Littérature scientifique sur le sujet « Marine Biomass (Seaweed) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Marine Biomass (Seaweed) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Marine Biomass (Seaweed)"
Johnston, Katherine G., Abdelfatah Abomohra, Christopher E. French et Abdelrahman S. Zaky. « Recent Advances in Seaweed Biorefineries and Assessment of Their Potential for Carbon Capture and Storage ». Sustainability 15, no 17 (1 septembre 2023) : 13193. http://dx.doi.org/10.3390/su151713193.
Texte intégralMulders, Y., L. Mattio, JC Phillips, PS Lavery, GA Kendrick et T. Wernberg. « Patch dynamics driven by wave exposure in subtidal temperate seaweeds are exacerbated by warming oceans ». Marine Ecology Progress Series 685 (10 mars 2022) : 85–95. http://dx.doi.org/10.3354/meps13989.
Texte intégralFaisal, Shah, Abdelrahman Zaky, Qingyuan Wang, Jin Huang et Abdelfatah Abomohra. « Integrated Marine Biogas : A Promising Approach towards Sustainability ». Fermentation 8, no 10 (7 octobre 2022) : 520. http://dx.doi.org/10.3390/fermentation8100520.
Texte intégralGinocchio, Rosanna, Matías Araya, Jéssica Machado, Luz María de la Fuente, Fabiola Orrego, Eduardo C. Arellano et Loretto Contreras-Porcia. « Seaweed biochar (sourced from marine water remediation farms) for soil remediation : Towards an integrated approach of terrestrial-coastal marine water remediation ». BioResources 18, no 3 (17 mai 2023) : 4637–56. http://dx.doi.org/10.15376/biores.18.3.4637-4656.
Texte intégralKhan, Nida, K. Sudhakar et R. Mamat. « Thermogravimetric Analysis of Marine Macroalgae Waste Biomass as Bio-Renewable Fuel ». Journal of Chemistry 2022 (29 septembre 2022) : 1–9. http://dx.doi.org/10.1155/2022/6417326.
Texte intégralKorzen, Leor, Yoav Peled, Shiri Zemah Shamir, Mordechai Shechter, Aharon Gedanken, Avigdor Abelson et Alvaro Israel. « An economic analysis of bioethanol production from the marine macroalga Ulva (Chlorophyta) ». TECHNOLOGY 03, no 02n03 (juin 2015) : 114–18. http://dx.doi.org/10.1142/s2339547815400105.
Texte intégralSarkar, Md Shirajul Islam, Md Kamal, Muhammad Mehedi Hasan et Md Ismail Hossain. « Present status of naturally occurring seaweed flora and their utilization in Bangladesh ». Research in Agriculture Livestock and Fisheries 3, no 1 (26 mai 2016) : 203–16. http://dx.doi.org/10.3329/ralf.v3i1.27879.
Texte intégralIngle, Kapilkumar Nivrutti, Hadar Traugott et Alexander Golberg. « Challenges for marine macroalgal biomass production in Indian coastal waters ». Botanica Marina 63, no 4 (27 août 2020) : 327–40. http://dx.doi.org/10.1515/bot-2018-0099.
Texte intégralSong, Yun-Mi, Hui Gyeong Park et Jung-Soo Lee. « Hierarchically Graphitic Carbon Structure Derived from Metal Ions Impregnated Harmful Inedible Seaweed as Energy-Related Material ». Materials 17, no 18 (21 septembre 2024) : 4643. http://dx.doi.org/10.3390/ma17184643.
Texte intégralPhang, Siew-Moi, Hui-Yin Yeong et Phaik-Eem Lim. « The seaweed resources of Malaysia ». Botanica Marina 62, no 3 (26 juin 2019) : 265–73. http://dx.doi.org/10.1515/bot-2018-0067.
Texte intégralThèses sur le sujet "Marine Biomass (Seaweed)"
Malik, Danish J. « Algal biomass as adsorbents for heavy metal sorption from aqueous solutions ». Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/7196.
Texte intégral« Development of seaweed biomass as a biosorbent for metal ions removal and recovery from industrial effluent ». 2000. http://library.cuhk.edu.hk/record=b5890420.
Texte intégralThesis (M.Phil.)--Chinese University of Hong Kong, 2000.
Includes bibliographical references (leaves 134-143).
Abstracts in English and Chinese.
Acknowledgements --- p.i
Abstract --- p.ii
Contents --- p.vi
List of Figures --- p.xi
List of Tables --- p.xv
Chapter 1. --- Introduction --- p.1
Chapter 1.1 --- Reviews --- p.1
Chapter 1.1.1 --- Heavy metals in the environment --- p.1
Chapter 1.1.2 --- Heavy metal pollution in Hong Kong --- p.3
Chapter 1.1.3 --- Electroplating industries in Hong Kong --- p.7
Chapter 1.1.4 --- "Chemistry, biochemistry and toxicity of selected metal ions: copper, nickel and zinc" --- p.8
Chapter a. --- Copper --- p.10
Chapter b. --- Nickel --- p.11
Chapter c. --- Zinc --- p.12
Chapter 1.1.5 --- Conventional physico-chemical methods of metal ions removal from industrial effluent --- p.13
Chapter a. --- Ion exchange --- p.14
Chapter b. --- Precipitation --- p.14
Chapter 1.1.6 --- Alternative for metal ions removal from industrial effluent: biosorption --- p.15
Chapter a. --- Definition of biosorption --- p.15
Chapter b. --- Mechanisms involved in biosorption of metal ions --- p.17
Chapter c. --- Criteria for a good metal sorption process and advantages of biosorption for removal of heavy metal ions --- p.19
Chapter d. --- Selection of potential biosorbent for metal ions removal --- p.20
Chapter 1.1.7 --- Procedures of biosorption --- p.23
Chapter a. --- Basic study --- p.23
Chapter b. --- Pilot-scale study --- p.25
Chapter c. --- Examples of commercial biosorbent --- p.27
Chapter 1.1.8 --- Seaweed as a potential biosorbent for heavy metal ions --- p.27
Chapter 1.2 --- Objectives of study --- p.30
Chapter 2. --- Materials and Methods --- p.33
Chapter 2.1 --- Collection of seaweed samples --- p.33
Chapter 2.2 --- Processing of seaweed biomass --- p.33
Chapter 2.3 --- Chemicals --- p.33
Chapter 2.4 --- Characterization of seaweed biomass --- p.39
Chapter 2.4.1 --- Moisture content of seaweed biomass --- p.39
Chapter 2.4.2 --- Metal ions content of seaweed biomass --- p.39
Chapter 2.5 --- Characterization of metal ions biosorption by seaweed --- p.39
Chapter 2.5.1 --- Effect of biomass weight and selection of biomass --- p.39
Chapter 2.5.2 --- Effect of pH --- p.40
Chapter 2.5.3 --- Effect of retention time --- p.41
Chapter 2.5.4 --- Effect of metal ions concentration --- p.41
Chapter 2.5.5 --- Effect of mix-cations and mix-anions on the removal capacity of selected metal ions by Ulva lactuca --- p.43
Chapter 2.5.6 --- Recovery of adsorbed metal ions from Ulva lactuca (I): screening for suitable desorbing agents --- p.44
Chapter 2.5.7 --- Recovery of adsorbed metal ions from Ulva lactuca (II): multiple adsorption-desorption cycles of selected metal ions --- p.45
Chapter 2.5.8 --- Removal and recovery of selected metal ions from electroplating effluent by Ulva lactuca --- p.45
Chapter 2.6 --- Statistical analysis of data --- p.46
Chapter 3. --- Results --- p.47
Chapter 3.1 --- Effect of biomass weight and selection of biomass --- p.47
Chapter 3.1.1 --- Effect of biomass weight --- p.47
Chapter 3.1.2 --- Selection of biomass --- p.58
Chapter 3.2 --- Effect of pH --- p.58
Chapter 3.2.1 --- Cu2+ --- p.58
Chapter 3.2.2 --- Ni2+ --- p.61
Chapter 3.2.3 --- Zn2+ --- p.61
Chapter 3.2.4 --- Determination of optimal condition for biosorption of Cu2+ ,Ni2+ and Zn2+ by Ulva lactuca --- p.67
Chapter 3.3 --- Effect of retention time --- p.67
Chapter 3.4 --- Effect of metal ions concentration --- p.73
Chapter 3.4.1 --- Relationship of removal capacity with initial concentration of metal ions --- p.73
Chapter 3.4.2 --- Langmuir adsorption isotherm --- p.73
Chapter 3.4.3 --- Freundlich adsorption isotherm --- p.77
Chapter 3.5 --- Effect of mix-cations and mix-anions on the removal capacity of selected metal ions by Ulva lactuca --- p.81
Chapter 3.5.1 --- Effect of mix-cations --- p.81
Chapter 3.5.2 --- Effect of mix-anions --- p.85
Chapter 3.6 --- Recovery of adsorbed metal ions from Ulva lactuca (I): screening of suitable desorbing agents --- p.91
Chapter 3.6.1 --- Cu2+ --- p.91
Chapter 3.6.2 --- Ni2+ --- p.91
Chapter 3.6.3 --- Zn2+ --- p.91
Chapter 3.7 --- Recovery of adsorbed metal ions from Ulva lactuca (II): multiple adsorption-desorption cycles of selected metal ions --- p.94
Chapter 3.8 --- Removal and recovery of selected metal ions from electroplating effluent by Ulva lactuca --- p.97
Chapter 4. --- Discussion --- p.106
Chapter 4.1 --- Effect of biomass weight and selection of biomass --- p.106
Chapter 4.1.1 --- Effect of biomass weight --- p.106
Chapter 4.1.2 --- Selection of biomass --- p.107
Chapter 4.2 --- Effect of pH --- p.109
Chapter 4.3 --- Effect of retention time --- p.112
Chapter 4.4 --- Effect of metal ions concentration --- p.114
Chapter 4.4.1 --- Relationship of removal capacity with initial concentration of metal ions --- p.114
Chapter 4.4.2 --- Langmuir adsorption isotherm --- p.114
Chapter 4.4.3 --- Freundlich adsorption isotherm --- p.115
Chapter 4.4.4 --- Insights from isotherm study --- p.117
Chapter 4.5 --- Effect of mix-cations and mix-anions on the removal capacity of selected metal ions by Ulva lactuca --- p.118
Chapter 4.5.1 --- Effect of mix-cations --- p.118
Chapter 4.5.2 --- Effect of mix-anions --- p.120
Chapter 4.6 --- Recovery of adsorbed metal ions from Ulva lactuca (I): screening of suitable desorbing agents --- p.122
Chapter 4.7 --- Recovery of adsorbed metal ions from Ulva lactuca (II): multiple adsorption-desorption cycles of selected metal ions --- p.124
Chapter 4.8 --- Removal and recovery of selected metal ions from electroplating effluent by Ulva lactuca --- p.126
Chapter 5. --- Conclusion --- p.131
Chapter 6. --- Summary --- p.134
Chapter 7. --- References --- p.134
Chapter 8. --- Appendixes --- p.144
Holden, Jessica. « Beach-cast deposition, food provision, and commercial harvesting of a non-indigenous seaweed, Mazzaella japonica, in Baynes Sound, British Columbia ». Thesis, 2016. http://hdl.handle.net/1828/7544.
Texte intégralGraduate
2017-08-19
jjulin.holden@gmail.com
Chapitres de livres sur le sujet "Marine Biomass (Seaweed)"
Chojnacka, Katarzyna. « Using the Biomass of Seaweeds in the Production of Components of Feed and Fertilizers ». Dans Handbook of Marine Macroalgae, 478–90. Chichester, UK : John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119977087.ch31.
Texte intégralSalleh, Kushairi Mohd, et Najah Fareeha Abd Rashid. « Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications ». Dans Marine Biomass, 297–318. De Gruyter, 2024. http://dx.doi.org/10.1515/9783111353951-013.
Texte intégralKhairul Alam Sobuj, Mohammad, Md Mohidul Islam, Shafiqur Rahman et Yahia Mahmud. « Cultivation and Product Development Study of Commercially Important Seaweeds in South-Eastern Coast of Bangladesh ». Dans Food Safety - New Insights [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.111937.
Texte intégralThomas, Jean-Baptiste, José Potting et Fredrik Gröndahl. « Environmental impacts of seaweed cultivation : kelp farming and preservation ». Dans Seaweed and microalgae as alternative sources of protein, 165–92. Burleigh Dodds Science Publishing, 2021. http://dx.doi.org/10.19103/as.2021.0091.11.
Texte intégralSingh, Yadvinder, Komal, Rahul Badru, Rupinder Pal Singh, D. P. Singh et J. I. S. Khattar. « Potential of Biomaterials Derived from Marine Algae as Anticancer Agent ». Dans Functional Foods for Health Maintenance : Understanding their Role in Cancer Prevention, 241–90. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815179217123010014.
Texte intégralSamanta, Brajogopal, et Pattigundla Swathi. « Macroalgal Epiphytic Microbiome : A Potential Source of Novel Drugs ». Dans Marine Ecology : Current and Future Developments, 184–205. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815051995123030008.
Texte intégralActes de conférences sur le sujet "Marine Biomass (Seaweed)"
Goudey, Clifford A. « Wave Basin Tests of a Novel Offshore Macroalgae Farming System ». Dans SNAME 30th American Towing Tank Conference. SNAME, 2017. http://dx.doi.org/10.5957/attc-2017-0006.
Texte intégralRapports d'organisations sur le sujet "Marine Biomass (Seaweed)"
Mitchell, Brian G., Amir Neori, Charles Yarish, D. Allen Davis, Tzachi Samocha et Lior Guttman. The use of aquaculture effluents in spray culture for the production of high protein macroalgae for shrimp aqua-feeds. United States Department of Agriculture, janvier 2013. http://dx.doi.org/10.32747/2013.7597934.bard.
Texte intégralO'Connell, Kelly, David Burdick, Melissa Vaccarino, Colin Lock, Greg Zimmerman et Yakuta Bhagat. Coral species inventory at War in the Pacific National Historical Park : Final report. National Park Service, 2024. http://dx.doi.org/10.36967/2302040.
Texte intégral