Littérature scientifique sur le sujet « Mechanic ventilator »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Mechanic ventilator ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Mechanic ventilator"
Jung, Fang, Shang-Shing P. Chou, Shih-Hsing Yang, Jau-Chen Lin et Guey-Mei Jow. « Closed Endotracheal Suctioning Impact on Ventilator-Related Parameters in Obstructive and Restrictive Respiratory Systems : A Bench Study ». Applied Sciences 11, no 11 (6 juin 2021) : 5266. http://dx.doi.org/10.3390/app11115266.
Texte intégralPintavirooj, Chuchart, Areerat Maneerat et Sarinporn Visitsattapongse. « Emergency Blower-Based Ventilator with Novel-Designed Ventilation Sensor and Actuator ». Electronics 11, no 5 (1 mars 2022) : 753. http://dx.doi.org/10.3390/electronics11050753.
Texte intégralChacón-Lozsán, Francisco, et Péter Tamási. « Comparing lung mechanics of patients with COVID related respiratory distress syndrome versus non-COVID acute respiratory distress syndrome : a retrospective observational study ». Journal of Mechanical Ventilation 3, no 4 (15 décembre 2022) : 151–57. http://dx.doi.org/10.53097/jmv.10062.
Texte intégralSedlak, Josef, Jiri Malasek, Martin Ondra et Ales Polzer. « Construction of Mechanic Regulation of Turbine Ventilator using Half-Flap ». Manufacturing Technology 16, no 6 (1 décembre 2016) : 1364–70. http://dx.doi.org/10.21062/ujep/x.2016/a/1213-2489/mt/16/6/1364.
Texte intégralSedlak, Josef, Jiri Malasek, Martin Ondra et Ales Polzer. « Construction of Mechanic Regulation of Turbine Ventilator using Whirling Turbine ». Manufacturing Technology 17, no 2 (1 avril 2017) : 242–50. http://dx.doi.org/10.21062/ujep/x.2017/a/1213-2489/mt/17/2/242.
Texte intégralSrinivasan, Shriya S., Khalil B. Ramadi, Francesco Vicario, Declan Gwynne, Alison Hayward, David Lagier, Robert Langer, Joseph J. Frassica, Rebecca M. Baron et Giovanni Traverso. « A rapidly deployable individualized system for augmenting ventilator capacity ». Science Translational Medicine 12, no 549 (18 mai 2020) : eabb9401. http://dx.doi.org/10.1126/scitranslmed.abb9401.
Texte intégralAgustina, Mita. « Gargling with Aloe vera extract is effective to prevent the Ventilator-Associated Pneumonia (VAP) ». GHMJ (Global Health Management Journal) 2, no 3 (31 octobre 2018) : 70. http://dx.doi.org/10.35898/ghmj-23270.
Texte intégralLiu, Ling, Xiaoting Xu, Qin Sun, Yue Yu, Feiping Xia, Jianfeng Xie, Yi Yang, Leo Heunks et Haibo Qiu. « Neurally Adjusted Ventilatory Assist versus Pressure Support Ventilation in Difficult Weaning ». Anesthesiology 132, no 6 (1 juin 2020) : 1482–93. http://dx.doi.org/10.1097/aln.0000000000003207.
Texte intégralCheng, Shou-Hsia, I.-Shiow Jan et Pin-Chun Liu. « The soaring mechanic ventilator utilization under a universal health insurance in Taiwan ». Health Policy 86, no 2-3 (mai 2008) : 288–94. http://dx.doi.org/10.1016/j.healthpol.2007.11.002.
Texte intégralShi, Yan, Shuai Ren, Maolin Cai et Weiqing Xu. « Modelling and Simulation of Volume Controlled Mechanical Ventilation System ». Mathematical Problems in Engineering 2014 (2014) : 1–7. http://dx.doi.org/10.1155/2014/271053.
Texte intégralThèses sur le sujet "Mechanic ventilator"
PUTIGNANO, OSCAR. « Development of a Cherenkov based diagnostic for gamma-rays from fusion plasmas and advanced medical applications ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402358.
Texte intégralAim of this thesis, begun in November 2019, is the development of an innovative Cerenkov detector for measurements of 17 MeV gamma-rays emitted by the D-T fusion reaction in an intense neutron field. With the spread of the COVID-19 pandemics in Northern Italy in February 2020, it became clear that the original program planned for my PhD work had to be significantly changed, since experimental activities to be carried out in the UNIMIB/CNR laboratories in Milan and at the Joint European Torus in the UK had to be cancelled. In agreement with my tutors I volunteered together with other scientists to contribute to a project called Mechanical Ventilator Milan (MVM). The MVM project involved an international team of more than 150 scientists and has produced over the very short period of less than three months a mechanical ventilator approved by the American Food and Drug Administration for use at the intensive care unit of hospitals to treat patients affected by COVID-19. The activities of the MVM project led to the development of a new fast oxygen sensor for medical application, about one year later. The sensor measures the oxygen consumption in real time during a single breath. The thesis is organized in three parts. The first part is focused on the development of a gamma-ray counter optimized for the measurement of the D-T fusion power produced in a magnetic confinement fusion device. The research team I have joined is developing a novel technique for the measurement of DT fusion power in a magnetic confinement device based on the detection of 17 MeV gamma-rays also produced by the D+T->5He* reaction. The 5He* nucleus promptly decays usually emitting an alpha particle and a neutron, but it may de-excite to the ground level emitting a gamma-ray with a probability of the order of 10^-5. These gamma-rays have been detected in the recent DT campaign at JET with a gamma spectrometer based on LaBr3 and a fast digital data acquisition. Since the efficiency of the scintillator to high energy gamma-rays and neutrons are comparable, the use of a dedicated LiH based neutron attenuator to observe the weak gamma-ray signal is needed. To overcome the limitations posed by the sensitivity of LaBr3 detectors to neutrons, I designed a gamma-ray gas detector optimized to work in the presence of an intense neutron field. The detector is based on the Cherenkov effect and simulations indicate that it is 10^6 times more sensitive to gamma-rays than to neutrons. The next step would be to build a prototype of the detector to validate the simulation results and to test it on a D-T neutron source. The second part of the thesis describes the design and build of the IFOx sensor, an ultra-fast oxygen sensor that can be used for lung analysis by working in the so called mainstream configuration. Since the working principle of the IFOx sensor somewhat resembles the one of a scintillator detector, this is an example of knowledge transfer from nuclear diagnostics to a different application. The prototype that was built features excellence time response and was used in a trial study on healthy volunteers to measure the Functional Residual Capacity. The excellent results of the trial study on healthy volunteers has opened up the possibility to carry out a clinical study on intensive care unit patients in the near future, by integrating the oxygen sensor with mechanical ventilators. The last part of the thesis is about the MVM project and describes the ventilator design aimed to the production of a ventilator composed of a few parts so that it can be rapidly built on large scales even during the disruption of the components supply chain. I was able to contribute to the project thanks to my knowledge of gas systems, advanced real time controls, and I participated in the measurement required for the certification. The key results that led to a full certification for usage on patient by the European Commission are also described in this work.
Carteaux, Guillaume. « Optimisation des interactions patient-ventilateur en ventilation assistée : intérêt des nouveaux algorithmes de ventilation ». Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC0027/document.
Texte intégralDuring assisted mechanical ventilation, patient-ventilator interactions, which are associated with outcome, partly depend on ventilation algorithms.Objectives: : 1) during invasive mechanical ventilation, two modes offered real innovations and we wanted to assess whether the assistance could be customized depending on the patient's respiratory effort during proportional ventilatory modes: proportional assist ventilation with load-adjustable gain factors (PAV+) and neurally adjusted ventilator assist (NAVA); 2) during noninvasive ventilation (NIV): to assess whether NIV algorithms implemented on ICU and dedicated NIV ventilators decrease the incidence of patient-ventilator asynchrony.Methods: 1) In PAV+ we described a way to calculate the muscle pressure value from the values of both the gain adjusted by the clinician and the airway pressure. We then assessed the clinical feasibility of adjusting the gain with the goal of maintaining the muscle pressure within a normal range. 2) We compared titration of assistance between neurally adjusted ventilator assist (NAVA) and pressure support ventilation (PSV) based on respiratory effort indices. During NIV, we assessed the incidence of patient-ventilator asynchrony with and without the use of NIV algorithms: 1) using a bench model; 2) and in the clinical settings.Results: During PAV+, adjusting the gain with the goal of targeting a normal range of respiratory effort was feasible, simple, and most often sufficient to ventilate patients from the onset of partial ventilatory support until extubation. During NAVA, the analysis of respiratory effort indices allowed us to precise the boundaries within which the NAVA level should be adjusted and to compare patient-ventilator interactions with PSV within similar ranges of assistance. During NIV, our data stressed the heterogeneity of NIV algorithms implemented on ICU ventilators. We therefore reported that dedicated NIV ventilators allowed better patient-ventilator synchronization than ICU ventilators, even with their NIV algorithms engaged.Conclusions: During invasive mechanical ventilation, customizing the assistance during proportional ventilatory modes with the goal of targeting a normal range of respiratory effort optimizes patient-ventilator interactions and is feasible with PAV+. During NIV, dedicated NIV ventilators allow better patient-ventilator synchrony than ICU ventilators, even with their NIV algorithm engaged. ICU ventilators' NIV algorithms efficiency is however highly variable among ventilators
Sperber, Jesper. « Protective Mechanical Ventilation in Inflammatory and Ventilator-Associated Pneumonia Models ». Doctoral thesis, Uppsala universitet, Infektionssjukdomar, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-282602.
Texte intégralThille, Arnaud. « Asynchronies patient-ventilateur au cours de la ventilation assistée ». Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00667286.
Texte intégralLyazidi, Aissam. « Évaluation des performances et des limitations des ventilateurs sur banc d'essai ». Thesis, Paris Est, 2010. http://www.theses.fr/2010PEST1073.
Texte intégralThe ventilators have markedly improved thanks to progress in respiratory physiology, in informatics and miniaturization. However, their intrinsic performances remain unequal. The aim was to evaluate ventilators performances on reproducible bench test studies adapted to clinical questions. Tests show that 1) the error of really delivered volume is approximately 1 ml/kg of additional volume; the tidal volume (VT) indicated on the ventilators was lower than the real delivered VT ; 2) Performances of new ventilators are comparable to the best ventilators tested in 2000 ; turbine ventilators are quite similar to best conventional ventilators ; 3) The ventilators dedicated to non invasive ventilation showed better performances to cope with leaks 4) The intrapulmonary percussive ventilation superimposed on conventional ventilation can reduce humidity, increase volumes and can generate intrinsic positive expiratory pressure. The bench tests showed a large heterogeneity of performances. A technological watch seems essential to evaluate all new ventilators
Hult, Erin L. (Erin Luelle) 1982. « Experimental simulation of wind driven cross-ventilation in a naturally ventilated building ». Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32808.
Texte intégralIncludes bibliographical references (p. 29).
A device was designed and constructed to simulate cross-ventilation through a building due to natural wind. The wind driver device was designed for use with a one tenth scale model of an open floor plan office building in Luton, England. The air flow patterns produced by the wind driver were observed, and the uniformity of the velocity of the flows into the model windows was measured for the three settings of the wind driver fans. The temperatures and velocities of flows on the interior of the building and at the exhaust windows were also examined. The wind driver device was capable of producing uniform velocities across the face of the model to within 20 to 27%, depending on the fan setting. The consistency of certain features of the velocity distributions produced by the wind driver operating at different speeds suggest that improvements made to the design of the wind driver could lower this variation to about 15%. The velocities measured on the interior of the model seem consistent with interior velocities in the Luton building, although further experimentation is needed to confirm this trend. Cross-ventilation was effective in reducing interior model temperatures by up to 10⁰C from the natural convection case.
by Erin L. Hult.
S.B.
Balaji, Ravishankar. « Breathing Entrainment and Mechanical Ventilation in Rats ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1307743446.
Texte intégralJúnior, Marcus Henrique Victor. « Implementation and assessment of a novel mechanical ventilatory system following a noisy ventilation regime ». Instituto Tecnológico de Aeronáutica, 2014. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3151.
Texte intégralSvantesson, Cecilia. « Respiratory mechanics during mechanical ventilation in health and in disease ». Lund : Dept. of Clinical Psychology, Lund University, 1997. http://catalog.hathitrust.org/api/volumes/oclc/38987113.html.
Texte intégralElshafie, Ghazi Abdelgadir E. « Ventilatory mechanics in thoracic surgery ». Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7141/.
Texte intégralLivres sur le sujet "Mechanic ventilator"
Arnal, Jean-Michel. Monitoring Mechanical Ventilation Using Ventilator Waveforms. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58655-7.
Texte intégral1955-, Mishoe Shelley C., dir. Ventilator concepts : A systematic approach to mechanical ventilators. San Diego, Calif : California College for Health Sciences, 1987.
Trouver le texte intégralM, Kacmarek Robert, dir. Essentials of mechanical ventilation. New York : McGraw-Hill, Health Professions Division, 1996.
Trouver le texte intégralLemaire, François, dir. Mechanical Ventilation. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87448-2.
Texte intégralSlutsky, Arthur S., et Laurent Brochard, dir. Mechanical Ventilation. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b138096.
Texte intégralKreit, John W. Mechanical ventilation. Oxford : Oxford University Press, 2013.
Trouver le texte intégralFrançois, Lemaire, dir. Mechanical ventilation. Berlin : Springer-Verlag, 1991.
Trouver le texte intégralMacIntyre, Neil R., et Richard D. Branson, dir. Mechanical ventilation. Philadelphia, Pennsylvana : W.B. Saunders, 2001.
Trouver le texte intégralMacIntyre, Neil R. Mechanical ventilation. Philadelphia : Saunders Elsevier, 2001.
Trouver le texte intégralMacIntyre, Neil R., et Richard D. Branson. Mechanical Ventilation. Philadelphia : Saunders, 2000.
Trouver le texte intégralChapitres de livres sur le sujet "Mechanic ventilator"
Belforte, G., G. Eula et T. Raparelli. « Mechanical ventilators and ventilator testers ». Dans Biomechanics and Sports, 27–35. Vienna : Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2760-5_4.
Texte intégralDrechsler, Andreas, Steffi Reinhold, Andreas Ruff, Martin Schneider et Berndt Zeitler. « Airborne Sound Insulation of Sustainable Building Facades ». Dans iCity. Transformative Research for the Livable, Intelligent, and Sustainable City, 335–57. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92096-8_22.
Texte intégralMarchetti, Nathaniel, Christopher B. Remakus, Ubaldo J. Martin et Gerard J. Criner. « Mechanical Ventilation – Part II : Monitoring of Respiratory Mechanics During Mechanical Ventilation and Ventilator Strategies ». Dans Critical Care Study Guide, 856–78. New York, NY : Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-77452-7_45.
Texte intégralScala, Raffaele. « Ventilators for Noninvasive Mechanical Ventilation ». Dans Noninvasive Mechanical Ventilation, 27–38. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11365-9_5.
Texte intégralFahmy, Tamer, et Sameh Salim. « ICU Ventilators Versus BiPAP Ventilators in Noninvasive Ventilation ». Dans Noninvasive Mechanical Ventilation, 31–39. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21653-9_5.
Texte intégralBowton, David L., et R. Duncan Hite. « Ventilator Mechanics ». Dans A Practical Guide to Mechanical Ventilation, 133–39. Chichester, UK : John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470976609.ch11.
Texte intégralArnal, Jean-Michel. « Basics ». Dans Monitoring Mechanical Ventilation Using Ventilator Waveforms, 1–28. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58655-7_1.
Texte intégralArnal, Jean-Michel. « Controlled Modes ». Dans Monitoring Mechanical Ventilation Using Ventilator Waveforms, 29–58. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58655-7_2.
Texte intégralArnal, Jean-Michel. « Monitoring During Expiration ». Dans Monitoring Mechanical Ventilation Using Ventilator Waveforms, 59–80. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58655-7_3.
Texte intégralArnal, Jean-Michel. « Assisted and Spontaneous Modes ». Dans Monitoring Mechanical Ventilation Using Ventilator Waveforms, 81–106. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58655-7_4.
Texte intégralActes de conférences sur le sujet "Mechanic ventilator"
Xiao-ming, Yu, et Li Jin-feng. « Centrifugal multi-wing type ventilator performance improvement and Numerical simulation ». Dans 2010 International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2010. http://dx.doi.org/10.1109/mace.2010.5536700.
Texte intégralMei Zhang. « The research of speed control system based on intelligent PID controller to mine local ventilator ». Dans 2011 Second International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2011. http://dx.doi.org/10.1109/mace.2011.5987064.
Texte intégralDanna, Mason, Evan George, Sanjana Ranganathan, Zachary I. Richards, R. Kenneth Sims, Pauline M. Berens, Priyanka S. Deshpande et Swami Gnanashanmugam. « A Low-Cost, Open-Source Solution to the Covid-19 Ventilator Shortage ». Dans 2022 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/dmd2022-1044.
Texte intégralde Souza Lopes Palagar, Anna Esther, Katrine de Souza Guimarães, Gabriela Motta Vasconcelos, Karla Duarte Barreto Xavier et Luciano Matos Chicayban. « Elaboration of neonatal and pediatric mechanical lungs ». Dans 7th International Congress on Scientific Knowledge. Biológicas & Saúde, 2021. http://dx.doi.org/10.25242/8868113820212404.
Texte intégralSingru, Pravin, Bhargav Mistry, Rachna Shetty et Satish Deopujari. « Design of MEMS Based Piezo-Resistive Sensor for Measuring Pressure in Endo-Tracheal Tube ». Dans ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50838.
Texte intégralTamayo, Alex G. « Application Of The Recommendations And Parameters Of Mechanic Ventilator Used During The Fiberoptic Bronchoscopy In Patients With Suspicion Of Influenza A H1N1 ». Dans American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a5860.
Texte intégralKruger, Sunita, et Leon Pretorius. « Heat Transfer in Three-Dimensional Single-Span Greenhouses Containing a Roof Ventilator ». Dans ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71207.
Texte intégralHegeman, M. A., S. N. T. Hemmes, M. T. Kuipers, Lieuwe D. J. Bos, G. Jongsma, K. F. van der Sluijs et M. J. Schultz. « Prolonged Mechanical Ventilation Aggravates Ventilator-Induced Lung Injury ». Dans American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a1707.
Texte intégralNear, Eric, Mustafa Ihsan, Waylon Chan et Vimal Viswanathan. « Design and Testing of a Low-Cost Ventilator to Battle the Global Pandemic ». Dans ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70897.
Texte intégralMakhoul, Alain, Kamel Ghali et Nesreen Ghaddar. « Ceiling-Mounted Fresh Air Personalized Ventilator System for Occupant-Controlled Microenvironment ». Dans ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87565.
Texte intégralRapports d'organisations sur le sujet "Mechanic ventilator"
Ding, Huaze, Yiling Dong, Kaiyue Zhang, Jiayu Bai et Chenpan Xu. Comparison of dexmedetomidine versus propofol in mechanically ventilated patients with sepsis : A meta-analysis of randomized controlled trials. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, avril 2022. http://dx.doi.org/10.37766/inplasy2022.4.0103.
Texte intégralMorris, Andrew M., Peter Juni, Ayodele Odutayo, Pavlos Bobos, Nisha Andany, Kali Barrett, Martin Betts et al. Remdesivir for Hospitalized Patients with COVID-19. Ontario COVID-19 Science Advisory Table, mai 2021. http://dx.doi.org/10.47326/ocsat.2021.02.27.1.0.
Texte intégralAtladottir, Dr Hjördis Osk, et Dr Niels Kim Schønemann. Broncho-gastric fistula complicating mechanical ventilation. The Association of Anaesthetists of Great Britain and Ireland, décembre 2016. http://dx.doi.org/10.21466/ac.bfcmvac.2016.
Texte intégralPersily, Andrew K. A modeling study of ventilation, IAQ and energy impacts of residential mechanical ventilation. Gaithersburg, MD : National Institute of Standards and Technology, 1998. http://dx.doi.org/10.6028/nist.ir.6162.
Texte intégralHurel, Nolwenn, Max H. Sherman et Iain S. Walker. Simplified Methods for Combining Natural and Mechanical Ventilation. Office of Scientific and Technical Information (OSTI), juin 2015. http://dx.doi.org/10.2172/1469162.
Texte intégralHurel, Nolwenn, Max H. Sherman et Iain S. Walker. Simplified Methods for Combining Natural and Mechanical Ventilation. Office of Scientific and Technical Information (OSTI), juin 2015. http://dx.doi.org/10.2172/1512199.
Texte intégralChan, Way R., Yang S. Kim, Brennen D. Less, Brett C. Singer et Iain S. Walker. Ventilation and Indoor Air Quality in New California Homes with Gas Appliances and Mechanical Ventilation. Office of Scientific and Technical Information (OSTI), février 2019. http://dx.doi.org/10.2172/1509678.
Texte intégralFang, Mingxing, Yan Li, Qi Zhang, Na LIu, XIaoyan Tan et Hai Yue. The effect of driving pressure-guided ventilation strategy on the patients with mechanical ventilation : A Meta-Analysis of Randomized Controlled Trial. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, avril 2022. http://dx.doi.org/10.37766/inplasy2022.4.0113.
Texte intégralLogue, Jennifer M., Willliam JN Turner, Iain S. Walker et Brett C. Singer. Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation. Office of Scientific and Technical Information (OSTI), juillet 2012. http://dx.doi.org/10.2172/1173154.
Texte intégralMartin, Eric. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control. Office of Scientific and Technical Information (OSTI), janvier 2014. http://dx.doi.org/10.2172/1122301.
Texte intégral