Thèses sur le sujet « Mechanic ventilator »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Mechanic ventilator ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
PUTIGNANO, OSCAR. « Development of a Cherenkov based diagnostic for gamma-rays from fusion plasmas and advanced medical applications ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402358.
Texte intégralAim of this thesis, begun in November 2019, is the development of an innovative Cerenkov detector for measurements of 17 MeV gamma-rays emitted by the D-T fusion reaction in an intense neutron field. With the spread of the COVID-19 pandemics in Northern Italy in February 2020, it became clear that the original program planned for my PhD work had to be significantly changed, since experimental activities to be carried out in the UNIMIB/CNR laboratories in Milan and at the Joint European Torus in the UK had to be cancelled. In agreement with my tutors I volunteered together with other scientists to contribute to a project called Mechanical Ventilator Milan (MVM). The MVM project involved an international team of more than 150 scientists and has produced over the very short period of less than three months a mechanical ventilator approved by the American Food and Drug Administration for use at the intensive care unit of hospitals to treat patients affected by COVID-19. The activities of the MVM project led to the development of a new fast oxygen sensor for medical application, about one year later. The sensor measures the oxygen consumption in real time during a single breath. The thesis is organized in three parts. The first part is focused on the development of a gamma-ray counter optimized for the measurement of the D-T fusion power produced in a magnetic confinement fusion device. The research team I have joined is developing a novel technique for the measurement of DT fusion power in a magnetic confinement device based on the detection of 17 MeV gamma-rays also produced by the D+T->5He* reaction. The 5He* nucleus promptly decays usually emitting an alpha particle and a neutron, but it may de-excite to the ground level emitting a gamma-ray with a probability of the order of 10^-5. These gamma-rays have been detected in the recent DT campaign at JET with a gamma spectrometer based on LaBr3 and a fast digital data acquisition. Since the efficiency of the scintillator to high energy gamma-rays and neutrons are comparable, the use of a dedicated LiH based neutron attenuator to observe the weak gamma-ray signal is needed. To overcome the limitations posed by the sensitivity of LaBr3 detectors to neutrons, I designed a gamma-ray gas detector optimized to work in the presence of an intense neutron field. The detector is based on the Cherenkov effect and simulations indicate that it is 10^6 times more sensitive to gamma-rays than to neutrons. The next step would be to build a prototype of the detector to validate the simulation results and to test it on a D-T neutron source. The second part of the thesis describes the design and build of the IFOx sensor, an ultra-fast oxygen sensor that can be used for lung analysis by working in the so called mainstream configuration. Since the working principle of the IFOx sensor somewhat resembles the one of a scintillator detector, this is an example of knowledge transfer from nuclear diagnostics to a different application. The prototype that was built features excellence time response and was used in a trial study on healthy volunteers to measure the Functional Residual Capacity. The excellent results of the trial study on healthy volunteers has opened up the possibility to carry out a clinical study on intensive care unit patients in the near future, by integrating the oxygen sensor with mechanical ventilators. The last part of the thesis is about the MVM project and describes the ventilator design aimed to the production of a ventilator composed of a few parts so that it can be rapidly built on large scales even during the disruption of the components supply chain. I was able to contribute to the project thanks to my knowledge of gas systems, advanced real time controls, and I participated in the measurement required for the certification. The key results that led to a full certification for usage on patient by the European Commission are also described in this work.
Carteaux, Guillaume. « Optimisation des interactions patient-ventilateur en ventilation assistée : intérêt des nouveaux algorithmes de ventilation ». Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC0027/document.
Texte intégralDuring assisted mechanical ventilation, patient-ventilator interactions, which are associated with outcome, partly depend on ventilation algorithms.Objectives: : 1) during invasive mechanical ventilation, two modes offered real innovations and we wanted to assess whether the assistance could be customized depending on the patient's respiratory effort during proportional ventilatory modes: proportional assist ventilation with load-adjustable gain factors (PAV+) and neurally adjusted ventilator assist (NAVA); 2) during noninvasive ventilation (NIV): to assess whether NIV algorithms implemented on ICU and dedicated NIV ventilators decrease the incidence of patient-ventilator asynchrony.Methods: 1) In PAV+ we described a way to calculate the muscle pressure value from the values of both the gain adjusted by the clinician and the airway pressure. We then assessed the clinical feasibility of adjusting the gain with the goal of maintaining the muscle pressure within a normal range. 2) We compared titration of assistance between neurally adjusted ventilator assist (NAVA) and pressure support ventilation (PSV) based on respiratory effort indices. During NIV, we assessed the incidence of patient-ventilator asynchrony with and without the use of NIV algorithms: 1) using a bench model; 2) and in the clinical settings.Results: During PAV+, adjusting the gain with the goal of targeting a normal range of respiratory effort was feasible, simple, and most often sufficient to ventilate patients from the onset of partial ventilatory support until extubation. During NAVA, the analysis of respiratory effort indices allowed us to precise the boundaries within which the NAVA level should be adjusted and to compare patient-ventilator interactions with PSV within similar ranges of assistance. During NIV, our data stressed the heterogeneity of NIV algorithms implemented on ICU ventilators. We therefore reported that dedicated NIV ventilators allowed better patient-ventilator synchronization than ICU ventilators, even with their NIV algorithms engaged.Conclusions: During invasive mechanical ventilation, customizing the assistance during proportional ventilatory modes with the goal of targeting a normal range of respiratory effort optimizes patient-ventilator interactions and is feasible with PAV+. During NIV, dedicated NIV ventilators allow better patient-ventilator synchrony than ICU ventilators, even with their NIV algorithm engaged. ICU ventilators' NIV algorithms efficiency is however highly variable among ventilators
Sperber, Jesper. « Protective Mechanical Ventilation in Inflammatory and Ventilator-Associated Pneumonia Models ». Doctoral thesis, Uppsala universitet, Infektionssjukdomar, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-282602.
Texte intégralThille, Arnaud. « Asynchronies patient-ventilateur au cours de la ventilation assistée ». Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00667286.
Texte intégralLyazidi, Aissam. « Évaluation des performances et des limitations des ventilateurs sur banc d'essai ». Thesis, Paris Est, 2010. http://www.theses.fr/2010PEST1073.
Texte intégralThe ventilators have markedly improved thanks to progress in respiratory physiology, in informatics and miniaturization. However, their intrinsic performances remain unequal. The aim was to evaluate ventilators performances on reproducible bench test studies adapted to clinical questions. Tests show that 1) the error of really delivered volume is approximately 1 ml/kg of additional volume; the tidal volume (VT) indicated on the ventilators was lower than the real delivered VT ; 2) Performances of new ventilators are comparable to the best ventilators tested in 2000 ; turbine ventilators are quite similar to best conventional ventilators ; 3) The ventilators dedicated to non invasive ventilation showed better performances to cope with leaks 4) The intrapulmonary percussive ventilation superimposed on conventional ventilation can reduce humidity, increase volumes and can generate intrinsic positive expiratory pressure. The bench tests showed a large heterogeneity of performances. A technological watch seems essential to evaluate all new ventilators
Hult, Erin L. (Erin Luelle) 1982. « Experimental simulation of wind driven cross-ventilation in a naturally ventilated building ». Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32808.
Texte intégralIncludes bibliographical references (p. 29).
A device was designed and constructed to simulate cross-ventilation through a building due to natural wind. The wind driver device was designed for use with a one tenth scale model of an open floor plan office building in Luton, England. The air flow patterns produced by the wind driver were observed, and the uniformity of the velocity of the flows into the model windows was measured for the three settings of the wind driver fans. The temperatures and velocities of flows on the interior of the building and at the exhaust windows were also examined. The wind driver device was capable of producing uniform velocities across the face of the model to within 20 to 27%, depending on the fan setting. The consistency of certain features of the velocity distributions produced by the wind driver operating at different speeds suggest that improvements made to the design of the wind driver could lower this variation to about 15%. The velocities measured on the interior of the model seem consistent with interior velocities in the Luton building, although further experimentation is needed to confirm this trend. Cross-ventilation was effective in reducing interior model temperatures by up to 10⁰C from the natural convection case.
by Erin L. Hult.
S.B.
Balaji, Ravishankar. « Breathing Entrainment and Mechanical Ventilation in Rats ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1307743446.
Texte intégralJúnior, Marcus Henrique Victor. « Implementation and assessment of a novel mechanical ventilatory system following a noisy ventilation regime ». Instituto Tecnológico de Aeronáutica, 2014. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3151.
Texte intégralSvantesson, Cecilia. « Respiratory mechanics during mechanical ventilation in health and in disease ». Lund : Dept. of Clinical Psychology, Lund University, 1997. http://catalog.hathitrust.org/api/volumes/oclc/38987113.html.
Texte intégralElshafie, Ghazi Abdelgadir E. « Ventilatory mechanics in thoracic surgery ». Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7141/.
Texte intégralKoombua, Kittisak. « Multiscale Modeling of Airway Inflammation Induced by Mechanical Ventilation ». VCU Scholars Compass, 2009. http://scholarscompass.vcu.edu/etd/1841.
Texte intégralvan, Drunen Erwin Johan. « Mechanical Ventilation Modelling and Optimisation ». Thesis, University of Canterbury. Mechanical Engineering, 2013. http://hdl.handle.net/10092/8400.
Texte intégralTurowski, Paweł [Verfasser]. « Molecular mechanisms of ventilator-induced acute kidney injury : Mechanical ventilation can modulate neutrophil recruitment to the kidney / Paweł Turowski ». Gießen : Universitätsbibliothek, 2012. http://d-nb.info/1064838820/34.
Texte intégralHeyer, Laurent. « L'interaction patient-ventilateur : application technique d'une analyse biologique ». Phd thesis, Université Joseph Fourier (Grenoble ; 1971-2015), 2009. http://www.theses.fr/2009GRE10184.
Texte intégralOptimal Patient/Ventilator Interactions (PVI) is a determinant factor for pressure support therapy. We studied the hybrid system {Patient, Ventilator} in order to develop a clinical tool for PVI monitoring. In the first part, we described IPV as the expression of a local communication in a biological network. PVI reflect the communication process trough the respiratory system between a biological oscillator and a mechanical oscillator. This biological approach allows application of Shannon theory for the development of a de-synchronization score and the definition of an appropriate inspiratory muscle effort detector. For this purpose, we developed an automatic non-invasive detector based on a robust muscular pressure estimates continuously assessed with the help of passive mechanical respiratory models updated cycle by cycle. In the second part, we assessed these developments in patients under pressure support ventilation. The de-synchronization score was increased as the transmission channel was altered by additional noise or as the information source, the inspiratory effort, was decreased. An automatic titration of IPV by a de-synchronization score that assess channel transmission efficiency or by an inspiratory muscle effort detector that assess message generator efficiency might be helpful for respiratory function monitoring in patients under pressure support
Austin, Paul Nelson. « Imposed Work of Breathing and Breathing Comfort of Nonintubated Volunters Breathing with Three Portable Ventilators and a Critical Care Ventilator ». University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin997382634.
Texte intégralDungi, Santosh Roopak. « Effectiveness of Ventilating Headboards in Protecting Health-Care Workers in Hospital Rooms ». University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1406881263.
Texte intégralWalsh, Brian Kendall. « Computer-aided mechanical ventilation ». Thesis, Rush University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10111109.
Texte intégralStatement of the problem: The systematic implementation of evidence-based practice through the use of guidelines, checklists and protocols has been shown to mitigate the risks associated with MV, yet variation in practice remains prevalent. Recent advances in MV, physiologic monitoring, device-to-device communication, computer processing and software engineering have allowed for the development of an automated point-of-care access to real-time goal setting and practice variance identification. Our aim was to assess the utility of a computer-aided MV (CAMV) system that displays variances and scores the overall MV course. Methods: A retrospective categorization of the ventilation and oxygenation statuses of patients within our pediatric intensive care unit (PICU) over a 2 '/z years period utilizing 15 rule-based algorithms was initiated as a proof of concept. Goals were predetermined based on generally accepted values. All patient categories were calculated and presented as a percent of recording time. Following the feasibility study, a retrospective observational study (baseline), followed by two sequential interventions made over a 2-month period was conducted. Phase I comprised a survey of goals of MV by clinicians caring for patients being monitored by the CAMV system. Phase II intervention was the setting and monitoring of goals of MV with a web browser based data visualization system (T3). An outcome measurement tool was developed to score each MV course. The MV score (MVS) evaluated four outcomes: (1) acceptable ventilation, (2) acceptable oxygenation, (3) barotrauma free and (4) volutrauma-free states as a percent of recording time. Results: Pilot consisted of 222 patients. The Baseline phase evaluated 130 patients, Phase I enrolled 31 patients and Phase II enrolled 36 patients. There were no differences in demographic characteristics between cohorts. One hundred and seventy-one surveys were completed in Phase I. An increase in the use of T3 by 87% was observed in Phase II from Phase I. MVS improved by 8.4% in Phase I and 11.3% in Phase II from Baseline. The largest improvement was in the volutraumafree category. MVS was 9% higher on average in those who survived. Conclusion: The use of CAMV was associated with an improvement in MVS. Further research is needed to determine if improvements in MVS through a targeted, process-oriented intervention such as CAMV will lead to improved patient outcomes.
Howe, Kimberly Palazzo. « Mechanical Ventilation Antioxidant Trial ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=case1112877564.
Texte intégralWard, Paul. « A computational and experimental study on respiratory oscillation mechanics for the control of mechanical ventilation ». Thesis, King's College London (University of London), 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435804.
Texte intégralConnick, Owen. « The fluid mechanics of hybrid ventilation ». Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/39347.
Texte intégralSilva, Alexandre Rodrigues da. « Hardware de ventilador pulmonar ». Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-03052012-121527/.
Texte intégralThis work aimed to present the development of a pulmonary mechanical ventilator, mainly focusing on the hardware part needed in order for this device to work. Mechanical ventilation is the most important medical mode concerning the care of patients that are critically ill. The ventilator is a device very much used in intensive care units (ICUs), and it basically delivers an air and oxygen mixture to the patients lungs that is normally unable to do so naturally, either because the patient is seriously ill that prevents him/her to do so, or due to surgery, in this case prevented the movement of the diaphragm muscle so the air could be naturally delivered to the lung. This work covered a comprehensive description about this ventilator, its transformation of compressed air and oxygen coming from a cylinder in a controlled mixture of flows that enters the lung for the inspiration of a volume, or to achieve a determined pressure, and the output of this mixture, maintaining a controlled pressure in the lung too. A hardware and firmware prototype was developed for this device. The aim was to show the transformation process from the main idea and the need for a project of a tested and certified device to be used in the market.
Hammash, Muna Hassan. « CARDIAC RHYTHM DURING MECHANICAL VENTILATION AND WEANING FROM VENTILATION ». UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_diss/56.
Texte intégralBorges, João Batista. « Regional Lung Kinetics of Ventilator-Induced Lung Injury and Protective-Ventilation Strategies Studied by Dynamic Positron Emission Tomography ». Doctoral thesis, Uppsala universitet, Hedenstiernalaboratoriet, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-230022.
Texte intégralYoung, Peter Jeffrey. « Pulmonary aspiration in mechanical ventilation ». Thesis, University of East Anglia, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323263.
Texte intégralMortimer, A. J. « High frequency jet ventilation : Mechanics and gas exchange ». Thesis, University of Newcastle Upon Tyne, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373490.
Texte intégralBengtsson, Patrik, et Joel Blomfelt. « Variabel Ventilation ». Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190163.
Texte intégralMånga människor spenderar idag större delen av sitt liv inomhus. Det är vanligt att man både hemma och på jobbet vistas i utrymmen där klimatet inte styrs av väder och vind utan av ventilationssystem som är tänkta att skapa ett lämpligt inomhusklimat. Trots ventilationens centrala del av samhället hamnar ämnet dock ofta i skymundan, och i dagens läge är det ingen självklarhet att inomhusklimaten och dess luftkvalité är tillfredställande. Av dem som bygger bostäderna och lokalerna förklaras detta ofta bero på kostnadsaspekter, men i grund och botten är det annat som ligger till grund för dagens situation. En bättre förklaring är att det finns viss problematik kring ventilationens planeringsskede, vilket innebär ett väldigt förenklat arbetssätt och att kostnad prioriteras framför funktion och kvalité. Problemen har bekräftats från flera håll och forskning pågår inom området i syfte att möta de bakomliggande orsakerna. Bland annat uppförs på flera håll i världen olika typer av testbädd-bostäder utformade för mätning och datainsamling i en verklig boendemiljö. Med hjälp av dessa kan man både verifiera olika systems funktion och gynna framtagning av nya innovationer och välgrundat forskningsmaterial gällande bland annat olika ventilationslösningar som exempelvis variabel ventilation. Ett av dessa projekt, med namnet KTH Live-in Lab, utförs på KTH i Stockholm. I denna rapport presenteras ett arbete gällande jämförelser av olika ventilationslösningar för en sådan studentlägenhet som uppförs i det pågående bygg- och forskningsprojektet KTH Live-in Lab. Arbetet fokuseras på att dels hitta en lämplig ventilationslösning och sedan även koppla resultatet till en möjlig kombination att använda för variabel ventilation. I syfte att möta dagens problematik fokuserades på att frångå dagens konventionella arbetssätt och ventilationsdesign. Resultatet illustreras digitalt i form av datorsimuleringar av luftflöden i en virtuell modell av bostaden, och jämförelserna ledde till ett antal slutsatser och förslag på lämpliga okonventionella lösningar. För icke-variabel ventilation var det lämpligt att placera ett inlopp i taknivå, samt två utlopp varav ett i taknivå och ett i golvnivå. För variabel ventilation visade det sig att denna systemlösning bör kombineras med möjlighet att växla inloppet till lågt inlopp på nätter och andra scenarion utan aktivitet och rörelse i bostaden. Övriga slutsatser gäller vilka egenskaper som bör varieras beroende på vad man vill uppnå med ventilationen.
Ouellet, Paul. « Évaluation d'une perfusion d'algosédation guidée soit par l'échelle de Ramsay soit par la technologie BIS sur le temps d'émergence et sur la synchronie patient-ventilateur auprès d'adultes non communicatifs durant la phase aiguë de ventilation mécanique en soins critiques ». Thèse, Université de Sherbrooke, 2013. http://hdl.handle.net/11143/6249.
Texte intégralPowelson, Stephen K. (Stephen Kirby). « Design and prototyping of a low-cost portable mechanical ventilator ». Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59954.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (p. [10]).
This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional bag-valve mask (BVM) with a pivoting cam arm, eliminating the need for a human operator for the BVM. An initial prototype was built out of acrylic, measuring 11.25 x 6.7 x 8 inches (285 x 170 x 200 mm) and weighing 9 lbs (4.1 kg). It is driven by a stepper motor powered by a 14.8 VDC battery and features an adjustable tidal volume of up to 900 mL, adjustable breaths per minute (bpm) of 5-30, and inhalation to exhalation time ratio (i:e ratio) options of 1:2, 1:3 and 1:4. Tidal volume, breaths per minute and i:e ratio are set via user-friendly knobs, and the settings are displayed on an LCD screen. The prototype also features an assist-control mode and an alarm to indicate over-pressurization of the system. Future iterations of the device will be fully calibrated to medical standards and include all desired ventilator features. Future iterations will be further optimised for low power-consumption and will be designed for manufacture and assembly. With a prototyping cost of only $420, the bulk-manufacturing price for the ventilator is estimated to be less than $100. Through this prototype, the strategy of cam-actuated BVM compression is proven to be a viable option to achieve low-cost, low-power portable ventilator technology that provides essential ventilator features at a fraction of the cost of existing technology. Keywords: Ventilator, Bag Valve Mask (BVM), Low-Cost, Low-Power, Portable and Automatic.
by Stephen K. Powelson.
S.B.
Chenvidyakarn, Torwong. « The fluid mechanics of pre-cooled natural ventilation ». Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614695.
Texte intégralYuta, Toshinori. « Minimal Model of Lung Mechanics for Optimising Ventilator Therapy in Critical Care ». Thesis, University of Canterbury. Mechanical Engineering, 2007. http://hdl.handle.net/10092/1608.
Texte intégralChiew, Yeong Shiong. « Model-Based Mechanical Ventilation for the Critically Ill ». Thesis, University of Canterbury. Mechanical Engineering, 2013. http://hdl.handle.net/10092/8311.
Texte intégralKawati, Rafael. « Evaluation of Respiratory Mechanics by Flow Signal Analysis : With Emphasis on Detecting Partial Endotracheal Tube Obstruction During Mechanical Ventilation ». Doctoral thesis, Uppsala University, Anaesthesiology and Intensive Care, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6343.
Texte intégralEvaluating respiratory mechanics during dynamic conditions without interrupting ongoing ventilation and flow, adds to the information obtained from the mechanics derived from static (= no flow) conditions, i.e., the flow signal has the potential to provide information on the properties of the respiratory system (including the tubing system). Hence monitoring the changes in the flow signal during ongoing mechanical ventilation would give information about the dynamic mechanics of the respiratory system. Any change in the mechanics of the respiratory system including the endotracheal tube (ETT) and the ventilatory circuit would affect the shape of the flow signal.
Knowledge of the airway pressure distal to the ETT at the carina level (= tracheal pressure) is required for calculating the extra resistive load exerted by the endotracheal tube in order to compensate for it. In a porcine model, the flow signal was used to non-invasively calculate tracheal pressure. There was good agreement between calculated and measured tracheal pressure with different modes of ventilation. However, calculation of tracheal pressure assumes that the inner diameter of the ETT is known, and this assumption is not met if the inner diameter is narrowed by secretions. Flow that passes a narrowed tube is decelerated and this is most pronounced with the high flow of early expiration, yielding a typical time constant over expiratory volume pattern that is easy to recognize during mechanical ventilation. This pattern reliably detected partial endotracheal obstruction during volume and pressure controlled mechanical ventilation.
A change in compliance of the respiratory system modifies the elastic recoil and this also affects the rate of the expiratory flow and the shape of its signal. In a porcine model, lung volume gains on the flow signal generated by the heartbeats (cardiogenic oscillations) provided information about the compliance of the respiratory system during ongoing mechanical ventilation
In conclusion analyzing the flow signal during ongoing ventilation can be a cheap, non-invasive and reliable tool to monitor the elastic and resistive properties of the respiratory system including the endotracheal tube.
Kawati, Rafael. « Evaluation or respiratory mechanics by flow signal analysis : with emphasis on detecting partial endotracheal tube obstruction during mechanical ventilation / ». Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6364.
Texte intégralHerrmann, Jacob. « Frequency-dependent ventilation heterogeneity in the acutely injured lung ». Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6590.
Texte intégralKostic, Peter. « New methods for optimization of mechanical ventilation ». Doctoral thesis, Uppsala universitet, Anestesiologi och intensivvård, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-249172.
Texte intégralSPADARO, SAVINO. « Diaphragmatic dysfunctionin criticallyill patients undergone mechanical ventilation ». Doctoral thesis, Università di Foggia, 2017. http://hdl.handle.net/11369/363289.
Texte intégralTomasi, Roberta. « Energy performance, comfort and ventilation effectiveness of radiant systems coupled with mechanical ventilation ». Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422467.
Texte intégralIn questo lavoro di dottorato vengono presentati i risultati di uno studio sui sistemi radianti per il raffrescamento ed il riscaldamento in ambito civile e sulla loro integrazione con opportuni sistemi di ventilazione meccanica. Le prestazioni energetiche in regime stazionario e transitorio, così come le prestazioni di comfort termico e di qualità dell’aria garantita, sono state studiate mediante l’ausilio di prove sperimentali, di simulazioni fluidodinamiche e di altri codici di calcolo. Gli studi sperimentali sono stati realizzati in parte in Italia, presso i laboratori dell’azienda RHOSS S.p.A di Codroipo (Udine), e in parte presso i laboratori dell’ICIEE (International Centre for Indoor Environment and Energy), dell’Università Tecnica di Danimarca, (DTU) a Lyngby (DK). L’aspetto più rilevante di questo lavoro è legato alla sempre maggiore diffusione dei sistemi radianti come soluzione per il riscaldamento ed il raffrescamento di ambienti interni, in quanto combinano vantaggi energetici ad elevati livelli di comfort termico. Per ragioni dovute alla piccola differenza di temperatura tra l’ambiente e il fluido termovettore, i sistemi radianti si interfacciano molto bene con caldaie a condensazione, pompe di calore, sistemi free cooling, collettori solari e altre sorgenti rinnovabili e soluzioni ad alta efficienza energetica. Il calcolo della resa termica di tali sistemi viene eseguito mediante le equazioni valide per la convezione in regime stazionario, come quelle fornite dalle norme Europee EN 1264 ed EN 15377. In letteratura esistono numerose correlazioni valide per il calcolo della potenza convettiva di superfici orizzontali e verticali e di superfici interne di stanze reali; le norme EN 1264 ed EN 15377 consigliano correlazioni diverse e lo stesso accade per codici si simulazione energetica degli edifici. Ad oggi non è disponibile una chiara definizione di coefficiente di scambio termico convettivo per i sistemi radianti, specialmente per quanto riguarda pavimenti freddi e soffitti caldi. Il primo obiettivo di questa tesi è stato di realizzare un’analisi critica delle correlazioni disponibili in letteratura adatte ai sistemi radianti e di proporre delle equazioni per ogni configurazione di riscaldamento o raffrescamento da soffitto, pavimento o parete. In ambito residenziale il pavimento radiante rappresenta una delle soluzioni più richieste grazie all’elevato livello di comfort termico garantito; tuttavia, al fine di migliorare la qualità dell’aria e specialmente a causa della necessità di deumidificare l’aria in estate per evitare formazione di condensa, accanto al sistema radiante andrebbe installato un sistema di ventilazione meccanica. L’aria primaria in estate è solitamente a temperatura più bassa della temperatura della stanza e dotata di una certa velocità; nel caso di immissione da bocchette installate vicino ad una superficie radiante, lo scambio convettivo potrebbe venire variato rispetto ad una soluzione senza ventilazione. Mediante uno studio con simulazioni fluidodinamiche CFD è stato possibile valutare l’incremento dello scambio convettivo da un soffitto freddo mediante lo sfruttamento di aria primaria. I sistemi radianti, in particolare i sistemi a soffitto, rappresentano un’ottima soluzione per rimuovere i carichi termici degli uffici durante il periodo estivo, ma allo stesso tempo possono essere usati per il riscaldamento invernale degli stessi con buone prestazioni energetiche e di comfort termico. La differenza sostanziale è che durante la stagione invernale il sistema radiante si trova a lavorare prevalentemente in regime stazionario, mentre durante la stagione estiva i carichi esterni dovuti alla radiazione solare e all’escursione diurna, accompagnati da carichi interni dovuti all’occupazione umana, determinano condizioni piuttosto variabili durante la giornata. Il comportamento di sistemi radianti a regimi stazionari e transitori sono state studiate mediante prove in camera climatica; inoltre un modello di calcolo chiamato Digithon, sviluppato all’interno del Dipartimento di Fisica Tecnica dell’Università di Padova, è stato validato mediante un confronto con dati sperimentali. Seguendo un’opportuna procedura, riportata nella tesi, è stato possibile impostare dei profili di carico che simulano una tipica giornata estiva o invernale su una parete della stanza ed è stato studiato come il soffitto radiante reagisca per cercare di mantenere una certa temperatura di comfort nella stanza. Al fine di mantenere una buona qualità dell’aria, evitare la formazione di condensa, ma anche per incrementare la capacità di raffrescamento quando richiesto, i sistemi radianti per gli uffici andrebbero sempre associati a sistemi di ventilazione meccanica. Accanto ai tradizionali sistemi a soffitto con ventilazione a miscelazione, le soluzioni con ventilazione a dislocamento accoppiate a sistemi a pavimento o a soffitto sono alternative di crescente interesse per gli uffici. In edifici dove sia bassa la quantità di inquinanti emessi dai materiali edili, dai mobili e dalle attrezzature, la quantità di bioeffluenti dagli occupanti, dei quali l’anidride carbonica CO2 è normalmente usata come principale indicatore, è determinante per la qualità dell’aria interna. La capacità di rimozione dei contaminanti e, parallelamente, la capacità di immettere aria pulita negli ambienti sono espresse dall’efficienza di ventilazione (ventilation effectiveness). Mediante simulazione fluidodinamiche CFD è stato possibile confrontare l’efficienza di rimozione dei contaminanti utilizzando diverse soluzioni di ventilazione a dislocamento piuttosto che soluzioni tradizionali a miscelazione. La qualità di un ambiente interno andrebbe misurata in termini sia di comfort termico garantito all’occupante che di qualità dell’aria. Attraverso prove sperimentali in laboratorio, i principali indici di comfort termico e di efficienza di ventilazione sono stati determinati per diverse configurazioni di ventilazione a miscelazione e di ventilazione a dislocamento in ambienti rappresentativi di applicazioni residenziali o del terziario. I risultati sono stati in seguito utilizzati per effettuare una validazione di un modello fluidodinamico (CFD) creato per la previsione del movimento dell’aria in ambienti residenziali o uffici.
Pastore, C. V. « VENTILAZIONE MECCANICA E VOLUTRAUMA : STUDIO IN VIVO IN UN MODELLO SUINO ». Doctoral thesis, Università degli Studi di Milano, 2010. http://hdl.handle.net/2434/150177.
Texte intégralLiu, Hui. « The application of alveolar microscope on alveolar mechanics of ventilator-induced lung injury ». [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:25-opus-61847.
Texte intégralCoisel, Yannaël. « Ventilation mécanique en anesthésie réanimation : évaluation des nouveaux modes ventilatoires en médecine péri-opératoire ». Thesis, Montpellier 1, 2014. http://www.theses.fr/2014MON1T011/document.
Texte intégralIn case of respiratory failure, the patient's respiratory muscles are put at rest. The patient is then linked to an artificial ventilator, which makes him breath. There are a huge number of artificial ventilators, of varying quality, and each device offers many different settings : the ventilatory modes. These devices and their ventilatory modes are marketed and used daily, but few of them have ever been evaluated in a clinical situation and their performances still need to be proven. Interactions between these ventilatory modes and respiratory muscles are presently unknown. In this work, we first made an inventory of mechanical ventilation in peri-operative medicine (patients in operating rooms and in intensive care units). Then, we evaluated on a bench test the technical performances of the latest generation of anesthesia and intensive care ventilators, in static conditions (controlled ventilation in different pathologic pulmonary conditions) and in dynamic conditions (assisted spontaneous breathing in different weaning situations), and we established criteria to check before choosing a ventilator. Third, we analysed the behaviour of several advanced ventilatory modes (Neurally Adjusted Ventilatory Assist (NAVA), Proportional Assist Ventilation Plus (PAV+), Adaptive Support Ventilation (ASV), Intellivent, Noisy-PSV) during ventilator weaning of intensive care patients compared to the reference weaning mode : Pressure Support Ventilation. Finally, we present research perspectives and potential benefits from our studies through our experimental and clinical project
Kilander, Johanna, et Madeleine Frisell. « Variable expiration control for an intensive care ventilator ». Thesis, Linköpings universitet, Institutionen för medicinsk teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157761.
Texte intégralKolandaivelu, Kumaran. « Development of a miniature high frequency ventilator for genetically engineered newborn mice ». Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/60745.
Texte intégralVimláti, László. « Benefits of Spontaneous Breathing : Compared with Mechanical Ventilation ». Doctoral thesis, Uppsala universitet, Anestesiologi och intensivvård, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-182564.
Texte intégralMishra, Ankit Nidhishchandra. « Mechanical Ventilation and Optimisation through Analytical Lung Model ». Thesis, University of Canterbury. Mechanical Engineering, 2012. http://hdl.handle.net/10092/7005.
Texte intégralSands, Kirsty M. « Dynamics of oral biofilms associated with mechanical ventilation ». Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/97010/.
Texte intégralFrazier, Susan K. « Right Heart Hemodynamics During Weaning From Mechanical Ventilation / ». The Ohio State University, 1996. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487933648650383.
Texte intégralRolle, Trenicka. « Lung Alveolar and Tissue Analysis Under Mechanical Ventilation ». VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3398.
Texte intégralAmorim, Raquel Margarida da Cruz. « O Desmame Precoce da Pessoa submetida a Ventilação Mecânica Invasiva : O Impacto das Intervenções de Enfermagem de Reabilitação ». Master's thesis, Instituto Politécnico de Setúbal. Escola Superior de Saúde, 2019. http://hdl.handle.net/10400.26/29374.
Texte intégralA Ventilação Mecânica Invasiva é reconhecida como processo terapêutico adjuvante à pessoa acometida de insuficiência respiratória. Em correlação com os seus benefícios, existe a probabilidade de ocorrência de complicações a nível respiratório e motor. Neste contexto, é realçada a importância de realizar um desmame ventilatório precoce. A eficácia e eficiência do desmame ventilatório, requerem do Enfermeiro Especialista em Enfermagem de Reabilitação as competências para elaborar, desenvolver e implementar um plano de intervenção individual, baseado numa avaliação criteriosa do doente. Este relatório surge no decurso da análise ao processo de aquisição e sedimentação de competências comuns do Enfermeiro Especialista, específicas em Enfermagem de Reabilitação, bem como a obtenção de competências de mestre. Este processo foi realizado através das várias fases do plano de intervenção aplicado ao doente submetido a Ventilação Mecânica Invasiva, com o objetivo de desenvolver competências científicas, técnicas e humanas especializadas, ao longo do processo de desmame ventilatório.
Mechanical Invasive Ventilation is recognized as an adjuvant therapeutic process for the person suffering from respiratory failure. In correlation with its benefits, there is a probability of respiratory and motor complications. In this context, the importance of early weaning is emphasized. The efficacy and efficiency of ventilatory weaning require the Nurse Specialist in Rehabilitation Nursing the skills to design, develop and implement an individual intervention plan, based on a careful evaluation of the patient. This report arises during the analysis of the process of acquisition and solidification of common competences of the Specialist Nurse, specific in Rehabilitation Nursing, as well as the acquisition of master's competences. This process was carried out through the various phases of the intervention plan applied to the patient submitted to Mechanical Invasive Ventilation, with the objective of developing specialized scientific, technical and human skills throughout the ventilatory weaning process.
Craven, Thomas Henry John. « Resolving uncertainty in acute respiratory illness using optical molecular imaging ». Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/29507.
Texte intégralZhang, Lei, et 张磊. « Dispersion of coughed droplets in crowded indoor environment ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47049935.
Texte intégral