Littérature scientifique sur le sujet « Maize growth »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Maize growth ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Maize growth"
Spitzer, T., P. Míša, J. Bílovský et J. Kazda. « Management of maize stand height using growth regulators ». Plant Protection Science 51, No. 4 (2 juin 2016) : 223–30. http://dx.doi.org/10.17221/105/2014-pps.
Texte intégralRaczek, Ewa. « Growth of maize coleoptiles in the presence of natural and synthetic growth regulators. Growth correlations ». Acta Societatis Botanicorum Poloniae 53, no 3 (2014) : 353–62. http://dx.doi.org/10.5586/asbp.1984.031.
Texte intégralANJORIN, Folake, Ridwan ABIOLA, Julius OLASOJI et Daniel O. OLANIRAN OLANIRAN. « Soil weight determination for optimal growth and yield performances of pot-grown maize ». Journal of Central European Agriculture 24, no 4 (2023) : 855–61. http://dx.doi.org/10.5513/jcea01/24.4.3869.
Texte intégralWang, Liang, Yan Meng, Guoqing Chen, Xiaoyu Liu, Lan Wang et Yuhai Chen. « Impact of maize growth on N2O emission from farmland soil ». Plant, Soil and Environment 65, No. 4 (23 avril 2019) : 218–24. http://dx.doi.org/10.17221/774/2018-pse.
Texte intégralLiang, Qiuyan, Xiaoling Zhang, Yiyuan Ge, Tianyue Jiang et Zihan Zhao. « Maize plant growth period identification based on MobileNet and design of growth control system ». BioResources 19, no 3 (26 juin 2024) : 5450–66. http://dx.doi.org/10.15376/biores.19.3.5450-5466.
Texte intégralBan, Ho-Young, Dana Sim, Kyu-Jong Lee, Junhwan Kim, Kwang Soo Kim et Byun-Woo Lee. « Evaluating maize growth models “CERES-Maize” and “IXIM-Maize” under elevated temperature conditions ». Journal of Crop Science and Biotechnology 18, no 4 (décembre 2015) : 265–72. http://dx.doi.org/10.1007/s12892-015-0071-3.
Texte intégralImbrie-Milligan, C., K. K. Kamo et T. K. Hodges. « Microcallus growth from maize protoplasts ». Planta 171, no 1 (mai 1987) : 58–64. http://dx.doi.org/10.1007/bf00395067.
Texte intégralNguyen, Huyen Khon, Le Thanh Hai, Tung Van Tra, Nguyen Viet Thang, Tran Thi Hieu, Thu Hong Anh Nguyen, Dong Thi Thu Huyen et Nguyen Thi Phuong Thao. « Study on the use of sludge farming of catfish as organic fertilizer and evaluate its effectiveness in agriculture ». Science & ; Technology Development Journal - Science of The Earth & ; Environment 4, no 1 (5 avril 2020) : First. http://dx.doi.org/10.32508/stdjsee.v4i1.502.
Texte intégralMacKinnon, J. C. « CERES-Maize : A simulation model of maize growth and development ». Computers and Electronics in Agriculture 2, no 2 (octobre 1987) : 171–72. http://dx.doi.org/10.1016/0168-1699(87)90028-7.
Texte intégralBrown, D. M. « CERES-Maize : A simulation model of maize growth and development ». Agricultural and Forest Meteorology 41, no 3-4 (décembre 1987) : 339. http://dx.doi.org/10.1016/0168-1923(87)90089-x.
Texte intégralThèses sur le sujet "Maize growth"
Maende, Cleophas Makokha. « An application of a model of maize growth to maize production by smallholders in Kenya ». Thesis, University of Newcastle Upon Tyne, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240744.
Texte intégralDrost, Roelof Gerrit. « MAIS, a mechanistic model of maize growth and development ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ61892.pdf.
Texte intégralSchortemeyer, Marcus. « Effects of nitrogen form on the growth of maize seedlings / ». [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10739.
Texte intégralMassignam, Angelo Mendes. « Quantifying nitrogen effects on crop growth processes in maize and sunflower / ». St. Lucia, Qld, 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17639.pdf.
Texte intégralVerheul, Michel J. « Seedling growth of maize (<> ; L.) genotypes under chilling conditions / ». [S.l.] : [s.n.], 1992. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=9855.
Texte intégralAnil, Leena. « The growth and utilization of forage maize intercrops for livestock production ». Thesis, University of Reading, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266795.
Texte intégralRaymond, Fred Douglas. « Reducing Corn Yield Variability and Enhancing Yield Increases Through the Use of Corn-Specific Growth Models ». Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/36304.
Texte intégralMaster of Science
Traynor, Mary. « Root growth in drying soil : a role for ABA ? » Thesis, Lancaster University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322894.
Texte intégralSiqueira, Rafael Telles Tenorio de. « Characterizing nitrogen deficiency of maize at early growth stages using fluorescence measurements ». Thesis, Colorado State University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10138898.
Texte intégralAmong all nutrients that are important for crop production, nitrogen (N) is one of the least efficiently utilized, mainly due to its high mobility in soil. The possibility of using crop sensing in real-time to detect variability in N deficiency within a field has the potential to enhance N efficiency, increase crop yield, and reduce potential environmental risks and crop production costs. Potassium (K), another important crop nutrient, can also lead to higher yield when applied in the right amount and manner. Real-time fluoro-sensing is a new technology for crop sensing and studies have shown that it could enable variable rate nutrient management for precision agriculture practices. The objective of this study was (1) to evaluate if fluorescence sensing can detect variability of N and K in crop canopy at early growth stages of maize (prior to V6 crop growth stage) under controlled condition (greenhouse), (2) to evaluate the effect of different fertilization dosages of N over the plant growth, and (3) to verify if induced fluorescence can detect in situ N variability at early growth stages of maize. Research was conducted in two stages, first in a greenhouse condition and later in field spread over three site-years. The greenhouse research was conduct in year 2011 and plants were grown in plant-pots with silica sand and supplied with modified Hoagland solution with different rates of N and K. Field trials were conducted in year 2012 and 2013 in northern Colorado. For the greenhouse study, data collected via fluorescence sensor (Multiplex®3) were analyzed using ANOVA and Tukey’s HSD to test significant differences among treatments in each experiment. For the N experiment, regression analysis between the seven fluorescence indices and N uptake was performed for the 12 days of data acquisition at five different growth stages (i.e. 2-leaf to 6-leaf growth stages) and coefficient of determination was used to identify the best fluorescence indices to detect N status. Also, root mean square error (RMSE) was used to test the precision of the estimates for each index. Results of this study indicated that all fluorescence indices were able to detect N variability in maize canopy prior to V2 growth stage. However, the fluorescence indices failed to identify K deficiency as the maize plants with K treatments showed small variability at early crop growth stages. For the field study, two site-years had 5 N rate treatments applied as UAN 32% (urea ammonium nitrate; 32-0-0), while one site-year had 6 N treatments applied pre-planting. Sensors used in this study were the Multiplex®3 for fluorescence sensing and the GreenSeeker® for reflectance sensing (NDVI). Sensor measurements were correlated with aboveground biomass, N content, and N uptake measured at two growth stages (V6 and V9 maize growth stage). The aboveground biomass, N content, N uptake, yield, and sensors readings were analyzed using ANOVA and Tukey’s HSD to test significant differences among the N treatments. Also, a regression tree between N uptake and the fluorescence indices was fitted along with the coefficient of determination (R2 ). The N rates had no effect on aboveground biomass, N content and N uptake (for both sampled growth stages). Under field conditions, fluorescence indices failed to detect N variability in maize at early growth stages for all three site-years. This finding may require further investigation, as for most of the N treatment plots, maize plants had sufficient N levels and another biotic or abiotic stress may be responsible for unexplained differences in N variability as measured by fluorescence sensor. Contrasting findings under greenhouse conditions versus field conditions limit the application of fluorosensing sensor. Further field studies are needed to evaluate the potential of this sensor for detecting N variability in situ.
Yang, Rick L. « Tissue specificity of signal transmission and differential growth during maize root gravitropism ». Connect to resource, 1992. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=osu1244222463.
Texte intégralLivres sur le sujet "Maize growth"
Allan, Jones C., Kiniry J. R. 1954- et Dyke P. T, dir. CERES-Maize : A simulation model of maize growth and development. College Station : Texas A&M University Press, 1986.
Trouver le texte intégralRaj, Paudyal Kamal, International Maize and Wheat Improvement Center. et National Agricultural Research Center (Nepal), dir. Maize in Nepal : Production systems, constraints, and priorities for research. Kathmandu : NARC, 2001.
Trouver le texte intégralUnited States. National Aeronautics and Space Administration., dir. [Root gravitropism in maize and arabidopsis] : [final report 1 Mar. 1992 - 30 Nov. 1993]. [Washington, DC : National Aeronautics and Space Administration, 1992.
Trouver le texte intégral(Zimbabwe), CIMMYT Regional Office, dir. Characterization of maize germplasm growth in eastern and southern Africa : Results of the 2006 regional trials. Harare : CIMMYT-Zimbabwe, 2007.
Trouver le texte intégralCouncil, Maine Economic Growth. Goals for growth : Progress 95 : first report of the Maine Economic Growth Council. [Augusta, Me.?] : The Council, 1995.
Trouver le texte intégralCouncil, Maine Economic Growth, dir. Goals for growth : Report of the Goal Committees to the Maine Economic Growth Council. [Augusta, Me.?] : The Council, 1995.
Trouver le texte intégralMaine. Dept. of Economic and Community Development. Office of Comprehensive Planning. Guidelines for Maine's growth management program. Augusta, Me : Office of Comprehensive Planning, Maine Dept. of Economic and Community Development, 1988.
Trouver le texte intégralDelogu, Orlando E. Maine land use and zoning control : Case law perspectives on planning and growth. Salem, N.H : Butterworth Legal Publishers, 1992.
Trouver le texte intégralMaine. Legislature. Joint Standing Committee on Economic Development. A strategy to assist regional economies of Maine during structural economic change and growth. Augusta, Me. (Rm. 101, State House, Sta. 13, Augusta 04333) : Office of Policy and Legal Analysis, 1988.
Trouver le texte intégralCouncil, Maine Economic Growth. Measures of growth, 1997. : Performance measures and benchmarks to achieve Maine's long term economic goals : third report of the Maine Economic Growth Council. Augusta : The Foundation, 1997.
Trouver le texte intégralChapitres de livres sur le sujet "Maize growth"
Shaffique, Shifa, Muhammad Imran, Shabir Hussain Wani, Anjali Pande, Waqas Rahim, Muhamad Aaqil khan, Sang-Mo Kang et In-Jung Lee. « Role of Plant Growth-Promoting Rhizobacteria Mitigating Drought Stress in Maize ». Dans Maize Improvement, 323–33. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21640-4_15.
Texte intégralMaiti, Ratikanta, Humberto González Rodríguez, Ch Aruna Kumari, Sameena Begum et Dasari Rajkumar. « Physiological Basis of Crop Growth and Productivity ». Dans Advances in Maize Science, 95–157. Boca Raton : Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003104995-6.
Texte intégralHedden, Peter, et Stephen J. Croker. « Regulation of gibberellin biosynthesis in maize seedlings ». Dans Progress in Plant Growth Regulation, 534–44. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2458-4_64.
Texte intégralKuang, Enjun, Baoguo Zhu, Jiuming Zhang, Yingxue Zhu, Jiahui Yuan, Xiaoyu Hao et Lei Sun. « Optimized Fertilization’s Beneficial Impact on Soil Nutrient Levels and Its Influence on the Principal Agronomic Traits of Maize ». Dans Lecture Notes in Civil Engineering, 240–49. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4355-1_23.
Texte intégralWestgate, Mark E. « Strategies to Maintain Ovary and Kernel Growth During Drought ». Dans Physiological Bases for Maize Improvement, 113–37. Boca Raton : CRC Press, 2024. http://dx.doi.org/10.1201/9781003578499-7.
Texte intégralNair, Sudha K., Pervez Haider Zaidi, Madhumal Thayil Vinayan et Gajanan Saykhedkar. « Physiological and molecular mechanisms underlying excess moisture stress tolerance in maize : molecular breeding opportunities to increase yield potential. » Dans Molecular breeding in wheat, maize and sorghum : strategies for improving abiotic stress tolerance and yield, 295–317. Wallingford : CABI, 2021. http://dx.doi.org/10.1079/9781789245431.0017.
Texte intégralFyson, A., et A. Oaks. « Promotion of maize growth by legume soil factors ». Dans The Rhizosphere and Plant Growth, 370. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3336-4_81.
Texte intégralRigobelo, Everlon Cid. « Promotion of Maize Growth Using Endophytic Bacteria ». Dans Microbial Services for Cereal Crops, 39–57. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63149-8_3.
Texte intégralPhinney, B. O., et C. R. Spray. « Dwarf Mutants of Maize — Research Tools for the Analysis of Growth ». Dans Plant Growth Substances 1988, 65–73. Berlin, Heidelberg : Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74545-4_7.
Texte intégralSinha, Neelima, et Sarah Hake. « Perturbations in leaf development caused by the dominant knotted-mutation in maize ». Dans Progress in Plant Growth Regulation, 360–70. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2458-4_42.
Texte intégralActes de conférences sur le sujet "Maize growth"
Kintl, Antonin, Julie Sobotkova, Jakub Elbl et Martin Brtnicky. « QUALITY OF POST-HARVEST RESIDUES WHEN GROWING MAIZE IN THE SYSTEM OF MIXED CROPPING ». Dans 24th SGEM International Multidisciplinary Scientific GeoConference 2024, 277–84. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/3.1/s13.34.
Texte intégralKulchin, Yu N., S. O. Kozhanov, A. S. Kholin, E. P. Subbotin, K. V. Kovalevsky, N. I. Subbotina et A. S. Gomolsky. « Chlorophyll fluorescence parameters of maize plants grown under linearly polarized light ». Dans 2024 International Conference Laser Optics (ICLO), 555. IEEE, 2024. http://dx.doi.org/10.1109/iclo59702.2024.10624190.
Texte intégralSzczepanek, Malgorzata. « Technology of maize with growth stimulants application ». Dans 17th International Scientific Conference Engineering for Rural Development. Latvia University of Agriculture, 2018. http://dx.doi.org/10.22616/erdev2018.17.n074.
Texte intégral« Prediction of maize weevil population growth rate ». Dans 2014 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2014. http://dx.doi.org/10.13031/aim.20141908072.
Texte intégralRuleva, Olga, et Gleb Rulev. « Relationship Between Air Temperature and Maize Growth Function ». Dans IV International Scientific and Practical Conference 'Anthropogenic Transformation of Geospace : Nature, Economy, Society' (ATG 2019). Paris, France : Atlantis Press, 2020. http://dx.doi.org/10.2991/aer.k.200202.051.
Texte intégralQiaoyu, Li, Liu Shuyun, Mu Yuanjie et Shang Minghua. « Maize Growth Monitoring Based on Embedded Vision System ». Dans 2019 2nd International Conference on Safety Produce Informatization (IICSPI). IEEE, 2019. http://dx.doi.org/10.1109/iicspi48186.2019.9096002.
Texte intégralWu, Qiongli, et Paul-Henry Cournède. « Sensitivity Analysis of GreenLab Model for Maize ». Dans 2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA). IEEE, 2009. http://dx.doi.org/10.1109/pma.2009.37.
Texte intégralSaylan, Levent, Josef Eitzinger et Murat Durak. « INFLUENCE OF CLIMATIC CHANGE ON MAIZE GROWTH IN AUSTRIA ». Dans Energy and the Environment, 1998. Connecticut : Begellhouse, 2023. http://dx.doi.org/10.1615/1-56700-127-0.1140.
Texte intégralMa, Yuntao, Meiping Wen, Baoguo Li, Yan Guo, Paul-Henry Cournede et Philippe De Reffye. « Calibration of GREENLAB Model for Maize with Sparse Experimental Data ». Dans 2006 Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. IEEE, 2006. http://dx.doi.org/10.1109/pma.2006.27.
Texte intégralБоровская, Ала, Раиса Иванова et Наталия Мащенко. « Влияние теплового стресса и биологически активных веществ из Linaria genistifolia на прорастание семян кукурузы и содержание в них крахмала ». Dans VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.04.
Texte intégralRapports d'organisations sur le sujet "Maize growth"
Jander, Georg, et Daniel Chamovitz. Investigation of growth regulation by maize benzoxazinoid breakdown products. United States Department of Agriculture, janvier 2015. http://dx.doi.org/10.32747/2015.7600031.bard.
Texte intégralSusan M. Wick. Growth and development of maize that contains mutant tubulin genes. Office of Scientific and Technical Information (OSTI), juillet 2004. http://dx.doi.org/10.2172/826290.
Texte intégralBlom-Zandstra, Greet, Yu Tinzar Htet et Jennifer Lee. Data collection on maize growth during a field visit in Shan State, Myanmar. Wageningen : Stichting Wageningen Research, Wageningen Plant Research, Business Unit Agrosystems, 2020. http://dx.doi.org/10.18174/516092.
Texte intégralHarman, Gary E., et Ilan Chet. Enhancement of plant disease resistance and productivity through use of root symbiotic fungi. United States Department of Agriculture, juillet 2008. http://dx.doi.org/10.32747/2008.7695588.bard.
Texte intégralKnight, Charles. Does N fertilizer rate affect microbial benefits to early maize growth ? An evaluation of Iowa-isolated microbial communities. Ames (Iowa) : Iowa State University, décembre 2022. http://dx.doi.org/10.31274/cc-20240624-565.
Texte intégralCramer, Grant R., et Nirit Bernstein. Mechanisms for Control of Leaf Growth during Salinity Stress. United States Department of Agriculture, septembre 1994. http://dx.doi.org/10.32747/1994.7570555.bard.
Texte intégralHorwitz, Benjamin A., et Barbara Gillian Turgeon. Fungal Iron Acquisition, Oxidative Stress and Virulence in the Cochliobolus-maize Interaction. United States Department of Agriculture, mars 2012. http://dx.doi.org/10.32747/2012.7709885.bard.
Texte intégralEshed, Yuval, et Sarah Hake. Exploring General and Specific Regulators of Phase Transitions for Crop Improvement. United States Department of Agriculture, novembre 2012. http://dx.doi.org/10.32747/2012.7699851.bard.
Texte intégralZhao, Bingyu, Saul Burdman, Ronald Walcott et Gregory E. Welbaum. Control of Bacterial Fruit Blotch of Cucurbits Using the Maize Non-Host Disease Resistance Gene Rxo1. United States Department of Agriculture, septembre 2013. http://dx.doi.org/10.32747/2013.7699843.bard.
Texte intégralPhilosoph-Hadas, Sonia, Peter B. Kaufman, Shimon Meir et Abraham H. Halevy. Inhibition of the Gravitropic Shoot Bending in Stored Cut Flowers Through Control of Their Graviperception : Involvement of the Cytoskeleton and Cytosolic Calcium. United States Department of Agriculture, décembre 2005. http://dx.doi.org/10.32747/2005.7586533.bard.
Texte intégral