Littérature scientifique sur le sujet « Materiali correlati »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Materiali correlati ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Materiali correlati"
Fusco, Francesca, et Maria Vittoria Dell'Anna. « La divulgazione linguistica in RAI : "Le parole per dirlo" ». Lingue e culture dei media 5, no 2 (29 janvier 2022) : 16–45. http://dx.doi.org/10.54103/2532-1803/17218.
Texte intégralTurkowski, Volodymyr, et Talat S. Rahman. « Nonadiabatic exchange-correlation kernel for strongly correlated materials ». Journal of Physics : Condensed Matter 29, no 45 (13 octobre 2017) : 455601. http://dx.doi.org/10.1088/1361-648x/aa8ac1.
Texte intégralSu, Yixi, Fengfeng Zhu et Xiao Wang. « Topology Meets Correlation : Neutron Scattering from Correlated Topological Materials ». Neutron News 32, no 4 (2 octobre 2021) : 23–25. http://dx.doi.org/10.1080/10448632.2021.1997310.
Texte intégralWalker, Trumann, Tara Nietzold, Niranjana Mohan Kumar, Barry Lai, Kevin Stone, Michael E. Stuckelberger et Mariana I. Bertoni. « Development of an operando characterization stage for multi-modal synchrotron x-ray experiments ». Review of Scientific Instruments 93, no 6 (1 juin 2022) : 065113. http://dx.doi.org/10.1063/5.0087050.
Texte intégralNishiwaki, Takeshi. « Material Testing of Plastic Materials Using Digital Image Correlation Method ». Seikei-Kakou 31, no 8 (20 juillet 2019) : 292–96. http://dx.doi.org/10.4325/seikeikakou.31.292.
Texte intégralLi, X. D. « Numerical correlation of material structure weaknesses in anisotropic polycrystalline materials ». Acta Mechanica 155, no 3-4 (septembre 2002) : 137–55. http://dx.doi.org/10.1007/bf01176239.
Texte intégralRadchevsky, P. P. « FEATURES OF CORRELATION DEPENDENCIES BETWEEN THE MATERIAL OF MATERIALS AND MATERIALS OF THEIR ROOTING ABILITY ». Russian vine 10 (2019) : 73–80. http://dx.doi.org/10.32904/2412-9836-2019-10-73-80.
Texte intégralK., Subbalakshmi N., Jeganathan P. S. et Sathyanarayana Rao K. N. « A CORRELATIVE STUDY ON DETERMINANTS OF TIME DOMAIN MEASURES OF CARDIAC VAGAL FUNCTION IN HEALTHY SUBJECTS ». Journal of Health and Allied Sciences NU 04, no 01 (mars 2014) : 004–8. http://dx.doi.org/10.1055/s-0040-1703722.
Texte intégralKumar, Sanjit. « Correlation between COVID-19 Disease Severity and its Outcome in Diabetes Mellitus Patients ». Journal of Advanced Research in Medicine 09, no 2 (30 juin 2022) : 1–8. http://dx.doi.org/10.24321/2349.7181.202206.
Texte intégralKim, D.-H., et S.-H. Park. « Evaluation of Resin Composite Translucency by Two Different Methods ». Operative Dentistry 38, no 3 (1 avril 2013) : E76—E90. http://dx.doi.org/10.2341/12-085-l.
Texte intégralThèses sur le sujet "Materiali correlati"
BOSCHI, Alex. « Studio dei meccanismi di trasporto di carica in film sottili a base di materiali correlati al grafene (GRM) ». Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2021. http://hdl.handle.net/11380/1244690.
Texte intégralThe development of cheap techniques to produce large sheets of monoatomic thick materials, such as graphene [1], opened new avenues to design nanostructured materials with pre-programmed chemical and physical properties. Most of the technologically relevant graphene-related materials (GRMs) systems are networks composed of randomly distributed and highly defective 2D microsheets [2]. While the charge transport has been extensively studied in single nanosheets [3], a comprehensive study that correlates the electrical properties of networks composed of purely 2D graphene-based materials with the complexity of the material structure and morphology is still missing. The aim of this work is to investigate charge transport (CT) in GRMs films, going towards structures with increasing disorder. In particular we investigated the CT mechanisms occurring at the sheet-to-sheet interface – typically the interfacial mechanisms are considered as bottlenecks – as well as the role of the geometrical complexity of the network in the overall electrical conductivity of the nanosheets assemblies. As prototypical 2D material we used single monolayer sheets of graphene oxide (GO), which consists of a conductive graphene lattice including oxygen functionalities/ defects both on the basal plane and at the edges of the sheet. Electrical insulating GO sheets are deposited on silicon oxide substrates and thermally reduced restoring partially the conductive properties of the 2D sheets. In addition to reduced GO, we employed a GRM made of multiple staked sheets of (partially oxidised) graphene bilayers: electrochemical exfoliated GO (eGO) [4].We exploited different deposition methods: i) spin-coating, ii) spray-coating and iii) vacuum-assisted filtration to fabricate macroscopic GRMs thin films with sheets partially stacked. Chemical and morphological properties of the films were characterized by X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and X-ray Diffraction (XRD) measurements. We investigated transport mechanisms measuring the temperature-dependence of the electrical resistivity (ρ) from room temperature down to 5 K. Possible ambiguities on the quantitative analysis of ρ(T) were solved by using a robust self-consistent method based on the reduced activation energy [5], i.e. the logarithmic derivative of resistivity versus temperature: W(T)=-(d lnρ)⁄(d lnT ). This mathematical transformation allowed to analyse ρ(T) dataset with linear functions. We correlated the transport characteristic parameters with the degree of order of our samples and elucidate the role of the sheets vertical stacking, that is of the π-π interaction between overlapped aromatic clusters, in the CT in the film. We also highlighted the differences in CT between reduced GO based films and eGO ones. The presented work could pave the way to develop new models and protocols to access the CT mechanisms in realistic GRMs, such as inks and polymer composites. [1] Ferrari, A. C. et al. Nanoscale 7, 4598-4810, (2015). [2] Palermo V., Chem. Comm. 49, 28, 2848-2857 (2013); Kelly A. et al, Science 356, 6333 (2017). [3] Eda G. et al, J. Physics. Chem.C 113, 15768 (2009); Kaiser a. et al, Nano Letters 9, 1787 (2009); Joung D. and Khondaker S., Phys. Rev. B 86, 235423 (2012). [4] Xia Z. et al, J. Physics. Chem.C 123, 15122 (2019). [5] Zabrodskii A. G., Philos. Mag. B 81, 1131 (2001).
FRANCESCHINI, PAOLO. « NOVEL SCHEMES FOR ULTRAFAST MANIPULATION OF QUANTUM MATERIALS ». Doctoral thesis, Università Cattolica del Sacro Cuore, 2022. http://hdl.handle.net/10280/111822.
Texte intégralThe possibility to control the electronic properties on-demand on an ultrafast time scale represents one of the most exciting challenges towards the realization of new generation photonic and electronic devices. Triggered by this, in the last decades the research activity focused its attention to different solid-state platforms. Among all, dielectric nanostructures (and metamaterials) and correlated materials represent the most promising candidate for the implementation of devices endowed by new functionalities. Apart from the specific features making dielectrics more suitable for photonic applications and correlated materials for electronic devices, both categories exhibit new functionalities if subjected to an external stimulus in the form of excitation light pulses shorter than the relaxation timescale of the internal degrees of freedom of the system. Indeed, the out-of-equilibrium state achieved upon photoexcitation exhibits electronic and optical properties highly different from those at equilibrium. Therefore, the aim of this thesis work consists in the development of new methods and experimental approaches capable to induce, measure, and control new functionalities in complex materials on an ultrafast time scale.
Cricchio, Francesco. « Multipoles in Correlated Electron Materials ». Doctoral thesis, Uppsala universitet, Materialteori, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-132068.
Texte intégralFelaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 705
Zhou, You. « Correlated Oxides : Material Physics and Devices ». Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17464472.
Texte intégralEngineering and Applied Sciences - Applied Physics
Falk, Marcus. « Cultural Materiality : The correlation between material and cultural capital in the late eighteenth century Stockholm elite burgher home ». Thesis, Uppsala universitet, Historiska institutionen, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-360585.
Texte intégralThompson, Stephen. « Complex energy landscapes in strongly correlated materials ». Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616204.
Texte intégralRösch, Oliver. « Electron phonon interaction in strongly correlated materials ». [S.l. : s.n.], 2005. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-24707.
Texte intégralRadmanesh, Seyed Mohammad Ali. « Ultra-low Temperature Properties of Correlated Materials ». ScholarWorks@UNO, 2018. https://scholarworks.uno.edu/td/2511.
Texte intégralMcConnell, Andrew W. « Reflectance study of two dimensional correlated electron materials ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0025/NQ51897.pdf.
Texte intégralTunnicliffe, Elizabeth Mary. « Experimental studies of superconductivity in correlated electron materials ». Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611729.
Texte intégralLivres sur le sujet "Materiali correlati"
Garland, Joyce, Debra White et Gail Yost, dir. Correlated Materials Packet. Greenville, SC : Bob Jones University Press, 1994.
Trouver le texte intégralUnited States. National Aeronautics and Space Administration., dir. Microstructure : Property correlation. [Washington, D.C : National Aeronautics and Space Administration, 1990.
Trouver le texte intégralAnisimov, Vladimir, et Yuri Izyumov. Electronic Structure of Strongly Correlated Materials. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04826-5.
Texte intégralScharnberg, Kurt, et Sergei Kruchinin, dir. Electron Correlation in New Materials and Nanosystems. Dordrecht : Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-5659-8.
Texte intégralTurkowski, Volodymyr. Dynamical Mean-Field Theory for Strongly Correlated Materials. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64904-3.
Texte intégralVan Dyke, John S. Electronic and Magnetic Excitations in Correlated and Topological Materials. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89938-1.
Texte intégralStuetzer, Otmar M. Correlation of electrical reactor cable failure with materials degradation. Washington, DC : Electrical Engineering Instrumentation and Control Branch, Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1986.
Trouver le texte intégralHe, Zhuoran. Computational Studies and Algorithmic Research of Strongly Correlated Materials. [New York, N.Y.?] : [publisher not identified], 2019.
Trouver le texte intégralStrongly Correlated Electronic Materials. (1993 Los Alamos). Strongly correlated electronic materials : The Los Alamos symposium, 1993. Sous la direction de Bedell K. S. Reading, Mass : Addison-Wesley, 1994.
Trouver le texte intégralStuetzer, Otmar M. Correlation of electrical reactor cable failure with materials degradation. Washington, DC : Electrical Engineering Instrumentation and Control Branch, Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1986.
Trouver le texte intégralChapitres de livres sur le sujet "Materiali correlati"
Basel, Bettina. « Materials and Methods ». Dans Dipolar Correlation Spectroscopy, 43–50. Wiesbaden : Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09191-0_4.
Texte intégralCavdan, Müge, Katja Doerschner et Knut Drewing. « Haptic Discrimination of Different Types of Soft Materials ». Dans Haptics : Science, Technology, Applications, 3–11. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06249-0_1.
Texte intégralYanagida, Takeshi. « Material Design of Metal Oxide Nanowires and Their Promises ». Dans Correlated Functional Oxides, 195–204. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43779-8_8.
Texte intégralToscani, Matteo, et Anna Metzger. « A Database of Vibratory Signals from Free Haptic Exploration of Natural Material Textures and Perceptual Judgments (ViPer) : Analysis of Spectral Statistics ». Dans Haptics : Science, Technology, Applications, 319–27. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06249-0_36.
Texte intégralSerrano-Munoz, Itziar, Vincent Magnier, Ruddy Mann et Philippe Dufrénoy. « Original Methodology Using DIC to Characterize Friction Materials Compression Behavior ». Dans International Digital Imaging Correlation Society, 55–58. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51439-0_13.
Texte intégralJavier, C., J. LeBlanc et A. Shukla. « Shock Response of Composite Materials Subjected to Aggressive Marine Environments ». Dans International Digital Imaging Correlation Society, 169–71. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51439-0_40.
Texte intégralMadani, T., Y. Monerie, S. Pagano, C. Pelissou et B. Wattrisse. « Identification of Heterogeneous Elastoplastic Materials by Constitutive Equation Gap Method ». Dans International Digital Imaging Correlation Society, 187–89. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51439-0_44.
Texte intégralPlets, C., A. L. Baert, G. L. Nijs et G. Wilms. « Materials, Technique and Methodology ». Dans Computer Tomographic Imaging and Anatomic Correlation of the Human Brain, 1–7. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4291-2_1.
Texte intégralWestphal, Torsten, et Thomas A. Bier. « 14. Correlating XRD data with technological properties ». Dans Cementitious Materials, sous la direction de Herbert Pöllmann, 423–44. Berlin, Boston : De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-015.
Texte intégralMin, Junying, Thomas B. Stoughton, John E. Carsley et Jianping Lin. « Comparison of DIC Methods of Determining Necking Limit of PLC Material ». Dans International Digital Imaging Correlation Society, 231–34. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51439-0_55.
Texte intégralActes de conférences sur le sujet "Materiali correlati"
Rogalski, A. « New material systems for third generation infrared detectors ». Dans Correlation Optics 2009. SPIE, 2009. http://dx.doi.org/10.1117/12.852524.
Texte intégralZenkova, C. Y., et I. V. Soltys. « The peculiarities of polarization bistability, realized in polarization-sensitive materials ». Dans Correlation Optics 2011, sous la direction de Oleg V. Angelsky. SPIE, 2011. http://dx.doi.org/10.1117/12.916253.
Texte intégralWU, Shudong, Sumati Rajan, Qiwang Song et Francis T. S. Yu. « Compact joint transform correlator with thick photorefractive crystal ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.mff2.
Texte intégralKikineshy, Alexander A., Alexander Mishak et Attila Sterr. « Selenium-based compositionally modulated recording materials for holography ». Dans Holography, Correlation Optics, and Recording Materials, sous la direction de Oleg V. Angelsky. SPIE, 1993. http://dx.doi.org/10.1117/12.165356.
Texte intégralLougnot, Daniel-Joseph. « Photopolymer recording materials for holography : some recent developments ». Dans Holography, Correlation Optics, and Recording Materials, sous la direction de Oleg V. Angelsky. SPIE, 1993. http://dx.doi.org/10.1117/12.165365.
Texte intégralMiler, Miroslav. « Photoresist as a recording material for holographic elements ». Dans Holography, Correlation Optics, and Recording Materials, sous la direction de Oleg V. Angelsky. SPIE, 1993. http://dx.doi.org/10.1117/12.165354.
Texte intégralSigrist, M. « Unconventional superconductivity in non-centrosymmetric materials ». Dans EFFECTIVE MODELS FOR LOW-DIMENSIONAL STRONGLY CORRELATED SYSTEMS. AIP, 2006. http://dx.doi.org/10.1063/1.2178038.
Texte intégralAnisimov, V. I., Adolfo Avella et Ferdinando Mancini. « Electronic structure of strongly correlated materials ». Dans LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XIV : Fourteenth Training Course in the Physics of Strongly Correlated Systems. AIP, 2010. http://dx.doi.org/10.1063/1.3518902.
Texte intégralChang, Chung-Chih, Ming-Seng Hsu, Shiang-Shi Cheng, Wei-Chia Su et Yueh Ouyang. « Optical implementation of edge-enhanced triple correlation via four-wave-mixing correlator ». Dans Practical Holography XXIII : Materials and Applications. SPIE, 2009. http://dx.doi.org/10.1117/12.809907.
Texte intégralYu, Jeffrey, John Hong et Demetri Psaltis. « Photorefractive Time Integrating Correlator and Adaptive Processor ». Dans Photorefractive Materials. Washington, D.C. : Optica Publishing Group, 1987. http://dx.doi.org/10.1364/prm.1987.fb3.
Texte intégralRapports d'organisations sur le sujet "Materiali correlati"
Corwin, W. R. Correlation monitor materials. Office of Scientific and Technical Information (OSTI), octobre 1995. http://dx.doi.org/10.2172/223661.
Texte intégralBedell, K., R. Albers, A. Balatsky, A. Bishop, J. Bonca, J. Gubernatis, M. Gulasci, R. Silver et S. Trugman. Strongly correlated electronic materials. Office of Scientific and Technical Information (OSTI), avril 1996. http://dx.doi.org/10.2172/212688.
Texte intégralPietrass, Tanja, David Fredrick Teter et Karen Elizabeth Kippen. Actinides and Correlated Electron Materials. Office of Scientific and Technical Information (OSTI), mars 2018. http://dx.doi.org/10.2172/1425775.
Texte intégralDattelbaum, Andrew. Actinides and Correlated Electron Materials. Office of Scientific and Technical Information (OSTI), juin 2022. http://dx.doi.org/10.2172/1871450.
Texte intégralShahriar, Selim, et SHaoul Ezekiel. Novel Materials for Optical Memory/Correlation Systems. Fort Belvoir, VA : Defense Technical Information Center, octobre 2000. http://dx.doi.org/10.21236/ada404054.
Texte intégralMillis, Andrew. Surface and Interface Physics of Correlated Electron Materials. Office of Scientific and Technical Information (OSTI), septembre 2004. http://dx.doi.org/10.2172/1399869.
Texte intégralWang, Ziqiang. Focused Research Group in Correlated Electron and Complex Materials. Office of Scientific and Technical Information (OSTI), février 2016. http://dx.doi.org/10.2172/1238147.
Texte intégralStuetzer, O. M. Correlation of electrical reactor cable failure with materials degradation. Office of Scientific and Technical Information (OSTI), mars 1986. http://dx.doi.org/10.2172/5612320.
Texte intégralGoldhaber-Gordon, David. STIR : Novel Electronic States by Gating Strongly Correlated Materials. Fort Belvoir, VA : Defense Technical Information Center, février 2016. http://dx.doi.org/10.21236/ad1010367.
Texte intégralLeib, Jeffrey Scott. Correlation Between Domain Behavior and Magnetic Properties of Materials. Office of Scientific and Technical Information (OSTI), janvier 2003. http://dx.doi.org/10.2172/815759.
Texte intégral