Articles de revues sur le sujet « Mammary gland involution »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Mammary gland involution ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Dickson, S. R., and M. J. Warburton. "Enhanced synthesis of gelatinase and stromelysin by myoepithelial cells during involution of the rat mammary gland." Journal of Histochemistry & Cytochemistry 40, no. 5 (1992): 697–703. http://dx.doi.org/10.1177/40.5.1315355.
Texte intégralLund, L. R., S. F. Bjorn, M. D. Sternlicht, et al. "Lactational competence and involution of the mouse mammary gland require plasminogen." Development 127, no. 20 (2000): 4481–92. http://dx.doi.org/10.1242/dev.127.20.4481.
Texte intégralTalhouk, R. S., M. J. Bissell, and Z. Werb. "Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution." Journal of Cell Biology 118, no. 5 (1992): 1271–82. http://dx.doi.org/10.1083/jcb.118.5.1271.
Texte intégralTian, Lei, Shancheng Guo, Zhiye Zhao, et al. "miR-30a-3p Regulates Autophagy in the Involution of Mice Mammary Glands." International Journal of Molecular Sciences 24, no. 18 (2023): 14352. http://dx.doi.org/10.3390/ijms241814352.
Texte intégralBatan, Sonia, Jabunnesa Khanom, Sabarish Ramachandran, et al. "Abstract P3-04-04: The Butyrate Transporter SLC5A8 Selectively Inhibits Breast Tumor Metastasis." Clinical Cancer Research 31, no. 12_Supplement (2025): P3–04–04—P3–04–04. https://doi.org/10.1158/1557-3265.sabcs24-p3-04-04.
Texte intégralSchwertfeger, Kathryn L., Monica M. Richert, and Steven M. Anderson. "Mammary Gland Involution Is Delayed by Activated Akt in Transgenic Mice." Molecular Endocrinology 15, no. 6 (2001): 867–81. http://dx.doi.org/10.1210/mend.15.6.0663.
Texte intégralBernhardt, Sarah M., and Pepper Schedin. "Abstract B011: The anti-cancer effects of vitamin D are blocked postpartum, due to suppression of vitamin D metabolism in the involuting liver." Cancer Prevention Research 15, no. 12_Supplement_1 (2022): B011. http://dx.doi.org/10.1158/1940-6215.dcis22-b011.
Texte intégralJena, Manoj Kumar, and Ashok Kumar Mohanty. "NEW INSIGHTS OF MAMMARY GLAND DURING DIFFERENT STAGES OF DEVELOPMENT." Asian Journal of Pharmaceutical and Clinical Research 10, no. 11 (2017): 35. http://dx.doi.org/10.22159/ajpcr.2017.v10i11.20801.
Texte intégralAtabai, Kamran, Rafael Fernandez, Xiaozhu Huang, et al. "Mfge8 Is Critical for Mammary Gland Remodeling during Involution." Molecular Biology of the Cell 16, no. 12 (2005): 5528–37. http://dx.doi.org/10.1091/mbc.e05-02-0128.
Texte intégralRivera, Olivia C., Stephen R. Hennigar, and Shannon L. Kelleher. "ZnT2 is critical for lysosome acidification and biogenesis during mammary gland involution." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 315, no. 2 (2018): R323—R335. http://dx.doi.org/10.1152/ajpregu.00444.2017.
Texte intégralFeng, Z., A. Marti, B. Jehn, H. J. Altermatt, G. Chicaiza, and R. Jaggi. "Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland." Journal of Cell Biology 131, no. 4 (1995): 1095–103. http://dx.doi.org/10.1083/jcb.131.4.1095.
Texte intégralAlexander, Caroline M., Sushma Selvarajan, John Mudgett, and Zena Werb. "Stromelysin-1 Regulates Adipogenesis during Mammary Gland Involution." Journal of Cell Biology 152, no. 4 (2001): 693–703. http://dx.doi.org/10.1083/jcb.152.4.693.
Texte intégralLu, Jie, Guohao Huang, Xuan Chang, et al. "Effects of Serotonin on Cell Viability, Permeability of Bovine Mammary Gland Epithelial Cells and Their Transcriptome Analysis." International Journal of Molecular Sciences 24, no. 14 (2023): 11388. http://dx.doi.org/10.3390/ijms241411388.
Texte intégralAdriani, Adriani. "Hubungan Involusi Sel-sel Sekretoris Kelenjar Ambing dengan Produksi Susu Domba Priangan dengan Dua Level Pakan." Jurnal Ilmiah Ilmu-Ilmu Peternakan 12, no. 3 (2009): 118–24. http://dx.doi.org/10.22437/jiiip.v0i0.173.
Texte intégralNing, Yun, Bao Hoang, Alwin G. P. Schuller, et al. "Delayed Mammary Gland Involution in Mice with Mutation of the Insulin-Like Growth Factor Binding Protein 5 Gene." Endocrinology 148, no. 5 (2007): 2138–47. http://dx.doi.org/10.1210/en.2006-0041.
Texte intégralXuan, Rong, Jianmin Wang, Xiaodong Zhao, et al. "Transcriptome Analysis of Goat Mammary Gland Tissue Reveals the Adaptive Strategies and Molecular Mechanisms of Lactation and Involution." International Journal of Molecular Sciences 23, no. 22 (2022): 14424. http://dx.doi.org/10.3390/ijms232214424.
Texte intégralHurley, W. L. "Mammary Gland Function During Involution." Journal of Dairy Science 72, no. 6 (1989): 1637–46. http://dx.doi.org/10.3168/jds.s0022-0302(89)79276-6.
Texte intégralCVEK, KATARINA, KRISTINA DAHLBORN, and YVONNE RIDDERSTRÅLE. "Localization of carbonic anhydrase in the goat mammary gland during involution and lactogenesis." Journal of Dairy Research 65, no. 1 (1998): 43–54. http://dx.doi.org/10.1017/s0022029997002537.
Texte intégralYi, Yijun, Anne Shepard, Frances Kittrell, Biserka Mulac-Jericevic, Daniel Medina, and Thenaa K. Said. "p19ARFDetermines the Balance between Normal Cell Proliferation Rate and Apoptosis during Mammary Gland Development." Molecular Biology of the Cell 15, no. 5 (2004): 2302–11. http://dx.doi.org/10.1091/mbc.e03-11-0785.
Texte intégralLi, Meng, Qingzhang Li, and Xuejun Gao. "Expression and function of leptin and its receptor in dairy goat mammary gland." Journal of Dairy Research 77, no. 2 (2010): 213–19. http://dx.doi.org/10.1017/s0022029910000063.
Texte intégralOliver, S. P., and T. Bushe. "Growth inhibition of Escherichia coli and Klebsiella pneumoniae during involution of the bovine mammary gland: Relation to secretion composition." American Journal of Veterinary Research 48, no. 12 (1987): 1669–73. https://doi.org/10.2460/ajvr.1987.48.12.1669.
Texte intégralMunarini, Nadia, Richard Jäger, Susanne Abderhalden, et al. "Altered mammary epithelial development, pattern formation and involution in transgenic mice expressing the EphB4 receptor tyrosine kinase." Journal of Cell Science 115, no. 1 (2002): 25–37. http://dx.doi.org/10.1242/jcs.115.1.25.
Texte intégralTATARCZUCH, L., C. PHILIP, and C. S. LEE. "Involution of the sheep mammary gland." Journal of Anatomy 190, no. 3 (1997): 405–16. http://dx.doi.org/10.1046/j.1469-7580.1997.19030405.x.
Texte intégralSOHN, B. Hwa, Hyung-Bae MOON, Tae-Yoon KIM та ін. "Interleukin-10 up-regulates tumour-necrosis-factor-α-related apoptosis-inducing ligand (TRAIL) gene expression in mammary epithelial cells at the involution stage". Biochemical Journal 360, № 1 (2001): 31–38. http://dx.doi.org/10.1042/bj3600031.
Texte intégralSABATAKOS, Georgios, Gareth E. DAVIES, Maria GROSSE, Anthony CRYER, and Dipak P. RAMJI. "Expression of the genes encoding CCAAT-enhancer binding protein isoforms in the mouse mammary gland during lactation and involution." Biochemical Journal 334, no. 1 (1998): 205–10. http://dx.doi.org/10.1042/bj3340205.
Texte intégralParés, Sílvia, Olivia Cano-Garrido, Alex Bach, et al. "The Potential of Metalloproteinase-9 Administration to Accelerate Mammary Involution and Boost the Immune System at Dry-Off." Animals 11, no. 12 (2021): 3415. http://dx.doi.org/10.3390/ani11123415.
Texte intégralLund, L. R., J. Romer, N. Thomasset, et al. "Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways." Development 122, no. 1 (1996): 181–93. http://dx.doi.org/10.1242/dev.122.1.181.
Texte intégralClemenceau, Alisson, Caroline Diorio, and Francine Durocher. "Role of Secreted Frizzled-Related Protein 1 in Early Mammary Gland Tumorigenesis and Its Regulation in Breast Microenvironment." Cells 9, no. 1 (2020): 208. http://dx.doi.org/10.3390/cells9010208.
Texte intégralHadsell, Darryl L., Tatiana Alexeenko, Yann Klemintidis, Daniel Torres, and Adrian V. Lee. "Inability of Overexpressed des(1–3)Human Insulin-Like Growth Factor I (IGF-I) to Inhibit Forced Mammary Gland Involution Is Associated with Decreased Expression of IGF Signaling Molecules*." Endocrinology 142, no. 4 (2001): 1479–88. http://dx.doi.org/10.1210/endo.142.4.8087.
Texte intégralMuraoka, Rebecca S., Anne E. G. Lenferink, Jean Simpson, et al. "Cyclin-Dependent Kinase Inhibitor P27Kip1 Is Required for Mouse Mammary Gland Morphogenesis and Function." Journal of Cell Biology 153, no. 5 (2001): 917–32. http://dx.doi.org/10.1083/jcb.153.5.917.
Texte intégralKennedy, S., and H. J. Ball. "Pathology of Experimental Ureaplasma Mastitis in Ewes." Veterinary Pathology 24, no. 4 (1987): 302–7. http://dx.doi.org/10.1177/030098588702400403.
Texte intégralMonaghan, P., N. Perusinghe, G. Carlile, and W. H. Evans. "Rapid modulation of gap junction expression in mouse mammary gland during pregnancy, lactation, and involution." Journal of Histochemistry & Cytochemistry 42, no. 7 (1994): 931–38. http://dx.doi.org/10.1177/42.7.8014476.
Texte intégralRieanrakwong, Duangjai, Titaree Laoharatchatathanin, Ryota Terashima, et al. "Prolactin Suppression of Gonadotropin-Releasing Hormone Initiation of Mammary Gland Involution in Female Rats." Endocrinology 157, no. 7 (2016): 2750–58. http://dx.doi.org/10.1210/en.2016-1180.
Texte intégralWatson, Christine J. "Post-lactational mammary gland regression: molecular basis and implications for breast cancer." Expert Reviews in Molecular Medicine 8, no. 32 (2006): 1–15. http://dx.doi.org/10.1017/s1462399406000196.
Texte intégralRYON, Joel, Lee BENDICKSON, and Marit NILSEN-HAMILTON. "High expression in involuting reproductive tissues of uterocalin/24p3, a lipocalin and acute phase protein." Biochemical Journal 367, no. 1 (2002): 271–77. http://dx.doi.org/10.1042/bj20020026.
Texte intégralGangi, Lisa, Garrison Owens, Robin Humphreys, Lothar Hennighausen, and Edison Liu. "Mammary gland involution studies with cDNA microarrays." Nature Genetics 23, S3 (1999): 46. http://dx.doi.org/10.1038/14308.
Texte intégralLi, Xiangdong, Anni Wärri, Sari Mäkelä, et al. "Mammary Gland Development in Transgenic Male Mice Expressing Human P450 Aromatase." Endocrinology 143, no. 10 (2002): 4074–83. http://dx.doi.org/10.1210/en.2002-220181.
Texte intégralStibbards-Lyle, Maya, Kristina Rinker, Laura Hall, Seleem Badawy, and Kathy Zhan. "Abstract PO4-24-05: Fluid forces and hormone levels during mammary gland development drive changes in breast epithelium that are relevant to the progression of postpartum breast cancer." Cancer Research 84, no. 9_Supplement (2024): PO4–24–05—PO4–24–05. http://dx.doi.org/10.1158/1538-7445.sabcs23-po4-24-05.
Texte intégralPai, Vaibhav P., Laura L. Hernandez, Malinda A. Stull, and Nelson D. Horseman. "The Type 7 Serotonin Receptor, 5-HT7, Is Essential in the Mammary Gland for Regulation of Mammary Epithelial Structure and Function." BioMed Research International 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/364746.
Texte intégralBoutinaud, M., JH Shand, MA Park, et al. "A quantitative RT-PCR study of the mRNA expression profile of the IGF axis during mammary gland development." Journal of Molecular Endocrinology 33, no. 1 (2004): 195–207. http://dx.doi.org/10.1677/jme.0.0330195.
Texte intégralRamaswamy, Bhuvaneswari, Neelam Shinde, Morgan Bauer, et al. "Abstract P5-01-08: Mechanistic differences between abrupt and gradual involution of mouse mammary gland." Cancer Research 82, no. 4_Supplement (2022): P5–01–08—P5–01–08. http://dx.doi.org/10.1158/1538-7445.sabcs21-p5-01-08.
Texte intégralNishikage, Mami, Yumiko Tateoka, and Fuyuki Itani. "Effectiveness of Onigirishibori Asa Self-care Technique for Weaning: A Study Using Intra Breast Ultrasound Imaging." International Journal of Medical Science and Health Research 08, no. 06 (2024): 40–48. https://doi.org/10.51505/ijmshr.2024.8604.
Texte intégralPlath-Gabler, A., C. Gabler, F. Sinowatz, B. Berisha, and D. Schams. "The expression of the IGF family and GH receptor in the bovine mammary gland." Journal of Endocrinology 168, no. 1 (2001): 39–48. http://dx.doi.org/10.1677/joe.0.1680039.
Texte intégralChakraborty, Moumita, and Michal Hershfinkel. "Zinc Signaling in the Mammary Gland: For Better and for Worse." Biomedicines 9, no. 9 (2021): 1204. http://dx.doi.org/10.3390/biomedicines9091204.
Texte intégralPlath, A., R. Einspanier, F. Peters, F. Sinowatz, and D. Schams. "Expression of transforming growth factors alpha and beta-1 messenger RNA in the bovine mammary gland during different stages of development and lactation." Journal of Endocrinology 155, no. 3 (1997): 501–11. http://dx.doi.org/10.1677/joe.0.1550501.
Texte intégralNguyen, A. V., and J. W. Pollard. "Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution." Development 127, no. 14 (2000): 3107–18. http://dx.doi.org/10.1242/dev.127.14.3107.
Texte intégralZaragozá, R., E. R. García-Trevijano, V. J. Miralles, et al. "Role of GSH in the modulation of NOS-2 expression in the weaned mammary gland." Biochemical Society Transactions 33, no. 6 (2005): 1397–98. http://dx.doi.org/10.1042/bst0331397.
Texte intégralWeng, Ming H., Ting C. Yu, Shuen E. Chen, et al. "Regional accretion of gelatinase B in mammary gland during gradual and acute involution of dairy animals." Journal of Dairy Research 75, no. 2 (2008): 202–10. http://dx.doi.org/10.1017/s0022029908003130.
Texte intégralWatson, Christine J., and Peter A. Kreuzaler. "Remodeling mechanisms of the mammary gland during involution." International Journal of Developmental Biology 55, no. 7-8-9 (2011): 757–62. http://dx.doi.org/10.1387/ijdb.113414cw.
Texte intégralSutherland, Kate D., Geoffrey J. Lindeman, and Jane E. Visvader. "The Molecular Culprits Underlying Precocious Mammary Gland Involution." Journal of Mammary Gland Biology and Neoplasia 12, no. 1 (2007): 15–23. http://dx.doi.org/10.1007/s10911-007-9034-8.
Texte intégral