Littérature scientifique sur le sujet « Measurement error model, Rasch model, Latent variable »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Measurement error model, Rasch model, Latent variable ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Measurement error model, Rasch model, Latent variable"
Maier, Kimberly S. « A Rasch Hierarchical Measurement Model ». Journal of Educational and Behavioral Statistics 26, no 3 (septembre 2001) : 307–30. http://dx.doi.org/10.3102/10769986026003307.
Texte intégralBaghaei, Purya, et Mona Tabatabaee Yazdi. « The Logic of Latent Variable Analysis as Validity Evidence in Psychological Measurement ». Open Psychology Journal 9, no 1 (30 décembre 2016) : 168–75. http://dx.doi.org/10.2174/1874350101609010168.
Texte intégralGrilli, Leonardo, et Roberta Varriale. « Specifying Measurement Error Correlations in Latent Growth Curve Models With Multiple Indicators ». Methodology 10, no 4 (1 janvier 2014) : 117–25. http://dx.doi.org/10.1027/1614-2241/a000082.
Texte intégralBourke, Mary, Linda Wallace, Marlene Greskamp et Lucy Tormoehlen. « Improving Objective Measurement in Nursing Research : Rasch Model Analysis and Diagnostics of the Nursing Students' Clinical Stress Scale ». Journal of Nursing Measurement 23, no 1 (2015) : 1E—15E. http://dx.doi.org/10.1891/1061-3749.23.1.1.
Texte intégralHuang, Xianzheng, et Joshua M. Tebbs. « On Latent-Variable Model Misspecification in Structural Measurement Error Models for Binary Response ». Biometrics 65, no 3 (29 septembre 2008) : 710–18. http://dx.doi.org/10.1111/j.1541-0420.2008.01128.x.
Texte intégralLeus, Olga, et Anatoly Maslak. « MEASUREMENT AND ANALYSIS OF TEACHERS’ PROFESSIONAL PERFORMANCE ». SOCIETY. INTEGRATION. EDUCATION. Proceedings of the International Scientific Conference 2 (25 mai 2018) : 308–19. http://dx.doi.org/10.17770/sie2018vol1.3097.
Texte intégralDoyle, Patrick J., William D. Hula, Malcolm R. McNeil, Joseph M. Mikolic et Christine Matthews. « An Application of Rasch Analysis to the Measurement of Communicative Functioning ». Journal of Speech, Language, and Hearing Research 48, no 6 (décembre 2005) : 1412–28. http://dx.doi.org/10.1044/1092-4388(2005/098).
Texte intégralBazan, Bartolo. « A Rasch-Validation Study of a Novel Speaking Span Task ». Shiken 24.1 24, no 1 (1 juin 2020) : 1–21. http://dx.doi.org/10.37546/jaltsig.teval24.1-1.
Texte intégralSmith, Bradley C., et William Spaniel. « Introducingν-CLEAR : a latent variable approach to measuring nuclear proficiency ». Conflict Management and Peace Science 37, no 2 (10 janvier 2018) : 232–56. http://dx.doi.org/10.1177/0738894217741619.
Texte intégralFlaherty, Brian P., et Yusuke Shono. « Many Classes, Restricted Measurement (MACREM) Models for Improved Measurement of Activities of Daily Living ». Journal of Survey Statistics and Methodology 9, no 2 (1 mars 2021) : 231–56. http://dx.doi.org/10.1093/jssam/smaa047.
Texte intégralThèses sur le sujet "Measurement error model, Rasch model, Latent variable"
SIMONETTO, ANNA. « Estimation procedures for latent variable models with psychological traits ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2010. http://hdl.handle.net/10281/17370.
Texte intégralGurkan, Gulsah. « From OLS to Multilevel Multidimensional Mixture IRT : A Model Refinement Approach to Investigating Patterns of Relationships in PISA 2012 Data ». Thesis, Boston College, 2021. http://hdl.handle.net/2345/bc-ir:109191.
Texte intégralSecondary analyses of international large-scale assessments (ILSA) commonly characterize relationships between variables of interest using correlations. However, the accuracy of correlation estimates is impaired by artefacts such as measurement error and clustering. Despite advancements in methodology, conventional correlation estimates or statistical models not addressing this problem are still commonly used when analyzing ILSA data. This dissertation examines the impact of both the clustered nature of the data and heterogeneous measurement error on the correlations reported between background data and proficiency scales across countries participating in ILSA. In this regard, the operating characteristics of competing modeling techniques are explored by means of applications to data from PISA 2012. Specifically, the estimates of correlations between math self-efficacy and math achievement across countries are the principal focus of this study. Sequentially employing four different statistical techniques, a step-wise model refinement approach is used. After each step, the changes in the within-country correlation estimates are examined in relation to (i) the heterogeneity of distributions, (ii) the amount of measurement error, (iii) the degree of clustering, and (iv) country-level math performance. The results show that correlation estimates gathered from two-dimensional IRT models are more similar across countries in comparison to conventional and multilevel linear modeling estimates. The strength of the relationship between math proficiency and math self-efficacy is moderated by country mean math proficiency and this was found to be consistent across all four models even when measurement error and clustering were taken into account. Multilevel multidimensional mixture IRT modeling results support the hypothesis that low-performing groups within countries have a lower correlation between math self-efficacy and math proficiency. A weaker association between math self-efficacy and math proficiency in lower achieving groups is consistently seen across countries. A multilevel mixture IRT modeling approach sheds light on how this pattern emerges from greater randomness in the responses of lower performing groups. The findings from this study demonstrate that advanced modeling techniques not only are more appropriate given the characteristics of the data, but also provide greater insight about the patterns of relationships across countries
Thesis (PhD) — Boston College, 2021
Submitted to: Boston College. Lynch School of Education
Discipline: Educational Research, Measurement and Evaluation
Sundström, David. « On specification and inference in the econometrics of public procurement ». Doctoral thesis, Umeå universitet, Nationalekonomi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-121681.
Texte intégralMohanlal, Pramod. « Structural equation modelling ». Diss., 1997. http://hdl.handle.net/10500/17475.
Texte intégralMathematical Sciences
M. Sc. (Statistics)
Livres sur le sujet "Measurement error model, Rasch model, Latent variable"
Jackman, Simon. Measurement. Sous la direction de Janet M. Box-Steffensmeier, Henry E. Brady et David Collier. Oxford University Press, 2009. http://dx.doi.org/10.1093/oxfordhb/9780199286546.003.0006.
Texte intégralChapitres de livres sur le sujet "Measurement error model, Rasch model, Latent variable"
Leitgöb, Heinz, Daniel Seddig, Peter Schmidt, Edward Sosu et Eldad Davidov. « Longitudinal Measurement (Non)Invariance in Latent Constructs ». Dans Measurement Error in Longitudinal Data, 211–58. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198859987.003.0010.
Texte intégral