Littérature scientifique sur le sujet « Mesogenic materials »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Mesogenic materials ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Mesogenic materials"

1

Paul, Saurav, Bimal Bhushan Chakraborty, Kuheli Deb et Sudip Choudhury. « Synthesis of mesogen-nanoparticle composites by doping 4-decyloxybenzoic acid with substrate-functionalized ZnO nanoparticle ». Communications in Science and Technology 8, no 1 (8 juillet 2023) : 38–42. http://dx.doi.org/10.21924/cst.8.1.2023.1125.

Texte intégral
Résumé :
Nanomaterials and Mesogenic materials are two important pillars of today’s science and technology, in the fields of both material and biological applications. Mesogens or liquid crystals (LC) are self-aggregated anisotropic fluids with long range order, and the nature of self-aggregation largely controls their physical and material properties. Doping of nanomaterials over liquid crystalline matrix can provide valuable tools for development of materials with new or improved properties. In the present work 4-decyloxybenzoic acid is taken as the mesogenic matrix. It is observed that, composite prepared by doping of 4-decyloxybenzoic acid mesogen matrix by ZnO nanoparticle pre-functionalized with the same mesogen, caused a marked alteration in the mesogenic behavior. With 3% doping of matrix pre-functionalized ZnO NP on 4- decyloxy benzoic acid, we could achieve a shift of about 31ºC in the N-Iso transition temperature and, a decrease of >10ºC for the onset of liquid crystallinity by this method without quenching any of the mesophases exhibited by the pure mesogen. The synthesized materials have been characterized by variable temperature Polarised optical microscopy (POM), DSC, FTIR, XRD, EDX, and TEM This process may be considered for preparation other nanoparticle-mesogen composites as well. It was observed that, the effect of doping on the transition temperature and enthalpy of 4-Decyloxybenzoic Acid can be significantly enhanced by pre-functionalizing the dopant (ZnO NP) with the substrate molecules and then mixing this substrate functionalized ZnO nanoparticle with the bulk substrate.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gorbachev, Stanislav A., et yacheslav V. Zuev. « Synthesis and Mesomorphic Properties of Biphenyl Derivatives with Central Unit Based on 1,6-Hexamethylene Diisocyanate Oligomers ». Liquid Crystals and their Application 22, no 4 (22 décembre 2022) : 27–36. http://dx.doi.org/10.18083/lcappl.2022.4.27.

Texte intégral
Résumé :
A number of compounds with biphenyl as a mesogenic fragment and a structure simulating LC dimers, polymers with mesogenic side chain groups and a star-shaped structure have been synthesized. An approach for the synthesis of such compounds under mild conditions and without a complex purification procedure with a quantitative yield, has been developed. The approach is the implementation of “click chemistry” methods for the synthesis of LC compounds. It has been shown that the LC state is observed only if there are three biphenyls in one molecule, i.e., the compounds appear to be similar to polyesters with biphenyl as a mesogenic moiety. The determining factor in the formation of the LC state and particularly smectic mesomorphism of compounds with such a potentially “weak” mesogen as biphenyl is the formation of intermolecular hydrogen bonds.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Goodby, J. W. « Mesogenic molecular crystalline materials ». Current Opinion in Solid State and Materials Science 4, no 4 (août 1999) : 361–68. http://dx.doi.org/10.1016/s1359-0286(99)00035-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dolden, J. G., et P. T. Alder. « The Mesogenic Index : An Empirical Method for Predicting Polymeric Liquid Crystallinity ». High Performance Polymers 10, no 3 (septembre 1998) : 249–72. http://dx.doi.org/10.1088/0954-0083/10/3/004.

Texte intégral
Résumé :
An empirical method for predicting the chemical compositions of random or partially ordered copolymers that exhibit mesophases was devised by the authors in 1989, while working on liquid crystal copolymer synthesis for BP Chemicals. A brief description of the method and its application to the chemical synthesis of amorphous thermotropic polyamides was given by the authors in a previous paper. Thermotropic polyimides were also synthesized by the authors as a result of the use of the predictive method. Subsequently, the method has been updated and applied to polycarbonates and polyimides. The new approach has been termed ‘the mesogenic index’ (MI) and has successfully been applied to 23 copolymer systems in which the critical compositions for mesophase formation have been established by means of varying constituent monomer concentrations. It is also consistent in predicting liquid crystalline behaviour in several hundred main-chain polymer systems containing amide, ester, carbonate, ether and urethane groups. It is inherent in the MI system that the mesogenic length is defined in terms of the number of monomer units for a given polymer class. From published work in the literature, it was first established that ester and amide groups need at least two and three aromatic rings in the mesogen respectively. Using these values to define mesogen length in polyester and polyamide copolymers, the condition MI > 10 has been determined for mesophase formation. This rule has been applied to other linking groups, such as carbonate or imide, with the surprising result that the corresponding mesogen lengths for these condensation polymers are simple numbers. Moreover, the rule has been applied successfully to mixed systems, by simply averaging the contributions of the different groups to the mesogen length in strictly molar proportions. The mesogenic index is based upon summing functional group contributions towards rigidity and/or resonance stabilization of the mesogen. To the best of our knowledge, this is the first simple method to be published that successfully correlates chemical composition with mesophase formation.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Malthête, Jacques. « Mesogenic calixarenes ». Advanced Materials 6, no 4 (avril 1994) : 315. http://dx.doi.org/10.1002/adma.19940060414.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Guo, Fei, et Robert Hurt. « Supramolecular Synthesis of Graphenic Mesogenic Materials ». Macromolecular Chemistry and Physics 213, no 10-11 (27 mars 2012) : 1164–74. http://dx.doi.org/10.1002/macp.201100600.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hakemi, H. « The effect of a compatible liquid crystal polymer on homogeneous reinforcement of mesogenic and nonmesogenic rigid-rod monomers ». Material Science & ; Engineering International Journal 6, no 1 (31 janvier 2022) : 1–4. http://dx.doi.org/10.15406/mseij.2022.06.00172.

Texte intégral
Résumé :
Discrete amount of main-chain Liquid Crystal Polymers (LCP) could mechanically reinforce the mesophase of rigid-rod monomers to form a supramolecular homogeneous composite for Liquid Crystal Display (LCD) materials. Moreover, a homogeneously dispersed LCP may induce an enantiotropic transition in monotropic or non-mesogenic rigid-rod compounds. In this work, we studied the blends of a flexible main-chain nematic LCP with an enantiotropic nematic, a monotropic nematic, and two non-mesogenic rigid-rod compounds as model systems. The results indicate that homogenous reinforcement of thermotropic LCP in these monomers is a valid concept and could lead to improvement of mesogenic stability, orienational and mechanical properties of rigid-rod materials for various applications.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rabie, Feras, Lenka Poláková, Sebastian Fallas, Zdenka Sedlakova, Eva Marand et Stephen M. Martin. « Temperature-Dependent Gas Transport Behavior in Cross-Linked Liquid Crystalline Polyacrylate Membranes ». Membranes 9, no 8 (20 août 2019) : 104. http://dx.doi.org/10.3390/membranes9080104.

Texte intégral
Résumé :
Stable, cross-linked, liquid crystalline polymer (LCP) films for membrane separation applications have been fabricated from the mesogenic monomer 11-(4-cyanobiphenyl-4′-yloxy) undecyl methacrylate (CNBPh), non-mesogenic monomer 2-ethylhexyl acrylate (2-EHA), and cross-linker ethylene glycol dimethacrylate (EGDMA) using an in-situ free radical polymerization technique with UV initiation. The phase behavior of the LCP membranes was characterized using differential scanning calorimetry (DSC) and X-ray scattering, and indicated the formation of a nematic liquid crystalline (LC) phase above the glass transition temperature. The single gas transport behavior of CO2, CH4, propane, and propylene in the cross-linked LCP membranes was investigated for a range of temperatures in the LC mesophase and the isotropic phase. Solubility of the gases was dependent not only on the condensability in the LC mesophase, but also on favorable molecular interactions of penetrant gas molecules exhibiting a charge separation, such as CO2 and propylene, with the ordered polar mesogenic side chains of the LCP. Selectivities for various gas pairs generally decreased with increasing temperature and were discontinuous across the nematic–sotropic transition. Sorption behavior of CO2 and propylene exhibited a significant change due to a decrease in favorable intermolecular interactions in the disordered isotropic phase. Higher cross-link densities in the membrane generally led to decreased selectivity at low temperatures when the main chain motion was limited by the lack of mesogen mobility in the ordered nematic phase. However, at higher temperatures, increasing the cross-link density increased selectivity as the cross-links acted to limit chain mobility. Mixed gas permeation measurements for propylene and propane showed close agreement with the results of the single gas permeation experiments.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lu, Yao-Chih, Yu-Tsz Hsu, Tsung-Yen Yang, I.-Chun Liou, Sheng-Wei Wang, Po-Chia Huang, Jey-Jau Lee, Long-Li Lai et Hsiu-Fu Hsu. « Converting non-Mesogenic to Mesogenic Stacking of Amino-s-Triazine-Based Dendrons with p-CN Phenyl Unit by Eliminating Peripheral Dipole ». Nanomaterials 12, no 2 (6 janvier 2022) : 185. http://dx.doi.org/10.3390/nano12020185.

Texte intégral
Résumé :
Three new amino-s-triazine-based dendrons, 1a, 1b, and 1c, containing an aryl-CN moiety in the dendritic skeleton were prepared in 72–81% yields (1a: R1 = − N(n-C8H17)2, R2 = n-OC8H17, 1b: R1 = R2 = − N(n-C8H17)2, 1c: R1 = − N(n-C8H17)2, R2 = − N(n-C4H9)2). Dendrons 1a with N(n-C8H17)2 and n-OC8H17 peripheral substituents, surprisingly, did not show any mesogenic phase during the thermal process. However, non-mesogenic 1a can be converted to mesogenic 1b or 1c by eliminating the peripheral dipole arising from the alkoxy substituent; dendron 1b only comprising the same N(n-C8H17)2 peripheral groups showed a ~25 °C mesogenic range on heating and ~108 °C mesogenic range on cooling. In contrast, dendron 1c possessing different N(n-CmH2m+1)2 (m = 8 versus m = 4) peripheral units, having similar stacking as 1b, exhibited a columnar phase on thermal treatment, but its mesogenic range (~9 and ~66 °C on heating and cooling, respectively) was much narrower than that of 1b, attributed to 1c’s less flexible alkyl chains in the peripheral part of dendron. Dendron 1a with the alkoxy substituent in the peripheral skeleton, creating additional dipole correspondingly, thus, leads to the dendritic molecules having a non-mesogenic stacking. Without the peripheral dipole for intermolecular side-by-side interaction, dendrons 1b and 1c exhibit a columnar phase on thermal treatment because of the vibration from the peripheral alkyl chain.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ono, H., T. Kawamura, N. M. Frias, K. Kitamura, N. Kawatsuki et H. Norisada. « Photorefractive Mesogenic Composites ». Advanced Materials 12, no 2 (janvier 2000) : 143–46. http://dx.doi.org/10.1002/(sici)1521-4095(200001)12:2<143 ::aid-adma143>3.0.co;2-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Mesogenic materials"

1

Nicholas, B. M. « The synthesis and properties of some new mesogenic materials ». Thesis, University of Hull, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376375.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Perkins, Steven Patrick. « The effect of molecular structure on the mesogenic properties of liquid crystalline materials ». Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302348.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Davis, David Richard. « Synthesis and Mesogenic Properties of Liquid Crystals with Bent Core-Tail Substitution Geometry ». Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1374770168.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cheng, Yao-Yi. « Crystallization studies of liquid crystalline polycarbonates based on substituted stilbene mesogen ». Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/38090.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kim, Namil. « Photoisomerization - And Photopolymerization-Induced Phase Transitions in Mixtures of Photoresponsive Chromophores and Reactive Mesogens ». University of Akron / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=akron1280254227.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Biswas, Soma. « EFFECT OF LINKER CHEMISTRY AND TERMINAL SUBSTITUENTS ON THE LIQUID CRYSTALLINE PROPERTIES OF BIS(AZOBENZENE) MESOGENS ». Thesis, The University of Arizona, 2008. http://hdl.handle.net/10150/193436.

Texte intégral
Résumé :
Azobenzene upon photochemical E/Z isomerization changes both its shape and size. The E-azobenzene moiety falls in the class of calamitic liquid crystalline mesogens, producing a wide variety of mesophases. Two series of linear bis(azobenzene) compounds, one with phenyl benzoate linkage and the other with benzyl benzoate linkage were synthesized. The termini of these molecules ranged from a dodecyloxy chain to hydrophobic amphiphilic dendrons up to first generation. We determined the effects of both the linkages and generation number on the mesogenic properties of these compounds. Our results show that the mesogenic behavior of these bis(azobenzene) compounds are highly dependent on the linkages between individual azobenzenes and that for the bis(azobenzene) compounds of the phenyl benzoate series, generation number had an effect on the liquid crystalline mesophase of the compounds
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sharpnack, Lewis Lee. « Mesomorphism of Newly Synthesized Mesogens and Surface Morphology of Chalcogenide Glass Thin Films ». Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1499949477885501.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Castiglione, Andrea. « Liquid crystalline macromolecular architectures based on regioregular poly(3-alkylthiophene) as backbone and calamitic mesogens as side-groups : towards ambipolar materials ». Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066693.

Texte intégral
Résumé :
Très récemment, le potentiel des semi-conducteur organiques (OSC) ambipolaires à attiré l'attention par de nombreuses applications technologiques. Dans le domaine de la microélectronique organique, l'un des obstacles majeurs pour le développent des OSC est le design de systèmes capables de transporter à la fois les électrons et les trous. Les matériaux semi-conducteurs ambipolaires ordonnés, peuvent répondre à cette problématique. Dans ce contexte nous avons développé la synthèse et la caractérisation d'une architecture macromoléculaire originale, fondée sur l'association d'un polymère semi-conducteur régiorégulier d'une part, avec des molécules ?-conjuguées cristal liquides ayant la propriété de s'auto-organiser spontanément d'autre part. Afin d'améliorer les propriétés mésomorphes et électroniques de ce système macromoléculaire, une gamme de composés différant par (i) la nature chimique du groupement pendant et (ii) le dégrée de polymérisation moyen du polymère à été synthétisée. La présence d'une mesophase a été confirmée pour chacun de ces composés par diffraction des rayons X et une mesophase de type lamello-lamellaire, présentant une alternance de couches électron-donneur ou électron-accepter à également pu être mis en évidence
Very recently ambipolar organic semi-conductors (OSC) have gaining attention for their potential use in numerous technologically relevant applications. Representative technological examples are the area of organic microelectronics where patterning of p- and n-channel semiconductors is one of the major hurdles for the implantation of OSC in organic complementary logic circuit. To achieve this objective, well-ordered ambipolar semiconducting materials are needed. In this work we investigated the self-organization and the electronic properties of a series of side chain liquid crystal (SCLC) semiconducting polymers where: (i) the backbone is a π-conjugated polymer and (ii) the side-groups are π-conjugated calamitic mesogens. We present our results on the design, synthesis, and structural characterization of this new liquid crystal regioregular poly(3-alkylthiophene) polymer family post-functionalized with side-on calamitic moieties. The parameters of these materials are: (i) the chemical nature of the side-group moieties and (ii) the degree of polymerization. As a result we will show that this strategy leads to the supramolecular self-assembly of this SCLC semiconducting polymer in a peculiar lamello-lamellar mesophase, where the two different lamellas present two different electronic properties, such as electron donor and electron acceptor behaviors
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hicks, Sarah Elizabeth. « Polymer-Dispersed and Polymer-Stabilized Liquid Crystals ». Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1333417859.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Mesogenic materials"

1

Guo, Fei, et Robert Hurt. « Supramolecular Synthesis of Graphenic Mesogenic Materials ». Dans Chemical Synthesis and Applications of Graphene and Carbon Materials, 69–85. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527648160.ch5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kumari, Sanyucta. « Synthesis, Structural Studies of Some Lanthanide Complexes of the Mesogenic Schiff-Base,N,N′-di-(4′-Octadecyloxybenzoate)Salicylidene-I″, 3″-Diamino-2″-Propanol ». Dans Nanostructured Materials and Nanotechnology VII, 139–48. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118807828.ch13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kurihara, Seiji, Hiroki Ohta et Takamasa Nonaka. « PHOTOREACTION OF LIQUID CRYSTALS : FIXATION OF ORDERING OF MESOGENIC MOLECULES ». Dans Advanced Materials '93, 357–60. Elsevier, 1994. http://dx.doi.org/10.1016/b978-1-4832-8380-7.50088-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

YAMASHITA, S., M. INAKI, Y. IKEDA et S. KOHJIYA. « SYNTHESIS, STRUCTURE AND PROPERTIES OF ABA-TYPE TRIBLOCK COPOLYMERS HAVING MESOGENIC GROUPS ». Dans Mechanical Behaviour of Materials VI, 275–80. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-08-037890-9.50296-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Han, Chang Dae. « Rheology of Liquid-Crystalline Polymers ». Dans Rheology and Processing of Polymeric Materials : Volume 1 : Polymer Rheology. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195187823.003.0015.

Texte intégral
Résumé :
Liquid crystals (LCs) may be divided into two subgroups: (1) lyotropic LCs, formed by mixing rigid rodlike molecules with a solvent, and (2) thermotropic LCs, formed by heating. One finds in the literature such terms as mesomorphs, mesoforms, mesomorphic states, and anisotropic liquids. The molecules in LCs have an orderly arrangement, and different orders of structures (nematic, smectic, or cholesteric structure) have been observed, as schematically shown in Figure 9.1. The kinds of molecules that form LCs generally possess certain common molecular features. The structural characteristics that determine the type of mesomorphism exhibited by various molecules have been reviewed. At present, our understanding of polymeric liquid crystals, often referred to as liquid-crystalline polymers (LCPs), is largely derived from studies of monomeric liquid crystals. However, LCPs may exhibit intrinsic differences from their monomeric counterparts because of the concatenation of monomers to form the chainlike macromolecules. The linkage of monomers inevitably means a loss of their translational and orientational independence, which in turn profoundly affects the dynamics of polymers in the liquid state. These intramolecular structural constraints are expressed in the flexibility of the polymer chain. Generally speaking, the chemical constitution of the monomer determines the flexibility and equilibrium dimensions of the polymer chain (Gray 1962). Figure 9.2 illustrates the variability of chain conformation (flexible chain, semiflexible chain, and rigid rodlike chain) forming macromolecules. Across this spectrum of chain flexibility, the persistence in the orientation of successive monomer units varies from the extreme of random orientation (flexible chains) to perfect order (the rigid rod). Hence, efforts have been made to synthesize LCPs that consist of rigid segments contributing to the formation of a mesophase and flexible segments contributing to the mobility of the entire macromolecule in the liquid state (Ober et al. 1984). From the point of view of molecular architecture, as schematically shown in Figure 9.3, two types of LCP have been developed: (1) main-chain LCPs (MCLCPs), having the monomeric liquid crystals (i.e., mesogenic group) in the main chain of flexible links, and (2) side-chain LCPs (SCLCPs), having the monomeric liquid crystals attached, as a pendent side chain, to the main chain.
Styles APA, Harvard, Vancouver, ISO, etc.
6

« Self-Assembly and Biomimetics ». Dans Nanoscopic Materials : Size-Dependent Phenomena and Growth Principles, 296–326. 2e éd. The Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/bk9781849739078-00296.

Texte intégral
Résumé :
Self-assembly is a process in which structural motives provide specific interaction for directed aggregation of the modular building blocks under equilibrium conditions. Interactions among the building blocks but also between building blocks and solvent play a role. This allows the formation of oriented unimolecular layers and bilayers, such as soap films or biological cell membranes. Depending on the shape of the units, oriented packing may lead to curvature. The interface of the layer to the solvent is associated with a small interfacial energy, and curved surfaces separate regimes of different pressure. In isotropic systems this leads to structures of constant curvature. Nature makes extensive use of these construction principles, and chemists can take advantage of them in biomimetic synthesis in the laboratory. The building motives are often elongated or polar organic molecules such as surfactants, but in liquid crystals the mesogenes can also be disc-shaped. The resulting soft matter structures can be used as moulds for the synthesis of quite artistic architectures from hard ceramics at or near room temperature via the sol–gel process. Alternatively, three-dimensional structures can be designed and synthesised from modules with specific coupling elements. Metal–organic frameworks are examples of such structures which after removal of the solvent are porous and may be stable, suitable for gas adsorption or separation, or catalysis.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Mesogenic materials"

1

Furman, Jolanta, et Leszek Makaruk. « New linear liquid crystal polyesters containing bulky steric aliphatic substituents in mesogenic units ». Dans Liquid Crystals : Materials Science and Applications, sous la direction de Jozef Zmija. SPIE, 1995. http://dx.doi.org/10.1117/12.215552.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fujii, A., T. Kitagawa, M. Fujisaki, S. Nagano, N. Tohnai et M. Ozaki. « Epitaxial growth of mesogenic tetrabenzotriazaporphyrin in freezing process from supercooled liquid crystal state ». Dans 2019 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2019. http://dx.doi.org/10.7567/ssdm.2019.a-2-06.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mihara, Takashi, Hiroyuki Kohno et Naoyuki Koide. « Physical properties of regioregular polythiophene derivatives containing mesogenic or ionic group in the side chain ». Dans Smart Materials, Nano-, and Micro-Smart Systems, sous la direction de Alan R. Wilson. SPIE, 2004. http://dx.doi.org/10.1117/12.585047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Torres, Yanira, Timothy White, Amber McClung et William Oates. « Photoresponsive Azobenzene Liquid Crystal Polymer Networks : In Situ Photogenerated Stress Measurement ». Dans ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3656.

Texte intégral
Résumé :
Azobenzene liquid crystal polymers and polymer networks are adaptive materials capable of converting light into mechanical work. Often, the photomechanical output of the azobenzene liquid crystal network (azo-LCN) is observed as a bending cantilever. The response of these materials can be either static (e.g. a simple bending cantilever) or dynamic (e.g. oscillating cantilever of 20–270 Hz). The resulting photomechanical output is dependent upon the domain orientation of the polymer network and the wavelength and polarization of the actinic light. Polydomain azobenzene liquid crystal polymer networks, which have the capability of bending both backwards and forwards with the change of polarization angle, are of particular interest. In the current study, three azo-LCNs are compared — two of them are equivalent in all respects except for one contains pendant azobenzene mesogens (1azo, azo-monoacrylate) and the other contains crosslinked azobenzene mesogens (2azo, azo-diacrylate). The third specimen has a combination of both mesogens. The mechanical behavior at different temperatures and examination of structure-property relationships in the polymerization process, including curing temperatures and liquid crystal cell alignment rubbing methods, were explored. Using dynamic mechanical analysis (DMA) the mechanical properties and the photogenerated stress and strain in the polymer are examined. It is found the differences in chemistry do correlate to small variation in the speed of photodirected bending, elastic modulus, and glass transition temperature. Despite these differences, all three azo-LCNs display nearly equivalent photogenerated stresses.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tam-Chang, Suk-Wah, Liming Huang, Aryal Gyan, Wonewoo Seo, Delfin Mahinay et Isaac K. Iverson. « Designing chromonic mesogens for the fabrication of anisotropic optical materials ». Dans Integrated Optoelectronic Devices 2008, sous la direction de Liang-Chy Chien. SPIE, 2008. http://dx.doi.org/10.1117/12.761012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dabrowski, Roman S., Jerzy Dziaduszek et Krzysztof L. Czuprynski. « Synthesis and mesomorphic properties of mesogens containing two ethane or carbonyloxy bridge groups ». Dans Liquid Crystals : Materials Science and Applications, sous la direction de Jozef Zmija. SPIE, 1995. http://dx.doi.org/10.1117/12.215546.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Natansohn, A., P. Rochon, J. Mao et S. Xie. « Optical Storage in Polymers Containing Azo Groups without Electron-Donor - Electron Acceptor Substituents : Poly[4-(2-methacryloyloxy)ethyl-azobenzene] ». Dans Organic Thin Films for Photonic Applications. Washington, D.C. : Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.wd.25.

Texte intégral
Résumé :
Some degree of supramolecular organization can be induced in amorphous polymers containing azobenzene groups by means of polarized light. This phenomenon has been known for about a decade and the relevant literature has been reviewed in one of our recent publications1. This induced preferred orientation of the azobenzene groups can be monitored by a significant change in the refractive index of the polymer film and can thus be usea as an information storage mechanism. Circularly polarized light restores the natural disorder of the azobenzene orientations, enabling erasure of the stored information1-5. This phenomenon was first noticed on polymers doped with substituted azobenzenes and was intensively studied on liquid crystalline polymers containing substituted azobenzenes as the mesogenic group. Probably by chance - due to the availability of various azo dyes and to the ease of synthesis - almost all examples previously studied in the literature had electron-donor and electron-acceptor substituents on the azobenzene groups. Their presence conferred another important dimension to this type of supramolecular organization: starting with a polarizable group one could induce second order nonlinear susceptibility in the material, thus opening the possibility of applications in photonics.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie