Articles de revues sur le sujet « Medical displays »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Medical displays.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Medical displays ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Mackay, R. Stuart, et J. R. Singer. « Medical Images and Displays ». Physics Today 38, no 11 (novembre 1985) : 106–7. http://dx.doi.org/10.1063/1.2814776.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wells, P. N. T. « Medical images and displays ». Ultrasonics 23, no 3 (mai 1985) : 143. http://dx.doi.org/10.1016/0041-624x(85)90064-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Cheng, Wei-Chung, Chih-Lei Wu et Aldo Badano. « Quantitative Assessment of Color Tracking and Gray Tracking in Color Medical Displays ». Color and Imaging Conference 2019, no 1 (21 octobre 2019) : 349–54. http://dx.doi.org/10.2352/issn.2169-2629.2019.27.63.

Texte intégral
Résumé :
The goal of this study is to develop quantitative metrics for evaluating color tracking and gray tracking in a color medical display. Color tracking is the chromaticity consistency of the red, green, or blue shades. Gray tracking is the chromaticity consistency of the gray shades. Color tracking and gray tracking are the most important colorimetric responses of a color medical display because they directly indicate the color calibration quality and can therefore be used to compare color performance between displays. Two metrics, primary purity and gray purity, are defined to measure the color shift of the primary shades and gray shades of a color display, respectively. The area under the curves of primary purity and gray purity can then represent the quality of color tracking (C_AUC) and gray tracking (G_AUC), respectively. Fifteen displays including medical, professional-grade, consumer-grade, mobile, and special displays were tested to compare their C_AUC and G_AUC. The OLED displays have the greatest C_AUC values. The medical and professional-grade displays have the greatest combinations of C_AUC and G_AUC values. Most consumer-grade displays have lower C_AUC and G_AUC values, but some show better gray tracking than color tracking. The special displays exhibit particularly poor color and gray tracking. Using C_AUC and G_AUC together can quantitatively predict and compare color performance of different displays.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kang, Dongwoo, Jin-Ho Choi et Hyoseok Hwang. « Autostereoscopic 3D Display System for 3D Medical Images ». Applied Sciences 12, no 9 (24 avril 2022) : 4288. http://dx.doi.org/10.3390/app12094288.

Texte intégral
Résumé :
Recent advances in autostereoscopic three-dimensional (3D) display systems have led to innovations in consumer electronics and vehicle systems (e.g., head-up displays). However, medical images with stereoscopic depth provided by 3D displays have yet to be developed sufficiently for widespread adoption in diagnostics. Indeed, many stereoscopic 3D displays necessitate special 3D glasses that are unsuitable for clinical environments. This paper proposes a novel glasses-free 3D autostereoscopic display system based on an eye tracking algorithm and explores its viability as a 3D navigator for cardiac computed tomography (CT) images. The proposed method uses a slit-barrier with a backlight unit, which is combined with an eye tracking method that exploits multiple machine learning techniques to display 3D images. To obtain high-quality 3D images with minimal crosstalk, the light field 3D directional subpixel rendering method combined with the eye tracking module is applied using a user’s 3D eye positions. Three-dimensional coronary CT angiography images were volume rendered to investigate the performance of the autostereoscopic 3D display systems. The proposed system was trialed by expert readers, who identified key artery structures faster than with a conventional two-dimensional display without reporting any discomfort or 3D fatigue. With the proposed autostereoscopic 3D display systems, the 3D medical image navigator system has the potential to facilitate faster diagnoses with improved accuracy.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Haarbauer, Eric S., Robert P. Mahan et C. L. Crooks. « Information Displays for Medical Diagnosis ». Proceedings of the Human Factors and Ergonomics Society Annual Meeting 45, no 4 (octobre 2001) : 493–97. http://dx.doi.org/10.1177/154193120104500448.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Keller, Kurtis, Andrei State et Henry Fuchs. « Head Mounted Displays for Medical Use ». Journal of Display Technology 4, no 4 (décembre 2008) : 468–72. http://dx.doi.org/10.1109/jdt.2008.2001577.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sharples, Sarah. « Medical device displays : Special issue editorial ». Displays 33, no 4-5 (octobre 2012) : 195. http://dx.doi.org/10.1016/j.displa.2012.11.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Saha, Anindita, Hongye Liang et Aldo Badano. « Color measurement methods for medical displays ». Journal of the Society for Information Display 14, no 11 (2006) : 979. http://dx.doi.org/10.1889/1.2393035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Abileah, Adi. « Medical displays in the healthcare system ». Journal of the Society for Information Display 15, no 6 (2007) : 337. http://dx.doi.org/10.1889/1.2749319.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Yoder, J. W., E. Littell et B. T. Williams. « Probability Graphics Support for Medical Reasoning ». Methods of Information in Medicine 32, no 03 (1993) : 229–32. http://dx.doi.org/10.1055/s-0038-1634928.

Texte intégral
Résumé :
Abstract:Graphic displays of data from clinical observations and laboratory testing provide important support to the health practitioner in managing an increasing amount of complex information. A graphic display program is described that preserves much of the context of data that is important to their evaluation, and that maintains a sense of the strength of the signal when aberrant data are encountered.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Horwood, Chelsea R., Morgan Fitzgerald, Susan D. Moffatt-Bruce et Michael F. Rayo. « Methods for Utilizing Multidisciplinary Team to Create Novel Visual Alarm Designs That Improve Recognition of Patient Decompensation and Alarm Response ». Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care 8, no 1 (septembre 2019) : 257–60. http://dx.doi.org/10.1177/2327857919081060.

Texte intégral
Résumé :
The overwhelming number of alarms on medical center floors are false and nonactionable. This leads to delay in alarm response and adverse events. Furthermore, current alarm technology does not have the ability to display patient trends, it only displays one isolated patient event. This paper focuses on describing the methods for creating novel visual displays that incorporates alarm technology and patient decompensation events. Through a multi-disciplinary team approach, that is centered on human factors and system engineers, a novel visual display was created that integrated current alarm technology with patient data. The new displays were better able to predict decompensation and alarm validity. It is crucial to integrate partners from all facets of the medical community and from human factors and system engineering to form an accurate understanding and modeling of patients
Styles APA, Harvard, Vancouver, ISO, etc.
12

Kuo, Yue, et Kouji Suzuki. « Advanced Flat-Panel Displays and Materials ». MRS Bulletin 27, no 11 (novembre 2002) : 859–63. http://dx.doi.org/10.1557/mrs2002.273.

Texte intégral
Résumé :
AbstractThis introductory article reviews the topics covered in this issue of MRS Bulletin on advanced flat-panel displays and materials. The common requirements of flat-panel displays are compact dimensions, low power consumption, light weight, and high performance. Flat-panel displays are incorporated in many consumer products as well as in a large range of industrial, medical, military, transportation-related, and scientific instruments. In recent years, there have been dramatic improvements in flat-panel display technology due to an enhanced understanding of various new or existing materials as well as fabrication processes. “Flat-panel display” is a general term that includes many different types of technologies. It includes panels that are in mass production, such as passive or active addressed liquid-crystal displays or plasma displays, and those in the early production or development stages, such as organic light-emitting devices or electrophoretic displays. It also includes novel products that are based on the principle of flat-panel display technology, such as solid-state x-ray imagers. The articles in this issue cover a range of these topics.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Saha, Anindita, Edward F. Kelley et Aldo Badano. « Accurate color measurement methods for medical displays ». Medical Physics 37, no 1 (4 décembre 2009) : 74–81. http://dx.doi.org/10.1118/1.3265879.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Sanderson, Penelope. « The multimodal world of medical monitoring displays ». Applied Ergonomics 37, no 4 (juillet 2006) : 501–12. http://dx.doi.org/10.1016/j.apergo.2006.04.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Keller, Peter A. « Cathode-ray tube displays for medical imaging ». Journal of Digital Imaging 3, no 1 (février 1990) : 15–25. http://dx.doi.org/10.1007/bf03168105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Badano, Aldo, et Wei-Chung Cheng. « Part 1 : Emerging Topics in Medical Displays ». Information Display 27, no 4 (avril 2011) : 24–26. http://dx.doi.org/10.1002/j.2637-496x.2011.tb00378.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

del Rio, Richard A., Russell J. Branaghan et Rob Gray. « Design Features of Wearable AR Information Display for Surgery and Anesthesiology ». Proceedings of the Human Factors and Ergonomics Society Annual Meeting 60, no 1 (septembre 2016) : 571–75. http://dx.doi.org/10.1177/1541931213601131.

Texte intégral
Résumé :
The medical community is constantly looking for technological solutions to reduce use-error and improve procedures to benefit the healthcare system worldwide. One area that has seen frequent improvement in the past few decades due to improved computing capabilities, lower cost and better displays has been augmented reality (AR) (Sauer, Khamene, Bascle, Vogt, & Rubino, 2002). In an operating room, surgeons and anesthesiologists are required to attend to a patient while receiving information from many different displays and instruments. This paper analyzes the human factors components of various AR devices and information display techniques to provide design guidelines for display configurations of wearable, medical AR devices that will improve upon current methods of information presentation in the operating room.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Kim, Byeol, Yue-Hin Loke, Paige Mass, Matthew R. Irwin, Conrad Capeland, Laura Olivieri et Axel Krieger. « A Novel Virtual Reality Medical Image Display System for Group Discussions of Congenital Heart Disease : Development and Usability Testing ». JMIR Cardio 4, no 1 (8 décembre 2020) : e20633. http://dx.doi.org/10.2196/20633.

Texte intégral
Résumé :
Background The complex 3-dimensional (3D) nature of anatomical abnormalities in congenital heart disease (CHD) necessitates multidisciplinary group discussions centered around the review of medical images such as magnetic resonance imaging. Currently, group viewings of medical images are constrained to 2-dimensional (2D) cross-sectional displays of 3D scans. However, 2D display methods could introduce additional challenges since they require physicians to accurately reconstruct the images mentally into 3D anatomies for diagnosis, staging, and planning of surgery or other therapies. Virtual reality (VR) software may enhance diagnosis and care of CHD via 3D visualization of medical images. Yet, present-day VR developments for medicine lack the emphasis on multiuser collaborative environments, and the effect of displays and level of immersion for diagnosing CHDs have not been studied. Objective The objective of the study was to evaluate and compare the diagnostic accuracies and preferences of various display systems, including the conventional 2D display and a novel group VR software, in group discussions of CHD. Methods A total of 22 medical trainees consisting of 1 first-year, 10 second-year, 4 third-year, and 1 fourth-year residents and 6 medical students, who volunteered for the study, were formed into groups of 4 to 5 participants. Each group discussed three diagnostic cases of CHD with varying structural complexity using conventional 2D display and group VR software. A group VR software, Cardiac Review 3D, was developed by our team using the Unity engine. By using different display hardware, VR was classified into nonimmersive and full-immersive settings. The discussion time, diagnostic accuracy score, and peer assessment were collected to capture the group and individual diagnostic performances. The diagnostic accuracies for each participant were scored by two experienced cardiologists following a predetermined answer rubric. At the end of the study, all participants were provided a survey to rank their preferences of the display systems for performing group medical discussions. Results Diagnostic accuracies were highest when groups used the full-immersive VR compared with the conventional and nonimmersive VR (χ22=9.0, P=.01) displays. Differences between the display systems were more prominent with increasing case complexity (χ22=14.1, P<.001) where full-immersive VR had accuracy scores that were 54.49% and 146.82% higher than conventional and nonimmersive VR, respectively. The diagnostic accuracies provided by the two cardiologists for each participant did not statistically differ from each other (t=–1.01, P=.31). The full-immersive VR was ranked as the most preferred display for performing group CHD discussions by 68% of the participants. Conclusions The most preferred display system among medical trainees for visualizing medical images during group diagnostic discussions is full-immersive VR, with a trend toward improved diagnostic accuracy in complex anatomical abnormalities. Immersion is a crucial feature of displays of medical images for diagnostic accuracy in collaborative discussions.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Samei, Ehsan, et Steven L. Wright. « Viewing angle performance of medical liquid crystal displays ». Medical Physics 33, no 3 (16 février 2006) : 645–54. http://dx.doi.org/10.1118/1.2168430.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Samei, E. « MO-D-230C-01 : Evaluation of Medical Displays ». Medical Physics 33, no 6Part15 (juin 2006) : 2169. http://dx.doi.org/10.1118/1.2241446.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Zinger, Svitlana, Daniel Ruijters, Luat Do et Peter H. N. de With. « View Interpolation for Medical Images on Autostereoscopic Displays ». IEEE Transactions on Circuits and Systems for Video Technology 22, no 1 (janvier 2012) : 128–37. http://dx.doi.org/10.1109/tcsvt.2011.2158362.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Saffran, Murray. « Static displays— posters, wallcharts, exhibits in medical education ». Biochemical Education 15, no 1 (janvier 1987) : 31. http://dx.doi.org/10.1016/0307-4412(87)90145-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Liang, Hongye, Anindita Saha et Aldo Badano. « 9.2 : Temporal and Color Measurements in Medical Displays ». SID Symposium Digest of Technical Papers 37, no 1 (2006) : 97. http://dx.doi.org/10.1889/1.2433689.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Crawford, Gregory P. « Introduction : Special Section on Displays in Medical Applications ». Journal of the Society for Information Display 15, no 6 (2007) : 335. http://dx.doi.org/10.1889/1.2749318.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Lee, Chin-Yang, Chi-Hung Liu, Chih-Wei Chen, Saodo Miki, Huang-Ming Philip Chen, Shermann Lin, Po-Hua Su et Chein-Dhau Lee. « Medical displays by using plasma-beam-alignment technology ». Journal of the Society for Information Display 16, no 1 (2008) : 71. http://dx.doi.org/10.1889/1.2835038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Liang, Hongye, Subok Park, Brandon D. Gallas, Kyle J. Myers et Aldo Badano. « Image Browsing in Slow Medical Liquid Crystal Displays ». Academic Radiology 15, no 3 (mars 2008) : 370–82. http://dx.doi.org/10.1016/j.acra.2007.10.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Blike, George, Jens Jensen, Kate Whalen et Stephen Surgenor. « The Emergent Features of a Medical Object Display Improve Anesthesiologists' Performance of Simulated Diagnostic Tasks ». Proceedings of the Human Factors and Ergonomics Society Annual Meeting 44, no 26 (juillet 2000) : 258–61. http://dx.doi.org/10.1177/154193120004402632.

Texte intégral
Résumé :
The anesthesiologist is expected to monitor multiple data streams from the anesthetized patient, recognize problem states, identify the etiology or cause of problem states (i.e., perform diagnosis) and take corrective action to return a patient to the desired goal state. This study represents efforts to further investigate features of a multi-dimensional Object display of hemodynamic data. Clinicians using this Object display recognized problem states and determined etiology, faster and more accurately than when they used a Single Sensor Single Indicator (SSSI) Numeric display. This study hypothesized that shapes designed into the Object display accounted for the diagnostic performance gain observed. To test this hypothesis, variant of the Object display, with the emergent shape features removed ( Object Minus Shapes display) was used as a probe to assess the impact of the shape-encoded information on diagnostic performance. Both the Object and Object Minus Shapes displays improved problem state recognition when compared to the Numeric SSSI display. The former displays graphically represent current data values and boundary information using a pointer, a reference scale, and solid bars to depict normal and abnormal value ranges. The emergent shape features in the Object display were the essential graphical elements that conferred improved etiology determination by anesthesiologists. This study partially validates the design goal used to construct the Object display under investigation—to map multi-dimensional physiologic relationships of hemodynamic data using graphical representations with emergent features that are clinically meaningful.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Lam, Heidi, Arthur E. Kirkpatrick, John Dill et M. Stella Atkins. « Effective Display of Medical LaboratoryReport Results on Small Screens : Evaluation of Linear and Hierarchical Displays ». International Journal of Human-Computer Interaction 21, no 1 (septembre 2006) : 73–89. http://dx.doi.org/10.1207/s15327590ijhc2101_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Ledda, Patrick. « Product Review : High Dynamic Range Displays ». Presence : Teleoperators and Virtual Environments 16, no 1 (1 février 2007) : 119–22. http://dx.doi.org/10.1162/pres.16.1.119.

Texte intégral
Résumé :
In the natural world, the human eye is confronted with a wide range of colors and luminances. A surface lit by moonlight might have a luminance level of around 10−3 cd/m2, while surfaces lit during a sunny day could reach values larger than 105 cd/m2. A good quality CRT (cathode ray tube) or LCD (liquid crystal display) monitor is only able to achieve a maximum luminance of around 200 to 300 cd/m2 and a contrast ratio of not more than two orders of magnitude. In this context the contrast ratio or dynamic range is defined as the ratio of the highest to the lowest luminance. We call high dynamic range (HDR) images, those images (or scenes) in which the contrast ratio is larger than what a display can reproduce. In practice, any scene that contains some sort of light source and shadows is HDR. The main problem with HDR images is that they cannot be displayed, therefore although methods to create them do exist (by taking multiple photographs at different exposure times or using computer graphics 3D software for example) it is not possible to see both bright and dark areas simultaneously. (See Figure 1.) There is data that suggests that our eyes can see detail at any given adaptation level within a contrast of 10,000:1 between the brightest and darkest regions of a scene. Therefore an ideal display should be able to reproduce this range. In this review, we present two high dynamic range displays developed by Brightside Technologies (formerly Sunnybrook Technologies) which are capable, for the first time, of linearly displaying high contrast images. These displays are of great use for both researchers in the vision/graphics/VR/medical fields as well as professionals in the VFX/gaming/architectural industry.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Kagadis, George C., Alisa Walz-Flannigan, Elizabeth A. Krupinski, Paul G. Nagy, Konstantinos Katsanos, Athanasios Diamantopoulos et Steve G. Langer. « Medical Imaging Displays and Their Use in Image Interpretation ». RadioGraphics 33, no 1 (janvier 2013) : 275–90. http://dx.doi.org/10.1148/rg.331125096.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Sielhorst, Tobias, Marco Feuerstein et Nassir Navab. « Advanced Medical Displays : A Literature Review of Augmented Reality ». Journal of Display Technology 4, no 4 (décembre 2008) : 451–67. http://dx.doi.org/10.1109/jdt.2008.2001575.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Rizzi, Alessandro, Barbara Rita Barricelli, Cristian Bonanomi, Luigi Albani et Gabriele Gianini. « Visual glare limits of HDR displays in medical imaging ». IET Computer Vision 12, no 7 (31 août 2018) : 976–88. http://dx.doi.org/10.1049/iet-cvi.2018.5252.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Mahn, Ir W. A., et Ir A. A. Becht. « The importance of color quality assurance of medical displays ». Physica Medica 32 (septembre 2016) : 244. http://dx.doi.org/10.1016/j.ejmp.2016.07.515.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Kimpe, Tom, Danny Deroo et Geert Gheysen. « 13.3 : Improvement for DICOM GSDF Calibration for Medical Displays ». SID Symposium Digest of Technical Papers 37, no 1 (2006) : 170. http://dx.doi.org/10.1889/1.2433346.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Badano, Aldo, Scott Pappada, Edward F. Kelley, Michael J. Flynn, Sandrine Martin et Jerzy Kanicki. « 25.1 : Luminance Probes for Contrast Measurements in Medical Displays ». SID Symposium Digest of Technical Papers 34, no 1 (2003) : 928. http://dx.doi.org/10.1889/1.1832436.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Shimamoto, Kazuhiro. « Medical Imaging Displays Systems Acceptable for Soft-copy Reading ». Japanese Journal of Radiological Technology 64, no 11 (2008) : 1444–51. http://dx.doi.org/10.6009/jjrt.64.1444.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Reiker, Gregory G., Nilesh Gohel, Edward Muka et G. James Blaine. « Quality monitoring of soft-copy displays for medical radiography ». Journal of Digital Imaging 5, no 3 (août 1992) : 161–67. http://dx.doi.org/10.1007/bf03167765.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Lam, Heidi, Arthur E. Kirkpatrick, John Dill et M. Stella Atkins. « Effective display of medical laboratory report results on small screens : Evaluation of linear and hierarchical displays ». International Journal of Human-Computer Interaction 21, no 1 (septembre 2006) : 73–89. http://dx.doi.org/10.1080/10447310609526172.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Rothrock, Jane C., et Jane H. Johnson. « Perioperative Nursing Research/Innovative Practice Displays ». AORN Journal 53, no 2 (février 1991) : 399–400. http://dx.doi.org/10.1016/s0001-2092(07)69925-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Takahashi, Keita, Junji Morishita, Hiroyuki Tashiro et Yasuhiko Nakamura. « Objective Evaluation of Visual Fatigue for Reading of Radiographs Displayed on Medical-grade Liquid-crystal Displays ». Japanese Journal of Radiological Technology 66, no 11 (2010) : 1416–22. http://dx.doi.org/10.6009/jjrt.66.1416.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Akamine, Hiroshi, Junji Morishita, Michinobu Matsuyama, Noriyuki Hashimoto, Yasuhiko Nakamura et Hidetake Yabuuchi. « Effect of angular performance on the chromaticity of grayscale images displayed on medical liquid-crystal displays ». Radiological Physics and Technology 6, no 1 (22 août 2012) : 61–69. http://dx.doi.org/10.1007/s12194-012-0170-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Fan, Jiahua, Hans Roehrig, Malur K. Sundareshan et Elizabeth A. Krupinski. « Noise estimation and reduction on five medical liquid-crystal displays ». Journal of the Society for Information Display 14, no 10 (2006) : 861. http://dx.doi.org/10.1889/1.2372419.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Chawla, Amarpreet S., Hans Roehrig, Jeffrey J. Rodriguez et Jiahua Fan. « Determining the MTF of Medical Imaging Displays Using Edge Techniques ». Journal of Digital Imaging 18, no 4 (2 septembre 2005) : 296–310. http://dx.doi.org/10.1007/s10278-005-6977-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Badano, Aldo, Sarah Schneider et Ehsan Samei. « Visual Assessment of Angular Response in Medical Liquid Crystal Displays ». Journal of Digital Imaging 19, no 3 (6 juin 2006) : 240–48. http://dx.doi.org/10.1007/s10278-006-0633-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Auer, Timo Alexander, Hanna Münzfeld, Helena Posch, Juliane Stöckel, Anna Tietze, Georg Bohner et Georg Böning. « Evaluation of diagnostic accuracy of intracranial aneurysm detection using medical-grade versus commercial consumer-grade displays and different image reconstructions against the background of process optimization for telemedicine ». Acta Radiologica 61, no 7 (7 novembre 2019) : 936–44. http://dx.doi.org/10.1177/0284185119884676.

Texte intégral
Résumé :
Background Process optimization in computed tomography (CT) and telemedicine. Purpose To compare image quality and objective diagnostic accuracy of medical-grade and consumer-grade digital displays/computer terminals for detection of intracranial aneurysms. Material and Methods Four radiologists with different levels of experience retrospectively read a total of 60 patients including 30 cases of proven therapy-naïve intracranial aneurysm detectable on a medical-grade grayscale calibrated display. They had 5 min per case reading the first 20 datasets using only axial slices, the next 20 patients using axial slices and multiplanar reconstructions (MPRs), and the last 20 patients using axial slices, MPRs, and maximum intensity projections (MIPs). Three months after the first reading session on a medical-grade display, they read all datasets again under the same standardized conditions but on a consumer-grade display. Diagnostic performance, subjective diagnostic confidence, and reading speed were analyzed and compared. Readers rated image quality on a five-point Likert scale. Results Diagnostic accuracy did not differ significantly with areas under the curve of 0.717–0.809 for all readers on both display devices. Sensitivity and specificity did not increase significantly when adding MPRs and/or MIPs. Reading speed was similar with both devices. There were no significant differences in subjective image quality scores, and overall inter-reader variability of all subjective parameters correlated positively between the two devices ( P <0.001–0.011). Conclusion Diagnostic accuracy and readers’ diagnostic confidence in detecting and ruling out intracranial aneurysm were similar on commercial-grade and medical-grade displays. Additional reconstructions did not increase sensitivity/specificity or reduce the time needed for diagnosis.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Gersten, Jennifer. « Leveraging Network Connectivity For Quality Assurance of Clinical Display Monitors ». Biomedical Instrumentation & ; Technology 46, no 1 (1 janvier 2012) : 40–43. http://dx.doi.org/10.2345/0899-8205-46.1.40.

Texte intégral
Résumé :
Abstract The VA Midwest Health Care Network, VISN 23, is one of 21 veteran integrated health service networks (VISN) under the Department of Veterans Affairs. There are approximately 300,000 imaging studies generated per year and currently more than 14,000 picture archiving and communication system (PACS) users in VISN 23. Biomedical Engineering Services within VISN 23 coordinates the provision of medical technology support. One emerging technology leverages network connectivity as a method of calibrating and continuously monitoring clinical display monitors in support of PACS. Utilizing a continuous calibration monitoring system, clinical displays can be identified as out of Digital Imaging and Communications in Medicine (DICOM) compliance through a centralized server. The technical group can receive immediate notification via e-mail and respond proactively. Previously, this problem could go unnoticed until the next scheduled preventive maintenance was performed. This system utilizes simple network management protocols (SNMP) and simple mail transfer protocols (SMTP) across a wide area network for real-time alerts from a centralized location. This central server supports and monitors approximately 320 clinical displays deployed across five states. Over the past three years of implementation in VISN 23, the remote calibration and monitoring capability has allowed for more efficient support of clinical displays and has enhanced patient safety by ensuring a consistent display of images on these clinical displays.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Reese, Thomas J., Guilherme Del Fiol, Joseph E. Tonna, Kensaku Kawamoto, Noa Segall, Charlene Weir, Brekk C. Macpherson, Polina Kukhareva et Melanie C. Wright. « Impact of integrated graphical display on expert and novice diagnostic performance in critical care ». Journal of the American Medical Informatics Association 27, no 8 (17 juin 2020) : 1287–92. http://dx.doi.org/10.1093/jamia/ocaa086.

Texte intégral
Résumé :
Abstract Objective To determine the impact of a graphical information display on diagnosing circulatory shock. Materials and Methods This was an experimental study comparing integrated and conventional information displays. Participants were intensivists or critical care fellows (experts) and first-year medical residents (novices). Results The integrated display was associated with higher performance (87% vs 82%; P &lt; .001), less time (2.9 vs 3.5 min; P = .008), and more accurate etiology (67% vs 54%; P = .048) compared to the conventional display. When stratified by experience, novice physicians using the integrated display had higher performance (86% vs 69%; P &lt; .001), less time (2.9 vs 3.7 min; P = .03), and more accurate etiology (65% vs 42%; P = .02); expert physicians using the integrated display had nonsignificantly improved performance (87% vs 82%; P = .09), time (2.9 vs 3.3; P = .28), and etiology (69% vs 67%; P = .81). Discussion The integrated display appeared to support efficient information processing, which resulted in more rapid and accurate circulatory shock diagnosis. Evidence more strongly supported a difference for novices, suggesting that graphical displays may help reduce expert–novice performance gaps.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Larson, Martin G. « Descriptive Statistics and Graphical Displays ». Circulation 114, no 1 (4 juillet 2006) : 76–81. http://dx.doi.org/10.1161/circulationaha.105.584474.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Lualdi, M., D. Baldari, G. Calareso, S. Canestrini, F. Cartia, M. Castellani, C. Cicero et al. « Evaluation of the actual perception of medical images informative content by varying medical displays performances ». Physica Medica 32 (février 2016) : 81. http://dx.doi.org/10.1016/j.ejmp.2016.01.278.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Kimpe, T., P. Green, C. Revie et M. Flynn. « SU-F-I-60 : ICC MIWG Displays : Final Recommendations for Visualization of Medical Content On Color Display Systems ». Medical Physics 43, no 6Part8 (juin 2016) : 3400. http://dx.doi.org/10.1118/1.4955888.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie