Chemistry 50, no 3 (février 1985) : 422–24. http://dx.doi.org/10.1021/jo00203a040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Ji, Shun-Jun, et Lin Wu. « Acetalization of carbonyl compounds catalyzed by polymer-bound metal complexes ». Journal of Molecular Catalysis A : Chemical 202, no 1-2 (août 2003) : 41–46. http://dx.doi.org/10.1016/s1381-1169(03)00210-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Trapp, I., T. Famulok, U. Risse et A. Kettrup. « FTIR-screening of carbonyl compounds in metal working fluid aerosols ». Fresenius' Journal of Analytical Chemistry 362, no 4 (13 octobre 1998) : 409–14. http://dx.doi.org/10.1007/s002160051095.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ma, Zhi-Hong, Ming-Xia Zhao, Fang Li, Hong Wang, Xue-Zhong Zheng et Jin Lin. « Synthesis and structures of substituted tetramethylcyclopentadienyl dinuclear metal carbonyl compounds ». Transition Metal Chemistry 35, no 4 (21 février 2010) : 387–91. http://dx.doi.org/10.1007/s11243-010-9339-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Nishino, Toshiki, Yutaka Nishiyama et Noboru Sonoda. « ChemInform Abstract : Reductive Coupling of Carbonyl Compounds Using Lanthanum Metal. » ChemInform 31, no 16 (9 juin 2010) : no. http://dx.doi.org/10.1002/chin.200016051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Pichon, Maëva M., Damien Hazelard et Philippe Compain. « Metal-Free Deoxygenation of α-Hydroxy Carbonyl Compounds and Beyond ». European Journal of Organic Chemistry 2019, no 37 (28 août 2019) : 6320–32. http://dx.doi.org/10.1002/ejoc.201900838.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Pihko, Petri M. « Enantioselective α-Fluorination of Carbonyl Compounds : Organocatalysis or Metal Catalysis ? » Angewandte Chemie International Edition 45, no 4 (16 janvier 2006) : 544–47. http://dx.doi.org/10.1002/anie.200502425.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Harinath, Adimulam, Jayeeta Bhattacharjee, Hari Pada Nayek et Tarun K. Panda. « Alkali metal complexes as efficient catalysts for hydroboration and cyanosilylation of carbonyl compounds ». Dalton Transactions 47, no 36 (2018) : 12613–22. http://dx.doi.org/10.1039/c8dt02032a.

Texte intégral
Résumé :
Catalytic hydroboration of aldehydes and ketones with pinacolborane (HBpin) and catalytic cyanosilylation of carbonyl compounds with trimethylsilyl cyanide using alkali metal (Li, Na, K) complexes as precatalysts under mild conditions are reported.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie