Articles de revues sur le sujet « Maytansinoids »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Maytansinoids.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Maytansinoids ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Giles, Francis, Rodica Morariu-Zamfir, John Lambert, Srdan Verstovsek, Deborah Thomas, Farhad Ravandi et Dan Deangelo. « Phase I Study of AVE9633, an AntiCD33-Maytansinoid Immunoconjugate, Administered as an Intravenous Infusion in Patients with Refractory/Relapsed CD33-Positive Acute Myeloid Leukemia (AML). » Blood 108, no 11 (16 novembre 2006) : 4548. http://dx.doi.org/10.1182/blood.v108.11.4548.4548.

Texte intégral
Résumé :
Abstract AVE9633 is an immunoconjugate created by conjugation of the cytotoxic maytansinoid, DM4, to the monoclonal IgG1 antibody, huMy9-6 (average of 3.5 molecules of DM4 per antibody). The huMy9-6 antibody is a humanized version of a murine monoclonal antibody, My9-6, which is specific for the CD33 antigen expressed on the surface of myeloid cells, including the majority of cases of AML. Because CD33 has little expression outside the hematopoietic system, it represents an attractive target for antibody-based therapy in patients with AML. The humanized antibody, huMy9-6, binds to the CD33 antigen with an apparent KD in the range of 10−10 M. Maytansinoids are anti-mitotics that inhibit tubulin polymerization and microtubule assembly, inhibiting cells during the G2/M phase of the mitotic cycle. In order to link maytansinoids to antibodies via disulfide bonds, a new thiol-containing maytansinoid (DM4) was synthesized. Attachment of potent maytansinoids to an antibody via disulfide bonds provides a satisfactory stability in the bloodstream. After the conjugate is bound at the specific tumor site it is internalized and the cytotoxic agent is released within the target cell. A phase I study of AVE9633 is being conducted in patients with refractory/relapsed CD33+ AML. The study regimen consists of AVE9633 IV infusion on Day 1 of a 3 weeks cycle. To date dose levels of 15 (N=3), 30 (N=5), 50 (N=4), 75 (N=4), 105 (N=2), 200 (N=3) and 260 (N=1) mg/m2 have been investigated. Hypersensitivity reactions during perfusion were noted, requiring prophylaxis with steroids. No other AVE9633- attributable extramedullary Grade 3 AE has been observed to date. Free DM4, measured by LC/MS/MS was detectable from the 75 mg/m2 dose level; its Cmax (at the end of infusion) increased from 10 ng/mL at the 75 mg/m2 dose level to 70 ng/mL at 200 mg/m2. Neither AVE9633-associated myelosuppression nor responses have been noted. Using Flow Cytometry Assay on peripheral blasts and monocytes, total saturation and down regulation of CD33 were observed following administration of doses ≥ 30 mg/m2. AVE9633 exposure (measuring, by ELISA method, all antibodies containing at lease one molecule of DM4) increased proportionally with the administered dose in the dose range 15 to 200 mg/m2. Updated PK results and potential explanations for the lack of efficacy using this treatment schedule will be presented.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Plattner, Ronald D., et Richard G. Powell. « Tandem Mass Spectrometry of Maytansinoids ». Journal of Natural Products 49, no 3 (mai 1986) : 475–82. http://dx.doi.org/10.1021/np50045a016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Larson, Gretchen M., Brian T. Schaneberg et Albert T. Sneden. « Two New Maytansinoids fromMaytenus buchananii ». Journal of Natural Products 62, no 2 (février 1999) : 361–63. http://dx.doi.org/10.1021/np9803732.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lo, Chen-Fu, Tai-Yu Chiu, Yu-Tzu Liu, Li-Rung Huang, Teng-Kuang Yeh, Kuan-Hsun Huang, Kuan-Liang Liu et al. « Synthesis and Evaluation of Small Molecule Drug Conjugates Harnessing Thioester-Linked Maytansinoids ». Pharmaceutics 14, no 7 (21 juin 2022) : 1316. http://dx.doi.org/10.3390/pharmaceutics14071316.

Texte intégral
Résumé :
Ligand-targeting drug conjugates are a class of clinically validated biopharmaceutical drugs constructed by conjugating cytotoxic drugs with specific disease antigen targeting ligands through appropriate linkers. The integrated linker-drug motif embedded within such a system can prevent the premature release during systemic circulation, thereby allowing the targeting ligand to engage with the disease antigen and selective accumulation. We have designed and synthesized new thioester-linked maytansinoid conjugates. By performing in vitro cytotoxicity, targeting ligand binding assay, and in vivo pharmacokinetic studies, we investigated the utility of this new linker-drug moiety in the small molecule drug conjugate (SMDC) system. In particular, we conjugated the thioester-linked maytansinoids to the phosphatidylserine-targeting small molecule zinc dipicolylamine and showed that Zn8_DM1 induced tumor regression in the HCC1806 triple-negative breast cancer xenograft model. Moreover, in a spontaneous sorafenib-resistant liver cancer model, Zn8_DM1 exhibited potent antitumor growth efficacy. From quantitative mRNA analysis of Zn8_DM1 treated-tumor tissues, we observed the elevation of gene expressions associated with a “hot inflamed tumor” state. With the identification and validation of a plethora of cancer-associated antigens in the “omics” era, this work provided the insight that antibody- or small molecule-based targeting ligands can be conjugated similarly to generate new ligand-targeting drug conjugates.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Nittoli, Thomas, Frank Delfino, Marcus Kelly, Serena Carosso, Thomas Markotan, Arthur Kunz, Zhaoyuan Chen et al. « Antibody drug conjugates of cleavable amino-benzoyl-maytansinoids ». Bioorganic & ; Medicinal Chemistry 28, no 23 (décembre 2020) : 115785. http://dx.doi.org/10.1016/j.bmc.2020.115785.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Suchocki, John A., et Albert T. Sneden. « New maytansinoids : reduction products of the C(9)-carbinolamide ». Journal of Organic Chemistry 53, no 17 (août 1988) : 4116–18. http://dx.doi.org/10.1021/jo00252a047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ladino, Cynthia A., Ravi V. J. Chari, Lizabeth A. Bourret, Nancy L. Kedersha et Victor S. Goldmacher. « Folate-maytansinoids : Target-selective drugs of low molecular weight ». International Journal of Cancer 73, no 6 (10 décembre 1997) : 859–64. http://dx.doi.org/10.1002/(sici)1097-0215(19971210)73:6<859 ::aid-ijc16>3.0.co;2-#.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Perrino, Elena, Martina Steiner, Nikolaus Krall, Gonçalo J. L. Bernardes, Francesca Pretto, Giulio Casi et Dario Neri. « Curative Properties of Noninternalizing Antibody–Drug Conjugates Based on Maytansinoids ». Cancer Research 74, no 9 (11 février 2014) : 2569–78. http://dx.doi.org/10.1158/0008-5472.can-13-2990.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Nittoli, Thomas, Marcus P. Kelly, Frank Delfino, John Rudge, Arthur Kunz, Thomas Markotan, Jan Spink et al. « Antibody drug conjugates of cleavable amino-alkyl and aryl maytansinoids ». Bioorganic & ; Medicinal Chemistry 26, no 9 (mai 2018) : 2271–79. http://dx.doi.org/10.1016/j.bmc.2018.02.025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Liu, C., B. M. Tadayoni, L. A. Bourret, K. M. Mattocks, S. M. Derr, W. C. Widdison, N. L. Kedersha et al. « Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. » Proceedings of the National Academy of Sciences 93, no 16 (6 août 1996) : 8618–23. http://dx.doi.org/10.1073/pnas.93.16.8618.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Bénéchie, Michel, Bernard Delpech, Qui Khuong-Huu et Françoise Khuong-Huu. « Total synthesis of maytansinoids. Approach to 4,6-bisdemethylmaytansine and 4-demethylmaytansine ». Tetrahedron 48, no 10 (janvier 1992) : 1895–910. http://dx.doi.org/10.1016/s0040-4020(01)88513-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Li, Ya-Nan, Jia-Nan Li, Qin Ouyang, Yu-Bo Zhou, Chun Lei, Ming-Jun Cui, Kai-Cong Fu, Jia Li, Jian-Ming Huang et Ai-Jun Hou. « Determination of maytansinoids in Trewia nudiflora using QuEChERS extraction combined with HPLC ». Journal of Pharmaceutical and Biomedical Analysis 198 (mai 2021) : 113993. http://dx.doi.org/10.1016/j.jpba.2021.113993.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Reich, Eike, et Albert T. Sneden. « Normal- and bonded-phase liquid chromatography with photodiode array detection of maytansinoids ». Journal of Chromatography A 763, no 1-2 (février 1997) : 213–19. http://dx.doi.org/10.1016/s0021-9673(96)00849-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Liu, Changnian, et Ravi VJ Chari. « The development of antibody delivery systems to target cancer with highly potent maytansinoids ». Expert Opinion on Investigational Drugs 6, no 2 (février 1997) : 169–72. http://dx.doi.org/10.1517/13543784.6.2.169.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

BENECHIE, M., B. DELPECH, Q. KHUONG-HUU et F. KHUONG-HUU. « ChemInform Abstract : Total Synthesis of Maytansinoids. Approach to 4,6- Bisdemethylmaytansine and 4-Demethylmaytansine. » ChemInform 23, no 26 (21 août 2010) : no. http://dx.doi.org/10.1002/chin.199226292.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Li, Wenting, Minhao Huang, Yuyan Li, Anjie Xia, Lun Tan, Zhixiong Zhang, Yuxi Wang et Jinliang Yang. « C3 ester side chain plays a pivotal role in the antitumor activity of Maytansinoids ». Biochemical and Biophysical Research Communications 566 (août 2021) : 197–203. http://dx.doi.org/10.1016/j.bbrc.2021.05.071.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Dang, Giap van, Bernd M. Rode et Hermann Stuppner. « Quantitative electronic structure-activity relationship (QESAR) of natural cytotoxic compounds : maytansinoids, quassinoids and cucurbitacins ». European Journal of Pharmaceutical Sciences 2, no 5-6 (décembre 1994) : 331–50. http://dx.doi.org/10.1016/0928-0987(94)00061-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Li, Shanren, Chunhua Lu, Xiaoyan Chang et Yuemao Shen. « Constitutive overexpression of asm18 increases the production and diversity of maytansinoids in Actinosynnema pretiosum ». Applied Microbiology and Biotechnology 100, no 6 (17 novembre 2015) : 2641–49. http://dx.doi.org/10.1007/s00253-015-7127-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Pullen, Christian B., Petra Schmitz, Dietmar Hoffmann, Kristina Meurer, Theresa Boettcher, Daniel von Bamberg, Ana Maria Pereira et al. « Occurrence and non-detectability of maytansinoids in individual plants of the genera Maytenus and Putterlickia ». Phytochemistry 62, no 3 (février 2003) : 377–87. http://dx.doi.org/10.1016/s0031-9422(02)00550-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Eckelmann, Dennis, Souvik Kusari et Michael Spiteller. « Occurrence and spatial distribution of maytansinoids in Putterlickia pyracantha , an unexplored resource of anticancer compounds ». Fitoterapia 113 (septembre 2016) : 175–81. http://dx.doi.org/10.1016/j.fitote.2016.08.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Hodgson, David M., Philip J. Parsons et Peter A. Stones. « A short and efficient synthesis of the C-3 to C-10 portion of the maytansinoids ». Tetrahedron 47, no 24 (janvier 1991) : 4133–42. http://dx.doi.org/10.1016/s0040-4020(01)86450-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Zhu, Na, Peiji Zhao et Yuemao Shen. « Selective Isolation and Ansamycin-Targeted Screenings of Commensal Actinomycetes from the “Maytansinoids-Producing” Arboreal Trewia nudiflora ». Current Microbiology 58, no 1 (25 octobre 2008) : 87–94. http://dx.doi.org/10.1007/s00284-008-9284-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Madrigal, Richard V., Bruce W. Zilkowski et Cecil R. Smith. « Structure-activity relationships among maytansinoids in their effect on the European corn borer,Ostrinia nubilalis (Hübner) ». Journal of Chemical Ecology 11, no 4 (avril 1985) : 501–6. http://dx.doi.org/10.1007/bf00989561.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Qi-Tao, Yu, Zhi-Heng Huang, Zhou Yun-Li et Zhou Qi-Ting. « Mass spectrometry of maytansinoids-A study on the fragmentation mechanism and identification of synthetic analogs of maytansine ». Acta Chimica Sinica 4, no 1 (mars 1986) : 48–54. http://dx.doi.org/10.1002/cjoc.19860040108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Sakai, Kunikazu, Tetsuya Ichikawa, Kaoru Yamada, Mitsuo Yamashita, Mitsutoshi Tanimoto, Akio Hikita, Yasuharu Ijuin et Kiyosi Kondo. « Antitumor Principles in Mosses : the First Isolation and Identification of Maytansinoids, Including a Novel 15-Methoxyansamitocin P-3 ». Journal of Natural Products 51, no 5 (septembre 1988) : 845–50. http://dx.doi.org/10.1021/np50059a005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

HODGSON, D. M., P. J. PARSONS et P. A. STONES. « ChemInform Abstract : A Short and Efficient Synthesis of the C-3 to C-10 Portion of the Maytansinoids. » ChemInform 22, no 35 (22 août 2010) : no. http://dx.doi.org/10.1002/chin.199135273.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Ko, Soo sung, et Pat N. Confalone. « Model studies for the total synthesis of the maytansinoids based on the intramolecular nitrile oxide-olefin [3+2] cycloaddition reaction ». Tetrahedron 41, no 17 (janvier 1985) : 3511–18. http://dx.doi.org/10.1016/s0040-4020(01)96704-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Ikeda, Hiroshi, Teru Hideshima, Mariateresa Fulciniti, Robert J. Lutz, Hiroshi Yasui, Yutaka Okawa, Tanyel Kiziltepe et al. « The Monoclonal Antibody nBT062 Conjugated to Cytotoxic Maytansinoids Has Selective Cytotoxicity Against CD138-Positive Multiple Myeloma Cells In vitro and In vivo ». Clinical Cancer Research 15, no 12 (9 juin 2009) : 4028–37. http://dx.doi.org/10.1158/1078-0432.ccr-08-2867.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Cheng, Hong, Guoqing Xiong, Yi Li, Jiaqi Zhu, Xianghua Xiong, Qingyang Wang, Liancheng Zhang et al. « Increased yield of AP-3 by inactivation of asm25 in Actinosynnema pretiosum ssp. auranticum ATCC 31565 ». PLOS ONE 17, no 3 (22 mars 2022) : e0265517. http://dx.doi.org/10.1371/journal.pone.0265517.

Texte intégral
Résumé :
Asamitocins are maytansinoids produced by Actinosynnema pretiosum ssp. auranticum ATCC 31565 (A. pretiosum ATCC 31565), which have a structure similar to that of maytansine, therefore serving as a precursor of maytansine in the development of antibody-drug conjugates (ADCs). Currently, there are more than 20 known derivatives of ansamitocins, among which ansamitocin P-3 (AP-3) exhibits the highest antitumor activity. Despite its importance, the application of AP-3 is restricted by low yield, likely due to a substrate competition mechanism underlying the synthesis pathways of AP-3 and its byproducts. Given that N-demethylansamitocin P-3, the precursor of AP-3, is regulated by asm25 and asm10 to synthesize AGP-3 and AP-3, respectively, asm25 is predicted to be an inhibitory gene for AP-3 production. In this study, we inactivated asm25 in A. pretiosum ATCC 31565 by CRISPR-Cas9-guided gene editing. asm25 depletion resulted in a more than 2-fold increase in AP-3 yield. Surprisingly, the addition of isobutanol further improved AP-3 yield in the asm25 knockout strain by more than 6 times; in contrast, only a 1.53-fold increase was found in the WT strain under the parallel condition. Thus, we uncovered an unknown function of asm25 in AP-3 yield and identified asm25 as a promising target to enhance the large-scale industrial production of AP-3.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Ikeda, Hiroshi, Teru Hideshima, Robert J. Lutz, Sonia Vallet, Samantha Pozzi, Loredana Santo, Elisabetta Calabrese et al. « The Monoclonal Antibody nBT062 Conjugated to Cytotoxic Maytansinoids Has Potent and Selective Cytotoxicity against CD138 Positive Multiple Myeloma Cells in Vitro and in Vivo. » Blood 112, no 11 (16 novembre 2008) : 1716. http://dx.doi.org/10.1182/blood.v112.11.1716.1716.

Texte intégral
Résumé :
Abstract CD138 is expressed on differentiated plasma cells and is involved in the development and/or proliferation of multiple myeloma (MM), for which it is a primary diagnostic marker. In this study, we report that immunoconjugates comprised of the murine/human chimeric CD138-specific monoclonal antibody nBT062 conjugated with highly cytotoxic maytansinoid derivatives (nBT062-SMCC-DM1, nBT062-SPDB-DM4 and nBT062-SPP-DM1) showed cytotoxic activity against CD138-positive MM cells both in vitro and in vivo. These agents demonstrated cytotoxicity against OPM1 and RPMI8226 (CD138-positive MM cell lines) in a dose and time-dependent fashion and were also cytotoxic against primary tumor cells from MM patients. Minimal cytotoxicity was noted in CD138-negative cell lines and no activity was observed against peripheral blood mononuclear cells from healthy volunteers, suggesting that CD138-targeting is important for immunoconjugate-mediated cytotoxicity. Examination of the mechanism of action whereby these immunoconjugates induced cytotoxicity in MM cells demonstrated that treatment triggered G2/M cell cycle arrest, followed by apoptosis associated with cleavage of PARP and caspase-3, -8 and -9. Neither interleukin-6 nor insulin-like growth factor-I could overcome the apoptotic effect of these agents. The level of soluble (s)CD138 in the BM plasma from 15 MM patients was evaluated to determine the potential impact of sCD138 on immunoconjugate function. The sCD138 level in BM plasma was found to be significantly lower than that present in MM cell culture supernatants where potent in vitro cytotoxicity was observed, suggesting that sCD138 levels in MM patient BM plasma would not interfere with immunoconjugate activity. Because adhesion to bone marrow stromal cells (BMSCs) triggers cell adhesion mediated drug resistance to conventional therapies, we next examined the effects of the conjugates on MM cell growth in the context of BMSC. Co-culture of MM cells with BMSCs, which protects against dexamethasoneinduced death, had no impact on the cytotoxicity of the immunoconjugates. The in vivo efficacy of these immunoconjugates was also evaluated in SCID mice bearing established CD138-positive MM xenografts and in a SCID-human bone xenograft model of myeloma. Significant tumor growth delay or regressions were observed at immunoconjugate concentrations that were well tolerated in all models tested. The ability of these agents to mediate bystander killing of proximal CD138-negative cells was also evaluated. While nBT062-SPDB-DM4 was inactive against CD138-negative Namalwa cells cultured alone, significant killing of these CD138-negative cells by nBT062-SPDB-DM4 was observed when mixed with CD138-positive OPM2 cells. This bystander killing may contribute to the eradication of MM tumors by disrupting the tumor microenvironment and/or killing CD138-negative MM tumor cells, such as the putative CD138 negative myeloma stem cells. These studies demonstrate strong evidence of in vitro and in vivo selective cytotoxicity of these immunoconjugates and provide the preclinical framework supporting evaluation of nBT062-based immunoconjugates in clinical trials to improve patient outcome in MM.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Erickson, Hans K., et John M. Lambert. « ADME of Antibody–Maytansinoid Conjugates ». AAPS Journal 14, no 4 (9 août 2012) : 799–805. http://dx.doi.org/10.1208/s12248-012-9386-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Wang, Hangxiang, Jiaping Wu, Li Xu, Ke Xie, Chao Chen et Yuehan Dong. « Albumin nanoparticle encapsulation of potent cytotoxic therapeutics shows sustained drug release and alleviates cancer drug toxicity ». Chemical Communications 53, no 17 (2017) : 2618–21. http://dx.doi.org/10.1039/c6cc08978j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Fishkin, Nathan. « Maytansinoid–BODIPY Conjugates : Application to Microscale Determination of Drug Extinction Coefficients and for Quantification of Maytansinoid Analytes ». Molecular Pharmaceutics 12, no 6 (16 mars 2015) : 1745–51. http://dx.doi.org/10.1021/mp500843r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Cassady, John M., Kenneth K. Chan, Heinz G. Floss et Eckhard Leistner. « Recent Developments in the Maytansinoid Antitumor Agents ». Chemical and Pharmaceutical Bulletin 52, no 1 (2004) : 1–26. http://dx.doi.org/10.1248/cpb.52.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Henning, Peter. « T-DM1 als Innovation beim HER2-positiven Brustkrebs : Antikörper und Zytostatikum als duale Wirkkombination ». Onkologische Welt 03, no 04 (2012) : 172. http://dx.doi.org/10.1055/s-0038-1630203.

Texte intégral
Résumé :
Das Antikörper-Wirkstoff-Konjugat Trastuzumab-Emtansin (T-DM1) steht für ein neues Wirkprinzip in der Therapie des HER2-positiven Mammakarzinoms. über Thioether Linker SMCC ist das Zytostatikum DM1, ein Spindelgift aus der Gruppe der Maytansinoide an den Antikörper Trastuzumab gebunden.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kovtun, Yelena V., Charlene A. Audette, Michele F. Mayo, Gregory E. Jones, Heather Doherty, Erin K. Maloney, Hans K. Erickson et al. « Antibody-Maytansinoid Conjugates Designed to Bypass Multidrug Resistance ». Cancer Research 70, no 6 (2 mars 2010) : 2528–37. http://dx.doi.org/10.1158/0008-5472.can-09-3546.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Luo, Quanzhou, Hyo Helen Chung, Christopher Borths, Matthew Janson, Jie Wen, Marisa K. Joubert et Jette Wypych. « Structural Characterization of a Monoclonal Antibody–Maytansinoid Immunoconjugate ». Analytical Chemistry 88, no 1 (14 décembre 2015) : 695–702. http://dx.doi.org/10.1021/acs.analchem.5b03709.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Lutz, Robert J., et Kathleen R. Whiteman. « Antibody-maytansinoid conjugates for the treatment of myeloma ». mAbs 1, no 6 (novembre 2009) : 548–51. http://dx.doi.org/10.4161/mabs.1.6.10029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Goodwin, Thomas E., Shari G. Orlicek, N. Renee Adams, Lynn A. Covey-Morrison, J. Steve Jenkins et Gary L. Templeton. « Preparation of an aromatic synthon for maytansinoid synthesis ». Journal of Organic Chemistry 50, no 26 (décembre 1985) : 5889–92. http://dx.doi.org/10.1021/jo00350a098.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Kirschning, Andreas, Kirsten Harmrolfs et Tobias Knobloch. « The chemistry and biology of the maytansinoid antitumor agents ». Comptes Rendus Chimie 11, no 11-12 (novembre 2008) : 1523–43. http://dx.doi.org/10.1016/j.crci.2008.02.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Sherman, Igor A., Rebecca J. Boohaker, Karr Stinson, Patricia Griffin et Wendy Hill. « An alpha-fetoprotein-maytansine conjugate for the treatment of AFP receptor expressing tumors. » Journal of Clinical Oncology 40, no 16_suppl (1 juin 2022) : e15056-e15056. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.e15056.

Texte intégral
Résumé :
e15056 Background: The alpha fetoprotein (AFP) receptor is an oncofetal antigen and a novel target for cancer therapeutics. It is highly expressed on the surfaces of many cancers and myeloid derived suppressor cells (MDSCs) but absent on normal tissues. By conjugating a novel maytansinoid toxin to a recombinant form of human AFP (ACT-101), we can selectively deliver the toxin to cancer and MDSC cells while sparing normal cells, thereby enabling a combination of targeted and immune activating approaches against the tumor. Methods: Four ACT-101-maytansinoid conjugates with different protein-toxin ratios and different linker chemistries were initially investigated in a mouse COLO-205 xenograft model, resulting in the selection of ACT-903 as the lead candidate for further development. A second study performed in the same tumor model compared the effects of single intravenous doses of ACT-903 (10-50 mg/kg) to control groups receiving either vehicle or the unconjugated protein, ACT-101 (25 mg/kg). Tumor growth, survival and clinical observations were assessed for 60 days post tumor implantation. Both serum ACT-101 and maytansinoid levels were measured following the single dose. Results: In the first study, a statistically significant reduction in tumor volume was seen for all four conjugates compared to vehicle control (p < 0.05). For ACT-903, tumors continued shrinking even after treatment completion, becoming undetectable in 9 of 10 animals. All 10 mice in this group survived through Day 60 with no obvious signs of toxicity. In contrast, there were no survivors in the control group. In the single dose study of ACT-903, a significant reduction of tumor burden compared to vehicle was achieved by Day 14 (p < 0.05) in both the 40 and 50 mg/kg dose groups. Mice in these 2 groups received a second dose 15 days after the first dose, based on observed tumor re-growth. Survival was significantly prolonged in the 50 mg/kg (p = 0.0037) and 40 mg/kg group (p < 0.0001) with 7 of 10 in the 50 mg/kg group and 9 of 10 animals in the 40 mg/kg group surviving to Day 60. Similar doses of ACT-101 and ACT-903 produced comparable ACT-101 serum levels, suggesting that the pharmacokinetic profile of the conjugate is driven primarily by the protein component. Free maytansinoid levels at 4 hours were less than 0.01% of the injected dose of the conjugate, indicating that the conjugate is stable in circulation. Conclusions: The efficacy and tolerability of ACT-903 in an animal tumor model supports advancing this conjugate toward clinical use with a regimen of either once a week or once every other week administration.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Sherman, Igor A., Rebecca J. Boohaker, Karr Stinson, Patricia Griffin et Wendy Hill. « An alpha-fetoprotein-maytansine conjugate for the treatment of AFP receptor expressing tumors. » Journal of Clinical Oncology 40, no 16_suppl (1 juin 2022) : e15056-e15056. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.e15056.

Texte intégral
Résumé :
e15056 Background: The alpha fetoprotein (AFP) receptor is an oncofetal antigen and a novel target for cancer therapeutics. It is highly expressed on the surfaces of many cancers and myeloid derived suppressor cells (MDSCs) but absent on normal tissues. By conjugating a novel maytansinoid toxin to a recombinant form of human AFP (ACT-101), we can selectively deliver the toxin to cancer and MDSC cells while sparing normal cells, thereby enabling a combination of targeted and immune activating approaches against the tumor. Methods: Four ACT-101-maytansinoid conjugates with different protein-toxin ratios and different linker chemistries were initially investigated in a mouse COLO-205 xenograft model, resulting in the selection of ACT-903 as the lead candidate for further development. A second study performed in the same tumor model compared the effects of single intravenous doses of ACT-903 (10-50 mg/kg) to control groups receiving either vehicle or the unconjugated protein, ACT-101 (25 mg/kg). Tumor growth, survival and clinical observations were assessed for 60 days post tumor implantation. Both serum ACT-101 and maytansinoid levels were measured following the single dose. Results: In the first study, a statistically significant reduction in tumor volume was seen for all four conjugates compared to vehicle control (p < 0.05). For ACT-903, tumors continued shrinking even after treatment completion, becoming undetectable in 9 of 10 animals. All 10 mice in this group survived through Day 60 with no obvious signs of toxicity. In contrast, there were no survivors in the control group. In the single dose study of ACT-903, a significant reduction of tumor burden compared to vehicle was achieved by Day 14 (p < 0.05) in both the 40 and 50 mg/kg dose groups. Mice in these 2 groups received a second dose 15 days after the first dose, based on observed tumor re-growth. Survival was significantly prolonged in the 50 mg/kg (p = 0.0037) and 40 mg/kg group (p < 0.0001) with 7 of 10 in the 50 mg/kg group and 9 of 10 animals in the 40 mg/kg group surviving to Day 60. Similar doses of ACT-101 and ACT-903 produced comparable ACT-101 serum levels, suggesting that the pharmacokinetic profile of the conjugate is driven primarily by the protein component. Free maytansinoid levels at 4 hours were less than 0.01% of the injected dose of the conjugate, indicating that the conjugate is stable in circulation. Conclusions: The efficacy and tolerability of ACT-903 in an animal tumor model supports advancing this conjugate toward clinical use with a regimen of either once a week or once every other week administration.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Catcott, Kalli C., Molly A. McShea, Carl Uli Bialucha, Kathy L. Miller, Stuart W. Hicks, Parmita Saxena, Thomas G. Gesner et al. « Microscale screening of antibody libraries as maytansinoid antibody-drug conjugates ». mAbs 8, no 3 (11 janvier 2016) : 513–23. http://dx.doi.org/10.1080/19420862.2015.1134408.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Goodwin, Thomas E., Kimberley R. Cousins, Heidi M. Crane, Phyllis O. Eason, Timothy E. Freyaldenhoven, Charles C. Harmon, Brock K. King et al. « Synthesis of Two New Maytansinoid Model Compounds from Carbohydrate Precursors ». Journal of Carbohydrate Chemistry 17, no 3 (avril 1998) : 323–39. http://dx.doi.org/10.1080/07328309808002895.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Widdison, Wayne, Sharon Wilhelm, Karen Veale, Juliet Costoplus, Gregory Jones, Charlene Audette, Barbara Leece, Laura Bartle, Yelena Kovtun et Ravi Chari. « Metabolites of Antibody–Maytansinoid Conjugates : Characteristics and in Vitro Potencies ». Molecular Pharmaceutics 12, no 6 (8 avril 2015) : 1762–73. http://dx.doi.org/10.1021/mp5007757.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Zhao, Robert Y., Sharon D. Wilhelm, Charlene Audette, Gregory Jones, Barbara A. Leece, Alexandru C. Lazar, Victor S. Goldmacher et al. « Synthesis and Evaluation of Hydrophilic Linkers for Antibody–Maytansinoid Conjugates ». Journal of Medicinal Chemistry 54, no 10 (26 mai 2011) : 3606–23. http://dx.doi.org/10.1021/jm2002958.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Reddy, Joseph A., Elaine Westrick, Hari K. R. Santhapuram, Stephen J. Howard, Michael L. Miller, Marilynn Vetzel, Iontcho Vlahov, Ravi V. J. Chari, Victor S. Goldmacher et Christopher P. Leamon. « Folate Receptor–Specific Antitumor Activity of EC131, a Folate-Maytansinoid Conjugate ». Cancer Research 67, no 13 (1 juillet 2007) : 6376–82. http://dx.doi.org/10.1158/0008-5472.can-06-3894.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Oroudjev, Emin, Manu Lopus, Leslie Wilson, Charlene Audette, Carmela Provenzano, Hans Erickson, Yelena Kovtun, Ravi Chari et Mary Ann Jordan. « Maytansinoid-Antibody Conjugates Induce Mitotic Arrest by Suppressing Microtubule Dynamic Instability ». Molecular Cancer Therapeutics 9, no 10 (octobre 2010) : 2700–2713. http://dx.doi.org/10.1158/1535-7163.mct-10-0645.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Jiang, Zhengyang, Zhen Yang, Feng Li, Zheng Li, Nathan Fishkin et Kevin Burgess. « Targeted Maytansinoid Conjugate Improves Therapeutic Index for Metastatic Breast Cancer Cells ». Bioconjugate Chemistry 29, no 9 (13 août 2018) : 2920–26. http://dx.doi.org/10.1021/acs.bioconjchem.8b00340.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Ab, O., V. S. Goldmacher, L. M. Bartle, D. Tavares, C. N. Carrigan, S. Xu, M. Okamoto, H. Johnson, K. R. Whiteman et T. Chittenden. « 236 Antibody–maytansinoid conjugates targeting folate receptor 1 for cancer therapy ». European Journal of Cancer Supplements 8, no 7 (novembre 2010) : 77. http://dx.doi.org/10.1016/s1359-6349(10)71941-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie