Littérature scientifique sur le sujet « MEMBRANE BIO-REACTOR »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « MEMBRANE BIO-REACTOR ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "MEMBRANE BIO-REACTOR"

1

Lan, Shan Hong, Chuan Lu Wang, Hui Jie Li, Heng Zhang et Hui Xia Lan. « Study on Aerobic Nitrogen Removal in Double Membrane Bio-Reactor ». Advanced Materials Research 1092-1093 (mars 2015) : 923–26. http://dx.doi.org/10.4028/www.scientific.net/amr.1092-1093.923.

Texte intégral
Résumé :
The double membrane bio-reactor was used to treat the simulated wastewater under aerobic conditions, and the aerobic activated sludge system was set as the control. At the beginning of acclimation, COD removal efficiency in double membrane bio-reactor was higher than that of aerobic activated sludge system, but difference between two systems was little in later stage. The ammonia nitrogen removal rate in double membrane bio-reactor was significantly higher than aerobic activated sludge throughout the whole acclimation stage and nitrite concentration in the effluent from double membrane bio-reactor was lower than that of from aerobic activated sludge, while the nitrate concentration was higher. The nitrite was not accumulated in double membrane bio-reactor through the whole process of acclimation, while the accumulation of nitrate happened in aerobic activated sludge system.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kobayashi, Masumi. « A Development Trend of MBR (Membrane Bio Reactor) ». MEMBRANE 43, no 4 (2018) : 161–63. http://dx.doi.org/10.5360/membrane.43.161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Takemura, Kiyokazu, Naoki Ohkuma, Makoto Oonishi et Kazuhiko Noto. « Application of Membrane to Sewage Treatment System Bio-Reactor ». membrane 29, no 6 (2004) : 388–91. http://dx.doi.org/10.5360/membrane.29.388.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Davies, W. J., M. S. Le et C. R. Heath. « Intensified activated sludge process with submerged membrane microfiltration ». Water Science and Technology 38, no 4-5 (1 août 1998) : 421–28. http://dx.doi.org/10.2166/wst.1998.0684.

Texte intégral
Résumé :
A pilot bio-reactor based on the Kubota membrane filtration system using screened domestic sewage has shown impressive results. Operating with an average MLSS of 16,000 mg/l and 4.5 hours HRT the bio-reactor produced a very high quality effluent with typical values of 4 mg/l and 5 mg/l for BOD and NH4-N respectively. The sludge age from the bio-reactor was about 45 days. The cost of secondary treatment by membrane bio-reactor (including land and civil costs) starts from 12 p/m3 for a 1.4 Ml/d plant and reduces to 6p/m3 for a 22.5 Ml/d plant based on full treatment up to 3DWF. The corresponding treatment costs by conventional technologies are 13 p/m3 for a 1.4 Ml/d SBC plant and 5 p/m3 for a 22.5 Ml/d FBDA activated sludge plant.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lubello, C., et R. Gori. « Membrane bio-reactor for textile wastewater treatment plant upgrading ». Water Science and Technology 52, no 4 (1 août 2005) : 91–98. http://dx.doi.org/10.2166/wst.2005.0091.

Texte intégral
Résumé :
Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge+clariflocculation+ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nuhoglu, Alper, Turgay Pekdemir, Ergun Yildiz, Bulent Keskinler et Galip Akay. « Drinking water denitrification by a membrane bio-reactor ». Water Research 36, no 5 (mars 2002) : 1155–66. http://dx.doi.org/10.1016/s0043-1354(01)00344-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kim, Myeongho, Daihyeon Go et Junho Lee. « 막회복률 극대화를 위한 Airlift pump가 결합된 생물막반응조 ». Journal of the Korean Society of Urban Environment 22, no 4 (31 décembre 2022) : 287–94. http://dx.doi.org/10.33768/ksue.2022.22.4.287.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Xie, Xian Si, et Ping Shang. « Experimental Study on Non-Backwashing Dynamic Membrane Bio-Reactor ». Applied Mechanics and Materials 522-524 (février 2014) : 682–85. http://dx.doi.org/10.4028/www.scientific.net/amm.522-524.682.

Texte intégral
Résumé :
Using a DMBR, which consists of two piece of Polyester fabric mini nets and an interactive unit with brushes, to test whether it can relieve membrane fouling and keep the reactors stable operation on a high flux by anti-brushing periodically or not. The results indicated that when the flux was 45L/m2·h, it could operate 28d until the flux decline. And it also showed that an operation by running the interactive unit periodically could remove the dynamic membrane and make the non-backwashing come true. By comparing the amount of bio-film on the nets surface before and after anti-brushing, it proved that anti-brushing had a good cleaning effect to net. In addition to through a detection to the effluent turbidity, it could put 0.5NTU as an important sign to do anti-brushing operation.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ng, Kok-Kwang, Chien-Ju Wu, Li-Yuan You, Chin-Sheng Kuo, Cheng-Fang Lin, Andy Pui-Kwan Hong et Ping-Yi Yang. « Bio-entrapped membrane reactor for organic matter removal and membrane fouling reduction ». Desalination and Water Treatment 50, no 1-3 (décembre 2012) : 59–66. http://dx.doi.org/10.1080/19443994.2012.708538.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

VERGUNOV, Aleksey I. « ORGANIC SORPTION-MEMBRANE TECHNOLOGY OF DON WATERS CLEAN ». Urban construction and architecture 6, no 2 (15 juin 2016) : 23–26. http://dx.doi.org/10.17673/vestnik.2016.02.5.

Texte intégral
Résumé :
Within one year on the water of the river Don were conducted pilot tests of bio-sorptional-membrane installation, allowing to reduce the content of organic substances in drinking water. Thus, reducing the efficiency of COD concentration in the bio-sorptional-membrane reactor averaged 44.8%, the chroma - 59.1%, permanganate oxidation - 31.2%. The high degree of water purification has been obtained and turbidity was 95-96%. The results showed that the bio-sorptional membrane technology is a promising way to improve the process of natural water purification, in particular, to prevent the formation of chlorinated and brominated compounds in the chlorination of water.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "MEMBRANE BIO-REACTOR"

1

Chu, Hiu-ping, et 諸曉平. « Trihalomethane formation in contaminated surface water and its controlby membrane bio-reactor ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B29744052.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Seelam, P. K. (Prem Kumar). « Hydrogen production by steam reforming of bio-alcohols:the use of conventional and membrane-assisted catalytic reactors ». Doctoral thesis, Oulun yliopisto, 2013. http://urn.fi/urn:isbn:9789526202778.

Texte intégral
Résumé :
Abstract The energy consumption around the globe is on the rise due to the exponential population growth and urbanization. There is a need for alternative and non-conventional energy sources, which are CO2-neutral, and a need to produce less or no environmental pollutants and to have high energy efficiency. One of the alternative approaches is hydrogen economy with the fuel cell (FC) technology which is forecasted to lead to a sustainable society. Hydrogen (H2) is recognized as a potential fuel and clean energy carrier being at the same time a carbon-free element. Moreover, H2 is utilized in many processes in chemical, food, metallurgical, and pharmaceutical industry and it is also a valuable chemical in many reactions (e.g. refineries). Non-renewable resources have been the major feedstock for H2 production for many years. At present, ~50% of H2 is produced via catalytic steam reforming of natural gas followed by various down-stream purification steps to produce ~99.99% H2, the process being highly energy intensive. Henceforth, bio-fuels like biomass derived alcohols (e.g. bio-ethanol and bio-glycerol), can be viable raw materials for the H2 production. In a membrane based reactor, the reaction and selective separation of H2 occur simultaneously in one unit, thus improving the overall reactor efficiency. The main motivation of this work is to produce H2 more efficiently and in an environmentally friendly way from bio-alcohols with a high H2 selectivity, purity and yield. In this thesis, the work was divided into two research areas, the first being the catalytic studies using metal decorated carbon nanotube (CNT) based catalysts in steam reforming of ethanol (SRE) at low temperatures (<450 °C). The second part was the study of steam reforming (SR) and the water-gas-shift (WGS) reactions in a membrane reactor (MR) using dense and composite Pd-based membranes to produce high purity H2. CNTs were found to be promising support materials for the low temperature reforming compared to conventional catalyst supports, e.g. Al2O3. The metal/metal oxide decorated CNTs presented active particles with narrow size distribution and small size (~2–5 nm). The ZnO promoted Ni/CNT based catalysts showed the highest H2 selectivity of ~76% with very low CO selectivity <1%. Ethanol was shown to be a more suitable and viable source for H2 than glycerol. The dense Pd-Ag membrane had higher selectivity but a lower permeating flux than the composite membrane. The MR performance is also dependent on the active catalyst materials and thus, both the catalyst and membrane play an important role. Overall, the membrane–assisted reformer outperforms the conventional reformer and it is a potential technology in pure H2 production. The high purity of H2 gas with a CO-free reformate for fuel cell applications can be gained using the MR system
Tiivistelmä Maailman energiankulutus on kasvussa räjähdysmäisen väestönkasvun ja voimakkaan kaupungistumisen myötä. Tällä hetkellä energian tuottamisen aiheuttamat ympäristöongelmat ja taloudellinen epävarmuus ovat seikkoja, joiden ratkaisemiseksi tarvitaan vaihtoehtoisia ja ei-perinteisiä energialähteitä, joilla on korkea energiasisältö ja jotka tuottavat vähän hiilidioksidipäästöjä. Eräs vaihtoehtoisista lähestymistavoista on vetytalous yhdistettynä polttokennotekniikkaan, minkä on esitetty helpottavan siirtymistä kestävään yhteiskuntaan. Vety on puhdas ja hiilivapaa polttoaine ja energian kantaja. Lisäksi vetyä käytetään monissa prosesseissa kemian-, elintarvike-, metalli- ja lääketeollisuudessa ja se on arvokas kemikaali monissa prosesseissa (mm. öljynjalostamoissa). Uusiutumattomat luonnonvarat ovat olleet tähän saakka merkittävin vedyn tuotannon raaka-aine. Tällä hetkellä noin 50 % vedystä tuotetaan maakaasun katalyyttisellä höyryreformoinilla. Puhtaan (yli 99,99 %) vedyn tuotanto vaatii kuitenkin useita puhdistusvaiheita, jotka ovat erittäin energiaintensiivisiä. Integroimalla reaktio- ja puhdistusvaihe samaan yksikköön (membraanireaktori) saavutetaan huomattavia kustannussäästöjä. Biopolttoaineet, kuten biomassapohjaiset alkoholit (bioetanoli ja bioglyseroli), ovat vaihtoehtoisia lähtöaineita vedyn valmistuksessa. Tämän työn tavoitteena on tuottaa vetyä bioalkoholeista tehokkaasti (korkea selektiivisyys ja saanto) ja ympäristöystävällisesti. Tutkimus on jaettu kahteen osaan, joista ensimmäisessä tutkittiin etanolin katalyyttistä höyryreformointia matalissa lämpötiloissa (<450 °C) hyödyntämällä metallipinnoitettuja hiilinanoputkia. Työn toisessa osassa höyryreformointia ja vesikaasun siirtoreaktioa tutkittiin membraanireaktorissa käyttämällä vedyn tuotantoon tiheitä palladiumpohjaisia kalvoja sekä huokoisia palladiumkomposiittikalvoja. Hiilinanoputket (CNT) havaittiin lupaaviksi katalyyttien tukimateriaaleiksi verrattuna tavanomaisesti valmistettuihin tukiaineisiin, kuten Al2O3. CNT-tukiaineelle pinnoitetuilla aktiivisilla aineilla (metalli-/metallioksidit) todettiin olevan pieni partikkelikoko (~2–5 nm) ja kapea partikkelikokojakauma. Sinkkioksidin (ZnO) lisäyksellä Ni/CNT-katalyytteihin saavutettiin korkea vetyselektiivisyys (~76 %) ja erittäin alhainen hiilimoksidiselektiivisyys (<1 %). Etanolin todettiin olevan parempi vedyn raaka-aine kuin glyserolin. Tiheillä Pd-Ag-kalvoilla havaittiin olevan vedyn suhteen korkeampi selektiivisyys mutta matalampi vuo verrattuna palladiumkomposiittikalvoihin. Membraanireaktorin suorituskyky oli riippuvainen myös katalyytin aktiivisuudesta, joten sekä kalvolla että katalyyttimateriaalilla oli merkittävä rooli kyseisessä reaktorirakenteessa. Yhteenvetona voidaan todeta, että membraanierotukseen perustuva reformointiyksikkö on huomattavasti perinteistä reformeriyksikköä suorituskykyisempi mahdollistaen tehokkaan teknologian puhtaan vedyn tuottamiseksi. Membraanitekniikalla tuotettua puhdasta vetyä voidaan hyödyntää mm. polttokennojen polttoaineena
Styles APA, Harvard, Vancouver, ISO, etc.
3

RAMHARI, MEENA SEEMA. « TECHNO-COMMERCIAL COMPARISON OF MEMBRANE BIO-REACTOR WITH ACTIVATED SLUDGE PROCESS AND MOVING BED BIO-FILM REACTOR ». Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15243.

Texte intégral
Résumé :
The wastewater from industries varies so greatly in both flow and pollutional strength. In general, industrial wastewaters may contain suspended, colloidal and dissolved solids. In addition, they may be either excessively acid or alkaline and may contain high or low concentrations of coloured matter. These wastage may contain inert, organic or toxic materials and possibly pathogenic bacteria. These wastes may be discharged into the sewer system provided they have no adverse effect on treatment efficiency or undesirable effects on the sewer system. It may be necessary to pretreat the wastes prior to release to the municipal system or it is necessary to a fully treatment when the wastes will be discharged directly to surface or ground waters. The technologies discussed in the project are Membrane Bio-reactor (MBR), Activated Sludge Process (ASP) and Moving Bed Bio-film Reactor (MBBR). Membrane Bio-reactor (MBR) is a wastewater treatment technology that offers many advantages including excellent effluent quality, stable operation performance, a small footprint, reduction of excess sludge production, reuse of effluent, reduction of risk substances and so on. When one takes into consideration that fresh water serves as a precious resource for human brings, the ability to reuse treated water is one of the biggest advantages of using MBR technology. The activated sludge process (ASP), found in the wastewater treatment plants, consists basically of a biological reactor followed by a sedimentation tank, which has one inlet and two outlets. The purpose of the ASP is to reduce organic material and dissolved nutrients (substrate) in the incoming wastewater by means of activated sludge (microorganisms). The major part of the discharged flow thrugh the bottom outlet of the sedimentation tank is re-circulated to the reactor, so that the biomass is reused. The moving bed bio-reactor (MBBR) technology is an attached growth biological treatment process based on a continuously operating, non-clogging bio-film reactor with the low head loss, a hig specific bio-film surface area, and no requirement for backwashing. Moving bed technology presents several operational advantages, compared to other conventional biological treatments.
Styles APA, Harvard, Vancouver, ISO, etc.
4

You, Li-Yuan, et 游禮轅. « The Influence of Modified Membrane Bio-reactor System on Ultra-filtration Membrane Fouling ». Thesis, 2010. http://ndltd.ncl.edu.tw/handle/17324529661087904535.

Texte intégral
Résumé :
碩士
國立臺灣大學
環境工程學研究所
98
Membrane bio-reactor (MBR) is the most popular biological treatment process because of its high mixed liquid suspended solid (MLSS), low production of sludge, stable and good effluent water, and a smaller footprint. However, membrane fouling has been the major problem that limiting the wide applications of MBR. High sludge concentration of conventional MBR is referred as one of the major reason of membrane fouling. The fixed carrier biological system (FCBS) with longer sludge retention time (SRT) and low suspended solid (SS) believed to enable less membrane fouling. Thus, the influence of modified MBR system by combining FCBS with ultra-filtration membrane module on membrane fouling at various operating parameters such as HRT (18, 12 and 6h), continuous and interrupted aeration (1h aeration-1h non-aeration and 1h aeration-2h non-aeration) at room temperature was investigated and industrial wastewater was used throughout the experiment. The result shows that HRT and aeration significantly influence the MBR performance. The shorter HRT (6h) with interrupted aeration results the lower COD (initial: 458~1007 mg/L) and NH+4-N (initial 6.3~12.8 mg/L) removal with higher membrane fouling. Whereas with continuous aeration at higher HRT (18h) higher removals of COD, NH+4-N and low effluent SS of 92.5 %, 93.7 % and 30.6 mg/L was achieved respectively and also results in less membrane fouling. The membrane fouling experiments at constant flux of 20 LMH, HRT of 12 h with continuous aeration shows that a maximum trans-membrane pressure (TMP) of 55 kpa was reached in 215 min which is 3.8 times delayed than the conventional MBR. From the results the best performance of the reactor operating conditions were found to be in the order of 18h>12h>6h HRTs and continuous aeration > interrupted aeration. The conclusion it can be confidently stated that the modified MBR system really improve the MBR performance by decreasing fouling in comparison with conventional MBR system. Therefore, modified MBR have the potential for improvement or replacement of the existing conventional activated sludge process with regard to improving the effluent qualities by decreasing membrane fouling.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ng, Kok-Kwang, et 黃國權. « Reduce Membrane Fouling in a Novel Bio-Entrapped Membrane Reactor : Impact of Soluble Microbial Products ». Thesis, 2012. http://ndltd.ncl.edu.tw/handle/56047751126666768959.

Texte intégral
Résumé :
博士
國立臺灣大學
環境工程學研究所
100
Membrane bioreactors (MBRs) have been widely adopted for secondary treatment of municipal wastewater in the past decade, especially in developed countries. However, a major issue of MBRs is the rapid decline of permeate flux due to a high level of biomass in the reactor that accelerates membrane fouling. High sludge concentration and extracellular polymeric substances (EPS) or soluble microbial products (SMP) have been determined to be the major factors affecting membrane bioreactor operation. Therefore, the development of a novel biological reactor that contains a lower concentration of biomass and SMP is warranted. The bio-entrapped reactor (BER) has been developed for treatment of various wastewaters to achieve high simultaneous removal of carbon and nitrogen, and that reduced suspended biomass and increased SRT in the reactor with the objectives to achieve high organics removal in a more facile operation with a short start-up period. Thus, the BER was coupled with membrane as bio-entrapped membrane reactor (BEMR) was investigated the SMP and their characteristics on membrane fouling in treating food processing wastewater, and also compared with conventional membrane bioreactor (CMBR) with the overall study goal is to reduce membrane fouling commonly encountered in MBRs. The results show that BER with a longer sludge retention time (SRT) has demonstrated that membrane filtration performed well and achieved an approximately 25%-30% higher filtration flux and better flux recovery after backwashing than the activated sludge process (ASP) system. The BEMR could remove the carbon and ammonia nitrogen with more than 90% under different hydraulic retention time (HRT). The novel BEMR sustained operation at constant permeate flux (20 LMH) that required seven times less frequent chemical cleaning than did the conventional membrane bioreactor. Membrane fouling was improved in the new reactor, which led to a longer membrane service period with the new reactor. As in the CMBR, rapid membrane fouling was attributed to increased production of biomass and SMP, this is because the BEMR produced less SMP than did CMBR (34%-48% less protein and 16%-29% less carbohydrate) due to slow-growing microorganisms with longer SRT in the BEMR. Further, results of this thesis also indicated that suspended solids and bound EPS unexpectedly played a negligible role in membrane fouling and the fouling was actually controlled by SMP, which proved the SMP was the major contributor or foulant to the membrane fouling. Both MBRs (BEMR and CMBR) produced SMP of 10-100 kDa primarily of protein (59% in BEMR and 64% in CMBR), which likely caused membrane pores clogging because the 10-100 kDa of SMP could easily penetrate to the membrane pores by adsorption in a 100 kDa membrane used in this work. The impact of protein and carbohydrate to the membrane fouling was also been found because, the findings with L-Tyrosine and glucose as the model foulants for protein and carbohydrate respectively showed that protein (L-Tyrosine) caused more severe permeate flux decline than carbohydrate (glucose). The conclusion stated that the bio-entrapped membrane reactor could really improve the MBR performance by reducing the membrane fouling and producing less concentration of SMP with conventional membrane bioreactor. Therefore, the new BEMR offers effective organics removal while reducing membrane fouling with the potential for improving and encountering the current problems faced by conventional MBR.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hou, Sheng-Jhong, et 侯勝中. « Dying Wastewater Treatment by Immobilized High Efficiency Decolorzing Bacteria in Membrane Bio-reactor ». Thesis, 2009. http://ndltd.ncl.edu.tw/handle/09587852326964309912.

Texte intégral
Résumé :
碩士
中原大學
土木工程研究所
97
A Bacillus cereus bacteria having high RB5 dye color removal efficiency was isolated from an anaerobic-aerobic reactor and utilized in this study for treatment of RB5 containing wastewater. The immobilized bacteria were prepared by immobilizing bacteria on PVA-aglinate beads (size 4-5 mm) as base substrate. In this study, the efficiency of RB5 dye removal and membrane fouling using anaerobic MBR (AnMBR) were compared with equivalent suspended and immobilized bacteria bioreactor system. Additionally, batch experiment were performed to study the dye adsorption characteristics, effect of initial dye concentration, durability and reuse capacity of immobilized cells. Results showed that immobilized system was capable of treating higher concentration (200 mg/L) as compared o suspended system. Immobilized bacteria can be reused 16 times for the dye concentration of 400 mg/L in a day. In the decolorizing experiment, it was observed that the bacteria run out from immobilization and grew in the medium. Further study using an anaerobic MBR system showed that the immobilized bio-cells system was capable of performing efficiently and equivalent to suspended bio-cells system with an advantage of lower membrane fouling. The performance of COD removal was almost similar in both type of reactor systems where as the dye removal and ADMI removal was slightly different. It was observed that the membrane fouling was faster (nearly two times) in suspended bacteria system as compared to immobilized system.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chien, Tsung-Sheng, et 簡琮晟. « Study on Treatment of Photovoltaic Wastewater by side-stream Membrane bio-reactor (MBR) ». Thesis, 2018. http://ndltd.ncl.edu.tw/handle/38v544.

Texte intégral
Résumé :
碩士
國立中央大學
環境工程研究所
106
In this study, operational data from June 2016 to April 2018 for a total of 22 months were used to monitor the basic factors such as dissolved oxygen, pH, and temperature in the activated sludge tank within a fixed range, The MLSS was controlled at 11,500 mg/L, during which glucose, urea and other nutrients were added. F/M was adjusted between 0.04~0.05 kg COD/kg MLSS-day. Changes of activated sludge tank phase was observed to understand the operating parameters of different factors’impact on the MBR through the water flux variations to maintain the optimum effectiveness of the side-by-side MBR. The results of this study show that the COD removal efficiency of side-stream MBR can reach 97.5%, and through the control of the membrane fouling factors, the permeate flux can be effectively increased by 36%, while the unit cost for the maintenance of the wastewater system in the plant can be reduced by 45%. The maintenance of online chemical wash can restore the MBR through 9~22% of the water flux, and the membranes recovered from the offline cleaning can recover 10~25% of the flux, and can also increase 19~20% of the flux.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lin, Hui-Ling, et 林慧玲. « Studies of Treatment Efficiency and Microbial Population Analysis or Nonwoven Membrane Bio-Reactor (MBR) ». Thesis, 2006. http://ndltd.ncl.edu.tw/handle/24251439514636797073.

Texte intégral
Résumé :
碩士
國立中興大學
環境工程學系
94
Membrane Bio-Reactor (MBR) is a high efficiency biological treatment technology which combines membrane separation technology and bio-reactor technology. The advantages of MBR comparing with traditional activated sludge system are higher biomass concentration, smaller reactor volume and longer sludge retention time. Another type of reactor was designed by adding BioNET carriers. These carriers of BioNET have extremely large specific surface area (m2/m3) for cultivating special microorganisms to enhance the treatment efficiency. BioMF system is a combination of BioNET and non-woven membrane and have been proven to be able to promote flux of the membrane. It is necessary to applying newly molecular biology technology to identify microorganisms in the wastewater treatment system. It helps not only on understanding the microorganism culture distribution but also can finding the possible solution when the system is under unusual situation. However, applying molecular biology technology on MBR system is rare in the literatures. This study attempted to apply molecular biology technology and density gradient centrifugation methods on evaluating the treatment efficiency of MBR and investigating the in shifts of microorganisms. The distributions of microorganism in the reactor, treatment efficiency and relationship of fouling were successfully studied. The result indicates that the density gradient centrifugation method can be helpful on analyzing complex microorganism systems. It is feasible to use non-woven membrane to treat wastewater. The COD removal efficiency of three different MBRs tested in this study is between 95 to 99 %. By using molecular method, microorganism community possibly involving with COD degradation and biofouling were successfully identified. From the first stage experiment, PP membrane covered with resin, an Epsilon Proteobacteria was identified. On the other hand, a Verrucomicrobium spinosum was identified from the AS2 membrane in the second stage experiment. It is possible that these two microorganisms could be involved with the forming of biofouling.
Styles APA, Harvard, Vancouver, ISO, etc.
9

CHEN, SHI-QUAN, et 陳時全. « A study of landfill leachate treatment by aerobic draft tube fluidized bed bio-reactor and membrane technology ». Thesis, 1992. http://ndltd.ncl.edu.tw/handle/21903566774539210350.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tang, Li-Chi, et 唐禮旗. « Study on Enhancing Wastewater Treatment of Dicarboximide Pesticides by Combined Upflow Anaerobic Sludge Blanket (UASB) With Membrane Bio-Reactor (MBR) ». Thesis, 2016. http://ndltd.ncl.edu.tw/handle/98665692130500419293.

Texte intégral
Résumé :
碩士
國立中興大學
環境工程學系所
104
Various organic chemicals manufacturing process often add organic chemicals. The wastewater normally contains toluene, xylene, ethanol , Butanol ,chlorobenzene, Trichlorobenzene and trace toxic substances in either the outsourcing process or removal comprehensive wastewater. If the treatment process are not-perated properly, it may become the main factor of pollution in the industry. There is one thing noticeable that, currently the main treatments of processing the wastewater produced by pesticide manufacturers are chemical coagulation andaerobic activated sludge treatment method. However, the efficacy is not ideal. The aim of this study is to measure the effectiveness of COD removal of dicarboximide pesticides wastewater (containing isopropyl isocyanate, dichlorophenyl isocyanate, methanol, triethylamine, chlorobenzene and so on) under different COD concentrations (COD = 3,400、 8,133、 10,667、 11,400、16,333、31,533 mg/L). The result indicates that, the effectiveness of COD removal rate can reach 99.6% after diluting the wastewater to 11,400 mg/L and processed by combined upflow anaerobic sludge blanket (UASB) in series with membrane bioreactor (MBR). This is the highest among six treatments. UASB reactor sludge started planting seed main operating parameters of wastewater into the stream flow: 104 ml / min, hydraulic retention time: 150hr, into the flow of wastewater COD load:3,400 mg/L,pH:7.0, temperature: 26 ~ 29℃, MLSS: 25,000 mg / L. The MBR began planting seed start main operating parameters are: wastewater into the stream flow: 104 ml /min, hydraulic retention time: 150hr, DO: 2 ~ 3 mg / L, temperature: 26 ~29 ℃, MLSS: 4,800 mg / L. Integrated with process wastewater from a different level to improve the inflow COD, COD load to 11,400 mg / L, the set of modules average effluent COD is 41 mg/L, COD removal efficiency of 99.6% can be maintained for better removal efficiency of COD. Based on the statistical result, the actual wastewater COD concentration average range after treatment is in the range of 4,000 ~ 108,000 mg / L. Therefore, this method can prove that it’s effective to handle dicarboximides pesticide comprehensive process wastewater.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "MEMBRANE BIO-REACTOR"

1

Salinas-Rodríguez, Sergio G., Juan Arévalo, Juan Manuel Ortiz, Eduard Borràs-Camps, Victor Monsalvo-Garcia, Maria D. Kennedy et Abraham Esteve-Núñez, dir. Microbial Desalination Cells for Low Energy Drinking Water. IWA Publishing, 2021. http://dx.doi.org/10.2166/9781789062120.

Texte intégral
Résumé :
The world's largest demonstrator of a revolutionary energy system in desalination for drinking water production is in operation. MIDES uses Microbial Desalination Cells (MDC) in a pre-treatment step for reverse osmosis (RO), for simultaneous saline stream desalination and wastewater treatment. MDCs are based on bio-electro-chemical technology, in which biological wastewater treatment can be coupled to the desalination of a saline stream using ion exchange membranes without external energy input. MDCs simultaneously treat wastewater and perform desalination using the energy contained in the wastewater. In fact, an MDC can produce around 1.8 kWh of bioelectricity from the energy contained in 1 m3 of wastewater. Compared to traditional RO, more than 3 kWh/m3 of electrical energy is saved. With this novel technology, two low-quality water streams (saline stream, wastewater) are transformed into two high-quality streams (desalinated water, treated wastewater) suitable for further uses. An exhaustive scaling-up process was carried out in which all MIDES partners worked together on nanostructured electrodes, antifouling membranes, electrochemical reactor design and optimization, life cycle assessment, microbial electrochemistry and physiology expertise, and process engineering and control. The roadmap of the lab-MDC upscaling goes through the assembly of a pre-pilot MDC, towards the development of the demonstrator of the MDC technology (patented). Nominal desalination rate between 4-11 Lm-2h-1 is reached with a current efficiency of 40 %. After the scalability success, two MDC pilot plants were designed and constructed consisting of one stack of 15 MDC pilot units with a 0.4 m2 electrode area per unit. This book presents the information generated throughout the EU funded MIDES project and includes the latest developments related to desalination of sea water and brackish water by applying microbial desalination cells. ISBN: 9781789062113 (Paperback) ISBN: 9781789062120 (eBook)
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "MEMBRANE BIO-REACTOR"

1

« “Cell-Recycle Membrane (Bio)Reactor” (CRMR) ». Dans Encyclopedia of Membranes, 343. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_100068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ghasemzadeh, Kamran, et Ali Akbar Babaluo. « Silica Membrane Reactor ». Dans Current Trends and Future Developments on (Bio-) Membranes, 295–313. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-444-63866-3.00012-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Santoro, Sergio, Alberto Figoli et Francesco Galiano. « Pervaporation membrane reactor ». Dans Current Trends and Future Developments on (Bio)Membranes, 127–50. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-12-823659-8.00002-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sitanggang, Azis Boing, Kiwinta Diaussie, Carmella Rosabel et Slamet Budijanto. « Current trends in enzymatic membrane reactor ». Dans Current Trends and Future Developments on (Bio)Membranes, 195–225. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-12-823659-8.00003-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Maryam Mousavi, S., Mojtaba Alaeizadeh et Mohammad Reza Rahimpour. « Titania Membrane Reactor Design, Configuration, and Performance ». Dans Current Trends and Future Developments on (Bio-) Membranes, 93–113. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-816822-6.00003-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nagy, Endre, et Imre Hegedüs. « Mass transport through capillary, biocatalytic membrane reactor ». Dans Current Trends and Future Developments on (Bio-) Membranes, 281–307. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-822257-7.00014-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Palma, Vincenzo, Concetta Ruocco, Eugenio Meloni, Marco Martino et Daniela Barba. « Membrane reactor technology and catalysis for intensified hydrogen production ». Dans Current Trends and Future Developments on (Bio-) Membranes, 121–40. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-817384-8.00006-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Aghaeinejad-Meybodi, Abbas, et Kamran Ghasemzadeh. « Solar Energy for Pure Hydrogen Production Using Inorganic Membrane Reactor ». Dans Current Trends and Future Developments on (Bio-) Membranes, 261–92. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-813545-7.00011-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Seiiedhoseiny, M., Kamran Ghasemzadeh et Angelo Basile. « Application of computational fluid dynamics technique in membrane reactor systems ». Dans Current Trends and Future Developments on (Bio-) Membranes, 311–43. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-822294-2.00009-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Iulianelli, Adolfo, et Angelo Basile. « Development of membrane reactor technology for H2 production in reforming process for low-temperature fuel cells ». Dans Current Trends and Future Developments on (Bio-) Membranes, 287–305. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-817807-2.00012-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "MEMBRANE BIO-REACTOR"

1

Zhenxun Yu et Bingzhi Dong. « Recent advances in dynamic membrane bio-reactor ». Dans 2011 International Symposium on Water Resource and Environmental Protection (ISWREP). IEEE, 2011. http://dx.doi.org/10.1109/iswrep.2011.5893253.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lu, Rong, et Fengshan Ma. « Contrast of Treatment on Simulated Water by Biological Aerated Filter and Membrane Bio-Reactor ». Dans 2015 3rd International Conference on Advances in Energy and Environmental Science. Paris, France : Atlantis Press, 2015. http://dx.doi.org/10.2991/icaees-15.2015.24.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Duan, Wensong, Dafang Fu, Xiaoguang Xu, Cheng Li et Yawen Zhu. « Influence of bio-attapulgite on dissolved organic matters (DOM) removal in dynamic membrane reactor ». Dans 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). IEEE, 2011. http://dx.doi.org/10.1109/icetce.2011.5775387.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wang, Zhiqiang, Huichuan Zhang, Li Tian et Lei Liu. « Notice of Retraction : Urban Wastewater Reclamation and Reuse Advanced Techniques : Novel Membrane Bio-Reactor Technology ». Dans 2011 5th International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2011. http://dx.doi.org/10.1109/icbbe.2011.5781019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Xiaoya Sun, Huaqiang Chu, Yalei Zhang et Xuefei Zhou. « Characteristics of the Bio-enhanced powder activated carbon dynamic membrane reactor for municipal wastewater treatment ». Dans 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5964035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zhenxun Yu et Bingzhi Dong. « Purification of micro-polluted raw water by a pilot-scale bio-diatomite dynamic membrane reactor ». Dans 2011 International Symposium on Water Resource and Environmental Protection (ISWREP). IEEE, 2011. http://dx.doi.org/10.1109/iswrep.2011.5893234.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wei, Yanjie, Guoyi Li, Bin Wang et Wei Du. « Notice of Retraction : Pilot-Scale Study on Treatment of Harbor Oily Wastewater with Membrane Bio-Reactor (MBR) ». Dans 2011 5th International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2011. http://dx.doi.org/10.1109/icbbe.2011.5781078.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Vijay, Avinash, K. V. Ling et A. G. Fane. « Applications of convex optimization in plant-wide control of Membrane Distillation Bio-Reactor (MDBR) water recycling plant ». Dans Vision (ICARCV 2010). IEEE, 2010. http://dx.doi.org/10.1109/icarcv.2010.5707807.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Guoyi Li, Yanjie Wei, Bin Wang et Wei Du. « Notice of Retraction : Optimization design of membrane bio-reactor (MBR) in Nanjiang oily wastewater treatment plant of Tianjin port ». Dans 2010 2nd Conference on Environmental Science and Information Application Technology (ESIAT 2010). IEEE, 2010. http://dx.doi.org/10.1109/esiat.2010.5567231.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Maskarenj, Marshal Shahu, Ravi Chavali, Ankita Mathur, Prakash Chandra Ghosh et Sushanta Kumar Mitra. « Mitigation of Biofouling Through In-Plane Application of Weak DC Current in Presence of Antimicrobials ». Dans ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icnmm2015-48238.

Texte intégral
Résumé :
Membrane Bio Reactor (MBR) technology is a promising alternative to municipal and industrial wastewater treatment owing to low sludge production and wide range of acceptable influents. Biofouling in MBRs hampers long term functionality of the system through reduction in permeate flux over time. Membrane biofouling could necessitate periodic membrane backwashing or even require membrane replacement, thus increasing operational cost for the systems. Microbe-secreted extracellular polymeric substance (EPS) forms a complex matrix on the surface; is persistent against physical removal and tends to resist high concentrations of antimicrobial agents, thus playing a major role in membrane biofouling. There is a need for developing methods towards efficient removal of biofoulants from surfaces. In tandem with low DC current, the synergistic effect of antimicrobial agents has been reported successful towards reducing biofilm formation leading to biofouling. This paper discusses the application of in-plane bioelectric effect as a solution to biofouling in MBRs; especially Microbial Fuel Cells and Microbial Desalination Cells towards harnessing in-situ current for tackling biofouling, thus facilitating longer system functionality.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie