Littérature scientifique sur le sujet « Mantle fluids »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Mantle fluids ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Mantle fluids"
Rosenbaum, Jeffrey M., Alan Zindler et James L. Rubenstone. « Mantle fluids : Evidence from fluid inclusions ». Geochimica et Cosmochimica Acta 60, no 17 (septembre 1996) : 3229–52. http://dx.doi.org/10.1016/0016-7037(96)00167-6.
Texte intégralBureau, Hélène, Daniel J. Frost, Nathalie Bolfan-Casanova, Clémence Leroy, Imène Esteve et Patrick Cordier. « Diamond growth in mantle fluids ». Lithos 265 (novembre 2016) : 4–15. http://dx.doi.org/10.1016/j.lithos.2016.10.004.
Texte intégralHu, Wenxuan, Xiaolin Wang, Dongya Zhu, Donghua You et Haiguang Wu. « An overview of types and characterization of hot fluids associated with reservoir formation in petroliferous basins ». Energy Exploration & ; Exploitation 36, no 6 (15 mars 2018) : 1359–75. http://dx.doi.org/10.1177/0144598718763895.
Texte intégralTiraboschi, Carla, Francesca Miozzi et Simone Tumiati. « Carbon-saturated COH fluids in the upper mantle : a review of high-pressure and high-temperature ex situ experiments ». European Journal of Mineralogy 34, no 1 (26 janvier 2022) : 59–75. http://dx.doi.org/10.5194/ejm-34-59-2022.
Texte intégralHalpaap, Felix, Stéphane Rondenay, Alexander Perrin, Saskia Goes, Lars Ottemöller, Håkon Austrheim, Robert Shaw et Thomas Eeken. « Earthquakes track subduction fluids from slab source to mantle wedge sink ». Science Advances 5, no 4 (avril 2019) : eaav7369. http://dx.doi.org/10.1126/sciadv.aav7369.
Texte intégralPal'yanov, Yu N., A. G. Sokol, Yu M. Borzdov, A. F. Khokhryakov et N. V. Sobolev. « Diamond formation from mantle carbonate fluids ». Nature 400, no 6743 (juillet 1999) : 417–18. http://dx.doi.org/10.1038/22678.
Texte intégralKAWAMOTO, Tatsuhiko. « Chemical Composition of Mantle Wedge Fluids ». Journal of Geography (Chigaku Zasshi) 124, no 3 (2015) : 473–501. http://dx.doi.org/10.5026/jgeography.124.473.
Texte intégralFrezzotti, Maria-Luce, Jacques L. R. Touret, Wim J. Lustenhouwer et Else-Ragnild Neumann. « Melt and fluid inclusions in dunite xenoliths from La Gomera, Canary Islands : tracking the mantle metasomatic fluids ». European Journal of Mineralogy 6, no 6 (30 novembre 1994) : 805–18. http://dx.doi.org/10.1127/ejm/6/6/0805.
Texte intégralFrezzotti, Maria Luce, Ernst A. J. Burke, Benedetto De Vivo, Barbara Stefanini et Igor M. Villa. « Mantle fluids in pyroxenite nodules from Salt Lake Crater (Oahu, Hawaii) ». European Journal of Mineralogy 4, no 5 (14 octobre 1992) : 1137–54. http://dx.doi.org/10.1127/ejm/4/5/1137.
Texte intégralGao, Yun, Bailin Chen, Liyan Wu, Jianfeng Gao, Guangqian Zeng et Jinghui Shen. « Mantle-Derived Noble Gas Isotopes in the Ore-Forming Fluid of Xingluokeng W-Mo Deposit, Fujian Province ». Minerals 12, no 5 (7 mai 2022) : 595. http://dx.doi.org/10.3390/min12050595.
Texte intégralThèses sur le sujet "Mantle fluids"
Frost, Daniel James. « The properties of C-O-H fluids under upper mantle conditions ». Thesis, University of Bristol, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295063.
Texte intégralREMIGI, SAMANTHA. « On the application of Raman micro-spectroscopy to the characterization of Earth's CO2 fluids ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/325898.
Texte intégralThis thesis investigates the applicability of Raman micro-spectroscopy for CO2 density (d) and δ13CCO2 values calculations to improve characterisation of CO2 Earth’s fluid trapped as fluid inclusions (FI) in peridotites. Based on the properties of CO2 Raman spectrum, where the distance of two main vibrations is d-dependent and 13CO2 and 12CO2 vibrations are present, Raman micro-spectroscopy has the potential to become a complementary technique for in situ characterisation of CO2 FI, allowing to better understand the C transport mechanisms within Earth. The calculation of CCO2 isotopic composition by mean of Raman micro-spectroscopy is possible due to the proportionality between 13CO2 and 12CO2 areas with their molar concentration. Calculation of area ratios requires precision at 4th decimal place to obtain δ13CCO2 values representative of Earth’s natural reservoirs. Raman spectra are affected by unavoidable random effects that reduce area measurements’ precision. 42 high-d CO2-pure FI from Lake Tana region and El Hierro have been analysed. For each inclusion, two sets of spectra have been acquired by mean of different acquisition times. Among the 84 set of measurements, 23 were characterised by 13CO2/12CO2 area ratios differing more than one order of magnitude one another. These have been removed from dataset. 95% of remaining 61 sets were characterised by area ratios reproducibility <≈4‰, allowing to calculate FI δ13CCO2 values with precision <±≈2‰. Only few analyses were characterised by lower precision. Calculated δ13CCO2 values for FI trapped in peridotites from Lake Tana region showed CO2 mantle origin, while for those in peridotites from El Hierro differed from mantle isotopic signature. Accuracy of measurement has been checked by bulk measurements, proving that calculated δ13CCO2 values were accurate, and allowing to model δ13CCO2 variations at single mineral scale. The adoption of Raman micro-spectroscopy for calculating CO2 fluid d has been previously investigated. Many densimeter equations calculate different d for the same Δ values, with a bimodal graphic distribution, whose origin was not well understood. The origin of this distribution has been investigated in present work by calculating the d of 40 CO2-pure FI trapped in mantle xenoliths from El Hierro by mean of microthermometry. CO2 FI Δ values have been measured by acquiring Raman spectra applying analytical parameters common to those adopted for other densimeter equations, with spectral per px resolution ≈1.50 cm-1/px. A 3rd order polynomial equation best fitted obtained Δ-d data distribution. Equation calculates CO2 d with an error of ±0.015 g/cm3, and plots with those obtained by mean of a similar spectral per px resolution. The 95% confidence interval (CI) of Δ-d distribution for all the equations has been calculated by a bootstrapping statistical algorithm. CIs allowed to assess the accuracy of measured Δ-d values and define a cut-off point below which the CO2 d estimation power is low. For all the densimeters, cut-off point has been set where the relative distances of computed CIs were <7.5%, which corresponded for all the equations to gas-like CO2 at ambient conditions. The comparison of 95% CIs calculated for high and low spectral resolution per px equations showed that densimeters with similar spectral per px resolution calculate statistically equivalent CO2 d at 95% confidence. In contrast, densimeters with different resolution calculate incomparable CO2 d.Obtained results allowed to preliminarily propose an analytical procedure to calculate in situ δ13CCO2 with a precision of ≈±2% for 95% of the analyses. Moreover, these improved the knowledge about Δ-d distribution of Raman densimeters, indicating that CO2 d calculated by mean of equations having similar spectral resolution are statistically equivalent at 95% confidence for CO2 FI having d values near and above the CO2 critical point.
Tiraboschi, C. « COH FLUIDS AT UPPER-MANTLE CONDITIONS : AN EXPERIMENTAL STUDY ON VOLATILE SPECIATION AND MINERAL SOLUBILITY IN THE MS+COH SYSTEM ». Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/260613.
Texte intégralAmann, Méderic. « Evolution du magmatisme et du métasomatisme dans une marge passive pauvre en magma durant l'initiation de l'accrétion océanique : exemple de la marge fossile de la Platta (Alpes suisses) et comparaison avec le système actuel Ibérie-Terre Neuve ». Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAH014/document.
Texte intégralDistal parts of magma-poor rifted margins represent a complex transition between continental and oceanic domains. These areas remain poorly understood while being a key-place to unravel magmatic and metasomatic processes involved during the first stages of oceanization. At this time, these processes are enhanced by mantle exhumation, and the interaction between melts, mantle rocks and fluids affect the thermal regime of the margin. So far, only two Ocean-Continent Transitions (OCT) have been particularly investigated, namely the present-day Iberia Newfoundland conjugate margins and the fossil analog Platta-Tasna nappes, remnants of the Jurassic Alpine-Tethys OCTs. Studies presented in this Ph.D. thesis have been focused on these two margins. Here, by combining field-works, petrological, mineralogical and geochemical investigations, we have unraveled in OCTs three key-points: (i) The deep porous-flow melt percolation impregnating the long-lived inherited subcontinental mantle in Iberia-Newfoundland margins allow the refertilization of these distal domains; (ii) The geochemical transition depicted from OCT-basalts towards MOR-basalts can be explained by the partial melting of the refertilized subcontinental mantle; (iii) The role of active hydrothermal fluids, on both the exhumed mantle and basalt dikes, lead to the serpentinisation and the rodingitization respectively, at temperature ranging between 60°C and 190°C. These temperatures being consistent with the ongoing mantle exhumation towards near-seafloor conditions
Davies, Nigel Howard. « Numerical representations of fluid mixing ». Thesis, University of South Wales, 1993. https://pure.southwales.ac.uk/en/studentthesis/numerical-representations-of-fluid-mixing(3bf1cb31-ec80-49f2-95ae-a2f56eeeeec2).html.
Texte intégralFreeman, Jonathan. « Mantle-melt and mantle-fluid interactions in suprasubduction zones : evidence from the Troodos Massif, Cyprus ». Thesis, Durham University, 1996. http://etheses.dur.ac.uk/1220/.
Texte intégralWiersberg, Thomas. « Edelgase als Tracer für Wechselwirkungen von Krusten- und Mantelfluiden mit diamantführenden Gesteinen des östlichen Baltischen Schildes ». Phd thesis, Universität Potsdam, 2001. http://opus.kobv.de/ubp/volltexte/2005/27/.
Texte intégralDie Gasextraktion aus Mineralseparaten erfolgte thermisch, wodurch eine Freisetzung der Gase ausschließlich aus Fluideinschlüssen nicht möglich ist. Hierbei zeigen Amphibol und Klinopyroxen, separiert aus Kostamuksha-Lamproiten, in ihrer Neon-Isotopenzusammensetzung im Vergleich zur krustalen Zusammensetzung (Kennedy et al., 1990) ein leicht erhöhtes Verhältnis von 20Ne/22Ne, was ein Hinweis auf Mantel-Neon sein könnte. Kalifeldspäte, Quarz und Karbonate enthalten dagegen nur Neon krustaler Zusammensetzung. Phlogopite haben sehr kleine Verhältnisse von 20Ne/22Ne und 21Ne/22Ne, zurückzuführen auf in-situ-Produktion von 22Ne in Folge von U- und Th-Zerfallsprozessen.
Wie unterschiedliche thermische Entgasungsmuster für 40Ar und 36Ar zeigen, ist 36Ar in Fluideinschlüssen konzentriert. Das 40Ar/36Ar-Isotopenverhältnis der Fluideinschlüsse von Lamproiten aus Kostamuksha ist antikorreliert mit der durch thermische Extraktion bestimmten Gesamtmenge an 36Ar. Argon aus Fluideinschlüssen setzt sich daher aus zwei Komponenten zusammen: Einer Komponente mit atmosphärischer Argon-Isotopenzusammensetzung und einer krustalen Komponente mit einem Isotopenverhältnis 40Ar/36Ar > 6000. Diffusion von radiogenem 40Ar aus der Kristallmatrix in die Fluideinschlüsse spielt keine wesentliche Rolle.
Kimberlite aus Poria Guba und Kandalaksha zeigen anhand der Helium- und z. T. auch der Neon-Isotopenzusammensetzung eine Mantelkomponente in den Fluideinschlüssen an. Bei einem angenommenen 20Ne/22Ne-Isotopenverhältnis von 12,5 in der Mantelquelle ergibt sich ein 21Ne/22Ne-Isotopenverhältnis von 0,073 ± 0,011 sowie ein 3He/4He-Isotopenverhältnis, welches im Vergleich zum subkontinentalem Mantel (Dunai und Baur, 1995) stärker radiogen geprägt ist. Solche Isotopensignaturen sind mit höheren Konzentrationen an Uran und Thorium in der Mantelquelle der Kimberlite zu erklären.
Rb-Sr- und Sm-Nd-Altersbestimmungen erfolgten von russischer Seite (Belyatskii et al., 1997; Nikitina et al., 1999) und ergeben ein Alter von 1,23 Ga für den Lamproitvulkanismus in Kostamuksha. Eigene K-Ar-Datierungen an Phlogopiten und Kalifeldspäten stimmen mit einem Alter von 1193 ± 20 Ma fast mit den Rb-Sr- und Sm-Nd-Altern überein. Die K-Ar-Datierung an einem Phlogopit aus Poria Guba, separiert aus dem Kimberlit PGK 12a, ergibt ein Alter von 396 Ma, ebenfalls in guter Übereinstimmung mit Rb-Sr-und Sm-Nd-Altern (ca. 400 Ma, Lokhov, pers. Mitteilung). K-Ar-Altersbestimmungen an Gesamtgestein aus Poria Guba erbrachten kein schlüssiges Alter. Die Rb-Sr- und Sm-Nd-Alter des Lamproitmagmatismus in Poria Guba betragen 1,72 Ga (Nikitina et al., 1999).
Vergleiche von gemessenen mit berechneten Edelgaskonzentrationen aus in-situ-Produktion zeigen weiterhin, dass in Abhängigkeit vom Alter der Probe Diffusionsprozesse stattgefunden haben, die zu unterschiedlichen und z. T. erheblichen Verlusten an Helium und Neon führten. Diffusionsverluste an Argon sind dagegen kaum signifikant. Unterschiedliche Diffusionsverluste in Abhängigkeit von Alter und betrachtetem Edelgas zeigen auch die primordialen Edelgase.
In the present thesis, interactions of kimberlites and lamproites as well as their constituent minerals with fluids are discussed based on noble gas compositions. The samples originate from the eastern Baltic Shield, more specifically from the Kola craton (Poria Guba and Kandalaksha) and the Karelia craton (Kostamuksha). Gas was extracted by stepwise heating and crushing from 23 whole rock samples and 15 mineral separates. These two techniques allow differential extraction of gas from fluid inclusions (crushing technique) and from the bulk sample (stepwise heating). The noble gas analyses provide the following information:
Helium and neon isotopic compositions of fluid inclusions in lamproites reveal the presence of a crustal fluid phase. Fluid interaction probably ocurred already during the process of magma ascent. Interaction after lamproite emplacement seems unlikely. The lamproites and their host rock differ in the degree of fluid-rock interaction, as demonstrated by the C/36Ar composition. In addition, various dating methods (Rb-Sr, Sm-Nd, K-Ar) yield almost the same age within analytical error. Thus, a metamorphic overprint can be excluded. The distribution of primordial noble gases between fluid inclusions and crystal lattice suggests a relatively slow magma ascent, making an interaction of the lamproitic magma with crustal fluids even more likely. Since noble gases from mineral separates were extracted only by the stepwise heating method, gases stored in fluid inclusions could not be released separately.
Amphibole and clinopyroxene separates yielded a higher 20Ne/22Ne ratio in comparison to crustal composition (Kennedy et al., 1990). This presumably is an indication of a mantle derived fluid phase. On the other hand, neon isotopic composition of K-feldspar, quartz and carbonate separates are indistinguishable from the crustal composition. In comparison to other mineral separates, phlogopite yields very low ratios of 20Ne/22Ne and 21Ne/22Ne due to in situ production of 22Ne, which is a result of nuclear reactions.
The distinct thermal gas release patterns of 40Ar and 36Ar indicates that 36Ar is concentrated in fluid inclusions. The 40Ar/36Ar isotopic ratio in fluid inclusions shows a negative correlation with the total amount of 36Ar released by thermal extraction. Therefore, argon from fluid inclusions is a simple 2-component mixture of air and a crustal component with an 40Ar/36Ar ratio > 6000. It can be shown that diffusion of 40Ar from the matrix into fluid inclusions is negligible.
In contrast to lamproites, whole rock kimberlite samples from Poria Guba and Kandalaksha show clear evidence in helium and, to a certain extentalso in neon isotope ratios, of interaction with a mantle derived fluid phase. Assuming a 20Ne/22Ne ratio of 12.5 for the mantle endmember, a 21Ne/22 Ne ratio of 0.073 ± 0.011 can be calculated. Likewise, the resulting 3He/4He ratio is more strongly influenced by radiogenic helium in comparison to the mean subcontinental mantle (Dunai und Baur, 1995). Such behaviour reflects higher concentrations of uranium and thorium in the magma source of kimberlites than the subcontinental mantle.
Rb-Sr and Sm-Nd age determinations (Belyatskii et al., 1997; Nikitina et al., 1999) yield 1.23 Ga for the lamproite magmatism in Kostamuksha. K-Ar dating of phlogopite and K-feldspar provides similar ages (1.19 Ga). K-Ar dating of a single phlogopite separate from the Kimberlite sample PGK12a from Poria Guba, yields an age of 396 Ma which corresponds well with Rb-Sr and Sm-Nd ages.
Depending on sample age, distinct and partly extensive diffusive loss of helium and neon has occurred, as shown by comparison of measured and calculated concentrations of in situ produced isotopes. Diffusion loss is negligible for argon. This is also strongly supported by primordial noble gas composition.
Pinto, Victor Hugo. « Linking tectonic evolution with fluid history in hyperextended rifted margins : examples from the fossil Alpine and Pyrenean rift systems, and the present-day Iberia rifted margin ». Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAH018/document.
Texte intégralThis thesis focus in the identification of geochemical tracers and effects of fluid that interact with basement and sedimentary rocks in hyperextended systems. The investigation of such fluids is based on geological observation, geochemical analyses and geophysical data from fossil hyperextended rift systems exposed in the Alps and in the West Pyrenees, and the present-day distal margins of Iberia and Newfoundland. Two types of fluids were identified during this study. The first type, referred to as continental crust-related fluids, has a signature of Si and Ca. The second type, referred to as mantle-related fluids, has a signature of Si, Mg, Fe, Mn, Ca, Ni, Cr and V. The fluid percolation is strongly related to the formation of extensional detachment faults and the evolution of hyperextended systems. Fluid flow in these systems has major implications for the nature of sediments, rheological changes and chemical modifications of the Earth’s reservoirs throughout its evolution
Kumagai, Yoshitaka. « Carbon dioxide bearing saline fluid inclusions in mantle xenoliths from the Ichinomegata volcano, the Northeast Japan arc and their evolution in the mantle wedge ». 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199111.
Texte intégralPears, M. I. B. « Stall and collapse in mantle plumes : an experimental and numerical fluid dynamics perspective ». Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1465981/.
Texte intégralLivres sur le sujet "Mantle fluids"
Axel, Liebscher, et Heinrich Christoph A. 1953-, dir. Fluid-fluid interactions. Chantilly, Va : Mineralogical Society of America, Geochemical Society, 2007.
Trouver le texte intégralPlates vs plumes : A geological controversy. Hoboken, N.J : Wiley-Blackwell, 2011.
Trouver le texte intégralVserossiĭskiĭ, simpozium "Glubinnye fli︠u︡idy i. geodinamika" (2003 Moscow Russia). Fli︠u︡idy i geodinamika : Materialy Vserossiĭskogo simpoziuma "Glubinnye fli︠u︡idy i geodinamika", Moskva, 19-21 noi︠a︡bri︠a︡, 2003 g. Moskva : Nauka, 2006.
Trouver le texte intégralB, Holness M., et Mineralogical Society (Great Britain), dir. Deformation-enhanced fluid transport in the earth's crust and mantle. London : Chapman & Hall, 1996.
Trouver le texte intégralB, Holness Marian, dir. Deformation-enhanced fluid transport in the Earth's crust and mantle. London : Chapman & Hall, 1997.
Trouver le texte intégralHauri, Erik Harold. Geochemical and fluid dynamic investigations into the nature of chemical heterogeneity in the earth's mantle. Woods Hole, Mass : Massachusetts Institute of Technology, 1992.
Trouver le texte intégralVoorhies, Coerte V. Simultaneous solution for core magnetic field and fluid flow beneath an electrically conducting mantle. Greenbelt, Md : National Aeronautics and Space Administration, Goddard Space Flight Center, 1993.
Trouver le texte intégralBlatter, Daniel. Constraining fluid properties in the mantle and crust using Bayesian inversion of electromagnetic data. [New York, N.Y.?] : [publisher not identified], 2020.
Trouver le texte intégralVoorhies, Coerte V. Simultaneous solution for core magnetic field and fluid flow beneath an electrically conducting mantle. Greenbelt, Md : National Aeronautics and Space Administration, Goddard Space Flight Center, 1993.
Trouver le texte intégralKeken, Peter Edwin van. Numerical modelling of thermochemically driven fluid flow with non-Newtonian rheology : Applied to the earth's lithosphere and mantle. [Utrecht : Faculteit Aardwetenschappen der Rijksuniversiteit te Utrecht, 1993.
Trouver le texte intégralChapitres de livres sur le sujet "Mantle fluids"
Manning, Craig E. « 5. Thermodynamic Modeling of Fluid-Rock Interaction at Mid-Crustal to Upper-Mantle Conditions ». Dans Thermodynamics of Geothermal Fluids, sous la direction de Andri Stefánsson, Thomas Driesner et Pascale Bénézeth, 135–64. Berlin, Boston : De Gruyter, 2013. http://dx.doi.org/10.1515/9781501508295-005.
Texte intégralLliboutry, Louis A. « Thermal convection in an isoviscous layer and in the Earth’s mantle ». Dans Mechanics of Fluids and Transport Processes, 229–59. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3563-1_9.
Texte intégralUnsworth, Martyn, et Stéphane Rondenay. « Mapping the Distribution of Fluids in the Crust and Lithospheric Mantle Utilizing Geophysical Methods ». Dans Lecture Notes in Earth System Sciences, 535–98. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28394-9_13.
Texte intégralNewton, R. C., et C. E. Manning. « Role of Saline Fluids in Deep-Crustal and Upper-Mantle Metasomatism : Insights from Experimental Studies ». Dans Frontiers in Geofluids, 58–72. Oxford, UK : Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9781444394900.ch5.
Texte intégralKatsura, Tomoo, et Eiji Ito. « The System MgO-SiO2-CO2-H2O at High Pressure : a Preliminary Investigation of CO2Concentration in Mantle Fluids ». Dans High-Pressure Research : Application to Earth and Planetary Sciences, 275–81. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm067p0275.
Texte intégralManning, Craig E., Everett L. Shock et Dimitri A. Sverjensky. « 5. The Chemistry of Carbon in Aqueous Fluids at Crustal and Upper-Mantle Conditions : Experimental and Theoretical Constraints ». Dans Carbon in Earth, sous la direction de Robert M. Hazen, Adrian P. Jones et John A. Baross, 109–48. Berlin, Boston : De Gruyter, 2013. http://dx.doi.org/10.1515/9781501508318-007.
Texte intégralSchettino, Antonio. « Flow and Fluid Behaviour of the Mantle ». Dans Quantitative Plate Tectonics, 337–62. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09135-8_13.
Texte intégralBailey, D. K. « Fluid Transport and Metasomatic Storage in the Mantle ». Dans Chemical Transport in Metasomatic Processes, 39–51. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4013-0_2.
Texte intégralEggler, David H. « Influence of H2O And CO2 on Melt and Fluid Chemistry in Subduction Zones ». Dans Crust/Mantle Recycling at Convergence Zones, 97–104. Dordrecht : Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0895-6_11.
Texte intégralManning, Craig E. « Coupled Reaction and Flow in Subduction Zones : Silica Metasomatism in the Mantle Wedge ». Dans Fluid Flow and Transport in Rocks, 139–48. Dordrecht : Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1533-6_8.
Texte intégralActes de conférences sur le sujet "Mantle fluids"
Burgess, R., et G. Turner. « Halogen geochemistry of mantle fluids in diamond ». Dans Volatiles in the Earth and solar system. AIP, 1995. http://dx.doi.org/10.1063/1.48753.
Texte intégralMatthews, Simon, et Dimitri A. Sverjensky. « Modelling Zr Transport in Crustal and Mantle Fluids ». Dans Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1747.
Texte intégralHunt, Lindsey E., et William M. Lamb. « USING MINERAL EQUILIBRIA TO CONSTRAIN THE NATURE OF MANTLE FLUIDS ». Dans GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-284074.
Texte intégralde Obeso, Juan Carlos, Peter Kelemen, Manuel D. Menzel, Craig Manning, Marguerite Godard, Louise Bolge, James Andrew Leong et Yue Cai. « Deep sourced fluids for peridotite carbonation in the shallow mantle wedge ». Dans Goldschmidt2022. France : European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.10623.
Texte intégralWang, Kun, et Dmitri Ionov. « Potassium isotope evidence for slab-derived fluids in the sub-arc mantle ». Dans Goldschmidt2022. France : European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.9823.
Texte intégralKempton, Pamela D., Ryan Mathur et Grant Zweifelhofer. « CU-ISOTOPE HETEROGENEITY IN THE LITHOSPHERIC MANTLE : A ROLE FOR SUBDUCTION-DERIVED FLUIDS ? » Dans GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-318235.
Texte intégralHartley, Elena Sohn, Ines Pereira, Evan D. Cameron, F. Zeb Page, Craig Storey et John Valley. « TRACING MANTLE FLUIDS : TRACE ELEMENT SIGNALS IN METASOMATIC GARNET IN QUARTZITES FROM THE CATALINA SCHIST (CALIFORNIA, USA) ». Dans GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-302998.
Texte intégralTeboul, Pierre-Alexandre, Neilma Lima, Eric Gaucher et Laury Araujo. « Fluid/rock interaction in extensional setting : a complex contribution from exhumed mantle and crustal fluids – Case study of the Aptian “Pre-salt” carbonates ». Dans Goldschmidt2022. France : European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.10164.
Texte intégralScott, Brandt E., Dennis L. Newell et Micah J. Jessup. « TRACING VOLATILE AND ISOTOPE GEOCHEMISTRY WITHIN MANTLE- AND SLAB-DERIVED FLUIDS IN A FLAT-SLAB SUBDUCTION ZONE, PERU ». Dans GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-295791.
Texte intégralAbe, Ryuta, Yuji Tasaka, Ichiro Kumagai, Yuichi Murai et Takatoshi Yanagisawa. « Dynamics of Cell Pattern Formation in Internally Heated Convection Viewed From Local to Global Particle Image Thermometry ». Dans ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-11014.
Texte intégralRapports d'organisations sur le sujet "Mantle fluids"
Aulstead, K. L., et R. Spencer. Fluid Inclusion Evidence On the Diagenesis of the Manetoe Facies, Yukon and Northwest Territories. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/130032.
Texte intégralWelp, Timothy, et Michael Tubman. Present practice of using nautical depth to manage navigation channels in the presence of fluid mud. Environmental Laboratory (U.S.), mai 2017. http://dx.doi.org/10.21079/11681/22539.
Texte intégralHarris, L. B., P. Adiban et E. Gloaguen. The role of enigmatic deep crustal and upper mantle structures on Au and magmatic Ni-Cu-PGE-Cr mineralization in the Superior Province. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328984.
Texte intégralMatte, S., M. Constantin et R. Stevenson. Mineralogical and geochemical characterisation of the Kipawa syenite complex, Quebec : implications for rare-earth element deposits. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329212.
Texte intégral