Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Matériaux de Van der Waals.

Articles de revues sur le sujet « Matériaux de Van der Waals »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Matériaux de Van der Waals ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Arunan, E. « van der Waals ». Resonance 15, no 7 (juillet 2010) : 584–87. http://dx.doi.org/10.1007/s12045-010-0043-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Han, Jianing. « Two-Dimensional Six-Body van der Waals Interactions ». Atoms 10, no 1 (24 janvier 2022) : 12. http://dx.doi.org/10.3390/atoms10010012.

Texte intégral
Résumé :
Van der Waals interactions, primarily attractive van der Waals interactions, have been studied over one and half centuries. However, repulsive van der Waals interactions are less widely studied than attractive van der Waals interactions. In this article, we focus on repulsive van der Waals interactions. Van der Waals interactions are dipole–dipole interactions. In this article, we study the van der Waals interactions between multiple dipoles. Specifically, we focus on two-dimensional six-body van der Waals interactions. This study has many potential applications. For example, the result may be applied to physics, chemistry, chemical engineering, and other fields of sciences and engineering, such as breaking molecules.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bernasek, Steven L. « Van der Waals rectifiers ». Nature Nanotechnology 8, no 2 (6 janvier 2013) : 80–81. http://dx.doi.org/10.1038/nnano.2012.242.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Geim, A. K., et I. V. Grigorieva. « Van der Waals heterostructures ». Nature 499, no 7459 (juillet 2013) : 419–25. http://dx.doi.org/10.1038/nature12385.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Levitov, L. S. « Van Der Waals' Friction ». Europhysics Letters (EPL) 8, no 6 (15 mars 1989) : 499–504. http://dx.doi.org/10.1209/0295-5075/8/6/002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Capozziello, S., S. De Martino et M. Falanga. « Van der Waals quintessence ». Physics Letters A 299, no 5-6 (juillet 2002) : 494–98. http://dx.doi.org/10.1016/s0375-9601(02)00753-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bärwinkel, Klaus, et Jürgen Schnack. « van der Waals revisited ». Physica A : Statistical Mechanics and its Applications 387, no 18 (juillet 2008) : 4581–88. http://dx.doi.org/10.1016/j.physa.2008.03.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wu, Yan-Fei, Meng-Yuan Zhu, Rui-Jie Zhao, Xin-Jie Liu, Yun-Chi Zhao, Hong-Xiang Wei, Jing-Yan Zhang et al. « The fabrication and physical properties of two-dimensional van der Waals heterostructures ». Acta Physica Sinica 71, no 4 (2022) : 048502. http://dx.doi.org/10.7498/aps.71.20212033.

Texte intégral
Résumé :
Two-dimensional van der Waals materials (2D materials for short) have developed into a novel material family that has attracted much attention, and thus the integration, performance and application of 2D van der Waals heterostructures has been one of the research hotspots in the field of condensed matter physics and materials science. The 2D van der Waals heterostructures provide a flexible and extensive platform for exploring diverse physical effects and novel physical phenomena, as well as for constructing novel spintronic devices. In this topical review article, starting with the transfer technology of 2D materials, we will introduce the construction, performance and application of 2D van der Waals heterostructures. Firstly, the preparation technology of 2D van der Waals heterostructures in detail will be presented according to the two classifications of wet transfer and dry transfer, including general equipment for transfer technology, the detailed steps of widely used transfer methods, a three-dimensional manipulating method for 2D materials, and hetero-interface cleaning methods. Then, we will introduce the performance and application of 2D van der Waals heterostructures, with a focus on 2D magnetic van der Waals heterostructures and their applications in the field of 2D van der Waals magnetic tunnel junctions and moiré superlattices. The development and optimization of 2D materials transfer technology will boost 2D van der Waals heterostructures to achieve breakthrough results in fundamental science research and practical application.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Levelt Sengers, J. M. H., et J. V. Sengers. « van der Waals fund, van der Waals laboratory and Dutch high-pressure science ». Physica A : Statistical Mechanics and its Applications 156, no 1 (mars 1989) : 1–14. http://dx.doi.org/10.1016/0378-4371(89)90107-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ao, Hong Rui, Ming Dong, Xi Chao Wang et Hong Yuan Jiang. « Analysis of Pressure Distribution on Head Disk Air Bearing Slider Involved Van der Waals Force ». Applied Mechanics and Materials 419 (octobre 2013) : 111–16. http://dx.doi.org/10.4028/www.scientific.net/amm.419.111.

Texte intégral
Résumé :
This paper focuses on the pressure distribution on the surface of slider in hard disk drive when its flying height is in nanoscale. The gas rarefaction effect and van der Waals force are involved in the analysis process. Here the air bearing force model is based on F-K model and we establish the equation of van der Waals force between the head and disk. Using the finite element method, the modified Reynolds equation and the van der Waals force were obtained. The air bearing force on slider before and after the van der Waals force involved were compared. The results illustrate that the effect of van der Waals force on the air bearing force is different according to the slider shapes and flying heights. As a result, van der Waals force plays an important role when the flying height of slider is below 10 nm.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Avramenko, Andriy A., Igor V. Shevchuk et Margarita M. Kovetskaya. « An Analytical Investigation of Natural Convection of a Van Der Waals Gas over a Vertical Plate ». Fluids 6, no 3 (15 mars 2021) : 121. http://dx.doi.org/10.3390/fluids6030121.

Texte intégral
Résumé :
The study focused on a theoretical study of natural convection in a van der Waals gas near a vertical plate. A novel simplified form of the van der Waals equation derived in the study enabled analytical modeling of fluid flow and heat transfer. Analytical solutions were obtained for the velocity and temperature profiles, as well as the Nusselt numbers. It was revealed that nonlinear effects considered by the van der Waals equation of state contribute to acceleration or deceleration of the flow. This caused respective enhancement or deterioration of heat transfer. Results for a van der Waals gas were compared with respective computations using an ideal gas model. Limits of the applicability of the simplified van der Waals equations were pinpointed.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Linder, Bruno, et Robert A. Kromhout. « van der Waals induced dipoles ». Journal of Chemical Physics 84, no 5 (mars 1986) : 2753–60. http://dx.doi.org/10.1063/1.450299.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Han, Xiaodong. « Ductile van der Waals materials ». Science 369, no 6503 (30 juillet 2020) : 509. http://dx.doi.org/10.1126/science.abd4527.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Wells, B. H., et S. Wilson. « van der Waals interaction potentials ». Molecular Physics 66, no 2 (10 février 1989) : 457–64. http://dx.doi.org/10.1080/00268978900100221.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Holstein, Barry R. « The van der Waals interaction ». American Journal of Physics 69, no 4 (avril 2001) : 441–49. http://dx.doi.org/10.1119/1.1341251.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Lu, J. X., et W. H. Marlow. « Nonsingular van der Waals potentials ». Physical Review A 52, no 3 (1 septembre 1995) : 2141–54. http://dx.doi.org/10.1103/physreva.52.2141.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wells, B. H., et S. Wilson. « van der Waals interaction potentials ». Molecular Physics 55, no 1 (mai 1985) : 199–210. http://dx.doi.org/10.1080/00268978500101271.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Wells, Bryan H., et Stephen Wilson. « van der Waals interaction potentials ». Molecular Physics 54, no 4 (mars 1985) : 787–98. http://dx.doi.org/10.1080/00268978500103161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Wells, B. H., et S. Wilson. « van der Waals interaction potentials ». Molecular Physics 57, no 1 (janvier 1986) : 21–32. http://dx.doi.org/10.1080/00268978600100021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Wells, B. H., et S. Wilson. « van der Waals interaction potentials ». Molecular Physics 57, no 2 (10 février 1986) : 421–26. http://dx.doi.org/10.1080/00268978600100331.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Wells, B. H. « Van der Waals interaction potentials ». Molecular Physics 61, no 5 (10 août 1987) : 1283–93. http://dx.doi.org/10.1080/00268978700101791.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Wells, B. H., et S. Wilson. « van der Waals interaction potentials ». Molecular Physics 65, no 6 (20 décembre 1988) : 1363–76. http://dx.doi.org/10.1080/00268978800101851.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Rajagopal, Aruna, David Kubizňák et Robert B. Mann. « Van der Waals black hole ». Physics Letters B 737 (octobre 2014) : 277–79. http://dx.doi.org/10.1016/j.physletb.2014.08.054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Han, Zhumin, Xinyuan Wei, Chen Xu, Chi-lun Chiang, Yanxing Zhang, Ruqian Wu et W. Ho. « Imaging van der Waals Interactions ». Journal of Physical Chemistry Letters 7, no 24 (5 décembre 2016) : 5205–11. http://dx.doi.org/10.1021/acs.jpclett.6b02749.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Kiessling, M. K. H., et J. K. Percus. « Nonuniform van der Waals theory ». Journal of Statistical Physics 78, no 5-6 (mars 1995) : 1337–76. http://dx.doi.org/10.1007/bf02180135.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Cole, Milton W., Darrell Velegol, Hye-Young Kim et Amand A. Lucas. « Nanoscale van der Waals interactions ». Molecular Simulation 35, no 10-11 (14 août 2009) : 849–66. http://dx.doi.org/10.1080/08927020902929794.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Magnasco, Valerio, Giuseppe Figari et Camilla Costa. « Understanding van der Waals bonding ». Journal of Molecular Structure : THEOCHEM 261 (juillet 1992) : 237–53. http://dx.doi.org/10.1016/0166-1280(92)87078-e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Feil, Sylvia. « Van der Waals : erstmals gemessen ». Chemie in unserer Zeit 50, no 5 (17 août 2016) : 303. http://dx.doi.org/10.1002/ciuz.201680049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Liu, Chang-Hua, Jiajiu Zheng, Shane Colburn, Taylor K. Fryett, Yueyang Chen, Xiaodong Xu et Arka Majumdar. « Ultrathin van der Waals Metalenses ». Nano Letters 18, no 11 (8 octobre 2018) : 6961–66. http://dx.doi.org/10.1021/acs.nanolett.8b02875.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Kilian, H. G. « Filled van der Waals networks ». Progress in Colloid & ; Polymer Science 75, no 1 (décembre 1987) : 213–30. http://dx.doi.org/10.1007/bf01188373.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Zhang, Ya-ni, Zhuo-ying Song, Dun Qiao, Xiao-hui Li, Zhe Guang, Shao-peng Li, Li-bin Zhou et Xiao-han Chen. « 2D van der Waals materials for ultrafast pulsed fiber lasers : review and prospect ». Nanotechnology 33, no 8 (3 décembre 2021) : 082003. http://dx.doi.org/10.1088/1361-6528/ac3611.

Texte intégral
Résumé :
Abstract 2D van der Waals materials are crystals composed of atomic layers, which have atomic thickness scale layers and rich distinct properties, including ultrafast optical response, surface effects, light-mater interaction, small size effects, quantum effects and macro quantum tunnel effects. With the exploration of saturable absorption characteristic of 2D van der Waals materials, a series of potential applications of 2D van der Waals materials as high threshold, broadband and fast response saturable absorbers (SAs) in ultrafast photonics have been proposed and confirmed. Herein, the photoelectric characteristics, nonlinear characteristic measurement technique of 2D van der Waals materials and the preparation technology of SAs are systematically described. Furthermore, the ultrafast pulsed fiber lasers based on classical 2D van der Waals materials including graphene, transition metal chalcogenides, topological insulators and black phosphorus have been fully summarized and analyzed. On this basis, opportunities and directions in this field, as well as the research results of ultrafast pulsed fiber lasers based on the latest 2D van der Waals materials (such as PbO, FePSe3, graphdiyne, bismuthene, Ag2S and MXene etc), are reviewed and summarized.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Gonzalez, R. I., J. Mella, P. Díaz, S. Allende, E. E. Vogel, C. Cardenas et F. Munoz. « Hematene : a 2D magnetic material in van der Waals or non-van der Waals heterostructures ». 2D Materials 6, no 4 (1 juillet 2019) : 045002. http://dx.doi.org/10.1088/2053-1583/ab2501.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Motoc, I., G. R. Marshall, R. A. Dammkoehler et J. Labanowski. « Molecular Shape Descriptors. 1. Three-Dimensional Molecular Shape Descriptor ». Zeitschrift für Naturforschung A 40, no 11 (1 novembre 1985) : 1108–13. http://dx.doi.org/10.1515/zna-1985-1106.

Texte intégral
Résumé :
The paper presents and illustrates a method which uses numerical integration of the van der Waals envelope(s) to calculate with desired accuracy the molecular van der Waals volume and the three-dimensional molecular shape descriptor defined as the twin-number [OV(α, β); NOV(β, α), where OV and NOV represent the overlapping and, respectively, the nonoverlapping van der Waals volumes of the molecules α and ß superimposed according to appropriate criteria.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Avramenko, A. A., I. V. Shevchuk, Yu Yu Kovetskaya et N. P. Dmitrenko. « An Integral Method for Natural Convection of Van Der Waals Gases over a Vertical Plate ». Energies 14, no 15 (27 juillet 2021) : 4537. http://dx.doi.org/10.3390/en14154537.

Texte intégral
Résumé :
This paper focuses on a study of natural convection in a van der Waals gas over a vertical heated plate. In this paper, for the first time, an approximate analytical solution of the problem was obtained using an integral method for momentum and energy equations. A novel simplified form of the van der Waals equation for real gases enabled estimating the effects of the dimensionless van der Waals parameters on the normalized heat transfer coefficients and Nusselt numbers in an analytical form. Trends in the variation of the Nusselt number depending on the nature of the interaction between gas molecules and the wall were analyzed. The results of computations for a van der Waals gas were compared with the results for an ideal gas.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Zhao, Lu, Lijuan Zhang, Houfu Song, Hongda Du, Junqiao Wu, Feiyu Kang et Bo Sun. « Incoherent phonon transport dominates heat conduction across van der Waals superlattices ». Applied Physics Letters 121, no 2 (11 juillet 2022) : 022201. http://dx.doi.org/10.1063/5.0096861.

Texte intégral
Résumé :
Heat conduction mechanisms in superlattices could be different across different types of interfaces. Van der Waals superlattices are structures physically assembled through weak van der Waals interactions by design and may host properties beyond the traditional superlattices limited by lattice matching and processing compatibility, offering a different type of interface. In this work, natural van der Waals (SnS)1.17(NbS2)n superlattices are synthesized, and their thermal conductivities are measured by time-domain thermoreflectance as a function of interface density. Our results show that heat conduction of (SnS)1.17(NbS2)n superlattices is dominated by interface scattering when the coherent length of phonons is larger than the superlattice period, indicating that incoherent phonon transport dominates through-plane heat conduction in van der Waals superlattices even when the period is atomically thin and abrupt, in contrast to conventional superlattices. Our findings provide valuable insights into the understanding of the thermal behavior of van der Waals superlattices and devise approaches for effective thermal management of superlattices depending on the distinct types of interfaces.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Peng, Qing, Xinjie Ma, Xiaoyu Yang, Shuai Zhao, Xiaoze Yuan et Xiaojia Chen. « Assessing Effects of van der Waals Corrections on Elasticity of Mg3Bi2−xSbx in DFT Calculations ». Materials 16, no 19 (29 septembre 2023) : 6482. http://dx.doi.org/10.3390/ma16196482.

Texte intégral
Résumé :
As a promising room-temperature thermoelectric material, the elastic properties of Mg3Bi2−xSbx (0 ≤ x ≤ 2), in which the role of van der Waals interactions is still elusive, were herein investigated. We assessed the effects of two typical van der Waals corrections on the elasticity of Mg3Bi2−xSbx nanocomposites using first-principles calculations within the frame of density functional theory. The two van der Waals correction methods, PBE-D3 and vdW-DFq, were examined and compared to PBE functionals without van der Waals correction. Interestingly, our findings reveal that the lattice constant of the system shrinks by approximately 1% when the PBE-D3 interaction is included. This leads to significant changes in certain mechanical properties. We conducted a comprehensive assessment of the elastic performance of Mg3Bi2−xSbx, including Young’s modulus, Poisson’s ratio, bulk modulus, etc., for different concentration of Sb in a 40-atom simulation box. The presence or absence of van der Waals corrections does not change the trend of elasticity with respect to the concentration of Sb; instead, it affects the absolute values. Our investigation not only clarifies the influence of van der Waals correction methods on the elasticity of Mg3Bi2−xSbx, but could also help inform the material design of room-temperature thermoelectric devices, as well as the development of vdW corrections in DFT calculations.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Tang, Yugang, et Ying Liu. « Effect of van der Waals force on wave propagation in viscoelastic double-walled carbon nanotubes ». Modern Physics Letters B 32, no 24 (27 août 2018) : 1850291. http://dx.doi.org/10.1142/s0217984918502913.

Texte intégral
Résumé :
In this paper, the influence of van der Waals force on the wave propagation in viscoelastic double-walled carbon nanotubes (DWCNTs) is investigated. The governing equations of wave motion are derived based on the nonlocal strain gradient theory and double-walled Timoshenko beam model. The effects of viscosity, van der Waals force, as well as size effects on the wave propagation in DWCNTs are clarified. The results show that effects of van der Waals force on waves in inner and outer layers of DWCNTs are different. Flexural wave (FW) in outer layer and shear wave (SW) in inner layer are sensitive to van der Waals force, and display new phenomena. This new finding may provide some useful guidance in the acoustic design of nanostructures with DWCNTs as basic elements.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Samanta, G. C., et R. Myrzakulov. « Cosmological models constructed by van der Waals fluid approximation and volumetric expansion ». International Journal of Geometric Methods in Modern Physics 14, no 12 (24 novembre 2017) : 1750183. http://dx.doi.org/10.1142/s0219887817501833.

Texte intégral
Résumé :
The universe modeled with van der Waals fluid approximation, where the van der Waals fluid equation of state contains a single parameter [Formula: see text]. Analytical solutions to the Einstein’s field equations are obtained by assuming the mean scale factor of the metric follows volumetric exponential and power-law expansions. The model describes a rapid expansion where the acceleration grows in an exponential way and the van der Waals fluid behaves like an inflation for an initial epoch of the universe. Also, the model describes that when time goes away the acceleration is positive, but it decreases to zero and the van der Waals fluid approximation behaves like a present accelerated phase of the universe. Finally, it is observed that the model contains a type-III future singularity for volumetric power-law expansion.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Stöhr, Martin, Troy Van Voorhis et Alexandre Tkatchenko. « Theory and practice of modeling van der Waals interactions in electronic-structure calculations ». Chemical Society Reviews 48, no 15 (2019) : 4118–54. http://dx.doi.org/10.1039/c9cs00060g.

Texte intégral
Résumé :
Opening the black box of van der Waals-inclusive electronic structure calculations: a tutorial-style introduction to van der Waals dispersion interactions, state-of-the-art methods in computational modeling and complementary experimental techniques.
Styles APA, Harvard, Vancouver, ISO, etc.
40

TAO, JIANMIN, JOHN P. PERDEW et ADRIENN RUZSINSZKY. « LONG-RANGE VAN DER WAALS INTERACTION ». International Journal of Modern Physics B 27, no 18 (10 juillet 2013) : 1330011. http://dx.doi.org/10.1142/s0217979213300119.

Texte intégral
Résumé :
Van der Waals interaction is an elusive many-body effect arising from instantaneous charge fluctuations. Fundamental understanding of this effect plays an important role in computational chemistry, physics and materials science. In this article, recent advances in the evaluation of van der Waals coefficients, in particular the higher-order ones, are reviewed.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Mi, Li-Qin, Dandan Li, Shanshan Li et Zhong-Heng Li. « Insight into the gas–liquid transition from the Berthelot model ». American Journal of Physics 92, no 7 (1 juillet 2024) : 520–27. http://dx.doi.org/10.1119/5.0094686.

Texte intégral
Résumé :
We extend the parametric method developed for the van der Waals model by Lekner [Am. J. Phys. 50(2), 161–163 (1982)] to other equations of state, particularly the Berthelot model, thereby making the testing of these equations of state much faster and simpler. We systematically investigate important properties of first-order phase transitions in the Berthelot model. Thermodynamic properties near the critical point are discussed and the predictions of the Berthelot and van der Waals models are compared with experimental data. The Berthelot equation affords an improved fit to the density–temperature coexistence curve for many substances when compared to the van der Waals equation. A failure of the Berthelot model is its prediction of latent heat and heat capacities that are convex functions at lower temperatures. We also examine two modifications of the Berthelot equation of state that, like the van der Waals model, are also solvable by the parameter method. These, which we call the cPF and dPF models, reduce to the van der Waals and Berthelot models in different limits of their parameters. They give improved fits to the experimental data away from the critical point but involve an additional fitting parameter.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Xu, Lizhong, Yulei Liu et Xiaorui Fu. « Effects of the van der Waals Force on the Dynamics Performance for a Micro Resonant Pressure Sensor ». Shock and Vibration 2016 (2016) : 1–11. http://dx.doi.org/10.1155/2016/3426196.

Texte intégral
Résumé :
The micro resonant pressure sensor outputs the frequency signals where the distortion does not take place in a long distance transmission. As the dimensions of the sensor decrease, the effects of the van der Waals forces should be considered. Here, a coupled dynamic model of the micro resonant pressure sensor is proposed and its coupled dynamic equation is given in which the van der Waals force is considered. By the equation, the effects of the van der Waals force on the natural frequencies and vibration amplitudes of the micro resonant pressure sensor are investigated. Results show that the natural frequency and the vibrating amplitudes of the micro resonant pressure sensor are affected significantly by van der Waals force for a small clearance between the film and the base plate, a small initial tension stress of the film, and some other conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Peimyoo, N., M. D. Barnes, J. D. Mehew, A. De Sanctis, I. Amit, J. Escolar, K. Anastasiou et al. « Laser-writable high-k dielectric for van der Waals nanoelectronics ». Science Advances 5, no 1 (janvier 2019) : eaau0906. http://dx.doi.org/10.1126/sciadv.aau0906.

Texte intégral
Résumé :
Similar to silicon-based semiconductor devices, van der Waals heterostructures require integration with high-koxides. Here, we demonstrate a method to embed and pattern a multifunctional few-nanometer-thick high-koxide within various van der Waals devices without degrading the properties of the neighboring two-dimensional materials. This transformation allows for the creation of several fundamental nanoelectronic and optoelectronic devices, including flexible Schottky barrier field-effect transistors, dual-gated graphene transistors, and vertical light-emitting/detecting tunneling transistors. Furthermore, upon dielectric breakdown, electrically conductive filaments are formed. This filamentation process can be used to electrically contact encapsulated conductive materials. Careful control of the filamentation process also allows for reversible switching memories. This nondestructive embedding of a high-koxide within complex van der Waals heterostructures could play an important role in future flexible multifunctional van der Waals devices.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Apostol, M. « On the Van der Waals equation ». Open Access Journal of Mathematical and Theoretical Physics 1, no 5 (15 octobre 2018) : 215–17. http://dx.doi.org/10.15406/oajmtp.2018.01.00037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Quevedo, Hernando, María N. Quevedo et Alberto Sánchez. « Geometrothermodynamics of van der Waals systems ». Journal of Geometry and Physics 176 (juin 2022) : 104495. http://dx.doi.org/10.1016/j.geomphys.2022.104495.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Housecroft, Catherine E. « Geckos, Ceilings and van der Waals ». CHIMIA International Journal for Chemistry 72, no 6 (27 juin 2018) : 428–29. http://dx.doi.org/10.2533/chimia.2018.428.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Tian, Shangjie, Jian-Feng Zhang, Chenghe Li, Tianping Ying, Shiyan Li, Xiao Zhang, Kai Liu et Hechang Lei. « Ferromagnetic van der Waals Crystal VI3 ». Journal of the American Chemical Society 141, no 13 (11 mars 2019) : 5326–33. http://dx.doi.org/10.1021/jacs.8b13584.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Xiang, Rong, Taiki Inoue, Yongjia Zheng, Akihito Kumamoto, Yang Qian, Yuta Sato, Ming Liu et al. « One-dimensional van der Waals heterostructures ». Science 367, no 6477 (30 janvier 2020) : 537–42. http://dx.doi.org/10.1126/science.aaz2570.

Texte intégral
Résumé :
We present the experimental synthesis of one-dimensional (1D) van der Waals heterostructures, a class of materials where different atomic layers are coaxially stacked. We demonstrate the growth of single-crystal layers of hexagonal boron nitride (BN) and molybdenum disulfide (MoS2) crystals on single-walled carbon nanotubes (SWCNTs). For the latter, larger-diameter nanotubes that overcome strain effect were more readily synthesized. We also report a 5-nanometer–diameter heterostructure consisting of an inner SWCNT, a middle three-layer BN nanotube, and an outer MoS2 nanotube. Electron diffraction verifies that all shells in the heterostructures are single crystals. This work suggests that all of the materials in the current 2D library could be rolled into their 1D counterparts and a plethora of function-designable 1D heterostructures could be realized.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Jariwala, Deep, Tobin J. Marks et Mark C. Hersam. « Mixed-dimensional van der Waals heterostructures ». Nature Materials 16, no 2 (1 août 2016) : 170–81. http://dx.doi.org/10.1038/nmat4703.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Wentzell, R. A. « Van der Waals stabilization of bubbles ». Physical Review Letters 56, no 7 (17 février 1986) : 732–33. http://dx.doi.org/10.1103/physrevlett.56.732.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie