Littérature scientifique sur le sujet « MAGNETORHEOLOGICAL FINISHING »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « MAGNETORHEOLOGICAL FINISHING ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "MAGNETORHEOLOGICAL FINISHING"

1

KORDONSKY, W. I., I. V. PROKHOROV, G. GORODKIN, S. D. JACOBS, B. PUCHEBNER et D. PIETROWSKI. « Magnetorheological Finishing ». Optics and Photonics News 4, no 12 (1 décembre 1993) : 16. http://dx.doi.org/10.1364/opn.4.12.000016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

KORDONSKI, W. I., et S. D. JACOBS. « MAGNETORHEOLOGICAL FINISHING ». International Journal of Modern Physics B 10, no 23n24 (30 octobre 1996) : 2837–48. http://dx.doi.org/10.1142/s0217979296001288.

Texte intégral
Résumé :
The technology of finishing for optics, ceramics, and semiconductors is one of the most promising uses of the magnetorheological effect. It perfectly coupled with computer control, allowing in quantity production the unique accuracy and quality of a polished surface to be achieved. The polishing process may appear as follows. A part rotating on the spindle is brought into contact with an magnetorheological polishing (MRP) fluid which is set in motion by the moving wall. In the region where the part and the MRP fluid are brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing process comes to the program-simulated movement of the polishing spot over the part surface. The mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. The problem like the hydrodynamic theory of lubrication is treated for plastic film. As this takes place the shear stresses distribution in the film is obtained from the experimental measurements of the pressure distribution in the contact spot. Reasonable correlation between calculated and experimental magnitudes of the material removal rate for glass polishing lends support to the validity of the approach.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Li, Yao Ming, Xing Quan Shen et Ai Ling Wang. « Nano-Precision Finishing Technology Based on Magnetorheological Finishing ». Key Engineering Materials 416 (septembre 2009) : 118–22. http://dx.doi.org/10.4028/www.scientific.net/kem.416.118.

Texte intégral
Résumé :
Surface roughness is normally regarded as an important criterion for assessing the quality of optic elements; surface roughness of a high-quality optic element is required to be less than RMS1nm. In this paper, a series of experiments has been conducted on the sample magnetorheological finishing machine by using self-prepared magnetorheological liquid as finishing liquid, to assess the removing efficiency of magnetorheological finishing. Optimization of technological parameters enables the authors to obtain a glass-ware with an ideal surface roughness of RMS0.56nm. Magnetorheological finishing (MRF) is an advanced technology for processing optic elements that has been developed in recent years. The technology polishes optic elements by using viscoplastic soft media produced by the MRF liquid under the variation of gradient magnetic field. Better than traditional polishing method in shape precision, surface roughness and inner surface destruction, MRF is an ideal technology for obtaining super-precision optic surface.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Saraswathamma, K. « Magnetorheological Finishing : A Review ». International Journal of Current Engineering and Technology 2, no 2 (1 janvier 2010) : 168–73. http://dx.doi.org/10.14741/ijcet/spl.2.2014.30.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kordonski, William, et Stephen Jacobs. « Model of Magnetorheological Finishing ». Journal of Intelligent Material Systems and Structures 7, no 2 (mars 1996) : 131–37. http://dx.doi.org/10.1177/1045389x9600700202.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Grover, Vishwas, et Anant Kumar Singh. « Modeling of surface roughness in the magnetorheological cylindrical finishing process ». Proceedings of the Institution of Mechanical Engineers, Part E : Journal of Process Mechanical Engineering 233, no 1 (13 décembre 2017) : 104–17. http://dx.doi.org/10.1177/0954408917746354.

Texte intégral
Résumé :
The magnetorheological cylindrical finishing process is developed for fine finishing of the internal surface of cylindrical objects. The process uses smart fluid known as magnetorheological polishing fluid. This fluid consists of carbonyl iron (CI) and silicon carbide (SiC) abrasive particles mixed in the base fluid. The magnetorheological cylindrical finishing process consists of an internal finishing tool, which induces magnetic field over its outer surface due to which CI particles experience magnetic force and form chains between the magnetized tool outer surface and inner surface of the cylindrical workpiece. The CI particles push SiC abrasive particles towards the inner surface of the cylindrical workpiece and with the movement of finishing tool inside the cylindrical workpiece, finishing is performed in the process. In the present work, a mathematical model is developed for calculating the change in surface roughness values in the magnetorheological cylindrical finishing process after consideration of forces as acting on SiC particles. To validate the proposed mathematical model, the experimentation is performed by the magnetorheological cylindrical finishing process for finishing the internal surface of cylindrical hardened ferromagnetic steel workpiece. Results of both i.e. mathematical modeling and experimentation are found to be in close agreement with least percentage error of 1.28%. The developed mathematical model is helpful in predicting the process performance, which proves to be useful for industries dealing with internal finishing like injection molding, gas, and liquid pipes, etc.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Yin, Feng Ling, Bing Quan Huo et Li Gong Cui. « Software Function Design for Measurement and Control System of a Magnetorheological Machine Tool ». Advanced Materials Research 926-930 (mai 2014) : 1408–11. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.1408.

Texte intégral
Résumé :
In order to improve the machining accuracy of workpieces, we developed the magnetorheological finishing system. Taking the measurement and control system of the magnetorheological finishing system as the research target, we introduced the overall function design of the measurement and control system firstly, and then introduced the function of each module, including the multi-module control for circulatory system, parameter setting for the circulatory system, condition monitoring for the circulatory system, ribbon calibration, tool setting, anti-collision control of the finishing wheel and finishing spots collection. The developed measurement and control system of the magnetorheological finishing system can effectively guarantee the high-precision machining of machine tools.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kang, Gui Wen, et Fei Hu Zhang. « Optics Manufacturing Using Magnetorheological Finishing ». Key Engineering Materials 375-376 (mars 2008) : 274–77. http://dx.doi.org/10.4028/www.scientific.net/kem.375-376.274.

Texte intégral
Résumé :
Magnetorheological finishing (MRF) is a novel precision optical machining technology. Owing to its flexible finishing process, MRF can eliminate subsurface damage, smooth rms micro roughness and correct surface figure errors. The finishing process can be easily controlled by a computer. Through proper designing of numerical control, sphere and asphere optics can be machined by magnetorheological finishing with high quality. Optical sphere is machined using dwell time algorithm and surface shape 2 pt. PV has been improved from 0.17um to 0.07um.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sharma, Anand, et M. S. Niranjan. « Magnetorheological Fluid Finishing of Soft Materials : A Critical Review ». INTERNATIONAL JOURNAL OF ADVANCED PRODUCTION AND INDUSTRIAL ENGINEERING 4, no 1 (5 janvier 2019) : 48–55. http://dx.doi.org/10.35121/ijapie201901138.

Texte intégral
Résumé :
Magnetorheological Finishing (MRF) is one of the precision finishing processes and recently commercialized method for finishing of various materials like optical glasses, metals, non-metals etc. This method utilizes a suspension consisting of a fluid carrier which can be water or oil, both magnetic and non-magnetic particles and stabilizing agents. Rheological behavior of this mixture of magnetorheological (MR) fluid with abrasives changes under the influence of magnetic field which in turn regulates the finishing forces during finishing processes. Present study critically reviews the MRF process used for achieving nano-level finishing of soft materials and the advancements made in this process
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zhang, Fei Hu, Gui Wen Kang, Zhong Jun Qiu et Shen Dong. « Magnetorheological Finishing of Glass Ceramic ». Key Engineering Materials 257-258 (février 2004) : 511–14. http://dx.doi.org/10.4028/www.scientific.net/kem.257-258.511.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "MAGNETORHEOLOGICAL FINISHING"

1

Alam, Zafar. « Modeling and performance improvement of ball end magnetorheological finishing process ». Thesis, IIT Delhi, 2019. http://eprint.iitd.ac.in:80//handle/2074/8038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Khan, Dilshad Ahmad. « Magnetorheological finishing of soft and ductile materials ». Thesis, 2018. http://localhost:8080/iit/handle/2074/7629.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

SINGH, KRISHNA PRATAP. « MAGNETORHEOLOGICAL CHARACTERIZATION OF MRP FLUID AND MR FINISHING ». Thesis, 2015. http://dspace.dtu.ac.in:8080/jspui/handle/repository/16113.

Texte intégral
Résumé :
Magnetorheological (MR) fluids are the suspensions of micron-sized dispersed magnetic phase in a non-magnetic carrier continuous phase along with additives. Magnetic abrasive particles (MAPs) based MR polishing (MRP) fluid sample has been synthesized in the present research work. These MAPs are developed at 10000C with appropriate sintering cycle using solid phase sintering method. Then MRP fluid sample has been synthesized with 45 volume% magnetic abrasive particles and 55 volume% base fluid. After synthesis of MRP fluid, magnetorheological characterization has been done at different magnetic field on MCR-301 magnetorheometer and steady state rheograms have been drawn. The flow behavior of magnetic abrasive particles (MAPs) based MRP fluid sample has been compared with flow behavior of unbonded magnetic abrasives based MRP fluid. The result shows better yield behavior and viscosity of MAPs based MRP fluid sample as compared to unbonded magnetic abrasives based MRP fluid. After magnetorheological characterization, the experiments have been conducted on mild steel work-piece surface having 70x10x5 mm dimension with MAPs based MRP fluid sample as well as unbonded magnetic abrasives based MRP fluid on ball end magnetorheological finishing (BEMRF) tool. Initial surface roughness before experiment and final surface roughness after the experiments has been measured with Talysurf using 4 mm data length and 0.25 mm cut off length. The percentage reduction in surface roughness (%∆Ra) has been calculated and found better for finishing the mild steel surface by MAPs based MRP fluid sample as compared to unbonded magnetic abrasives based MRP fluid.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Li, Ying-Song, et 李英松. « Numerical Analysis on the Finishing Performance of Magnetorheological Abrasive Flow Finishing(MRAFF) Process ». Thesis, 2010. http://ndltd.ncl.edu.tw/handle/50882107466231420449.

Texte intégral
Résumé :
碩士
國立屏東科技大學
車輛工程系所
98
Magnetorheological Abrasive Flow Finishing (MRAFF) is a novel precision finishing process using smart magnetorheological polishing fluid. The said fluid can lead to a solid-liquid phase change under external magnetic field, and thus change Newtonian fluid to non-Newtonian Bingham plastic fluid. This smart behavior of MR-polishing fluid is utilized to precisely control the high normal and shear force, hence final cutting and polishing in work piece surface. However, because the MRAFF process coupled with magnetic field, thermal flow field, and multi-phase flow. The mechanism is so complicated that difficult to obtain operate parameters. Therefore, this research develops the numerical tools to analyze the characteristics of magnetorheological fluids and the finishing efficiency of abrasives, and meanwhile, investigates the cutting efficiency on curved-surface parts and the variations in magnetorheological fluids using the characteristic equations of magnetorheological fluid under different work piece materials and working parameters. The research result shows: when Reynolds number and Hartmann number are enhancement, will be helpful to the work piece cut depth increase, but surface roughness quality will drop, and mesh size increase can improve the surface roughness quality . In addition, in the research case analysis, the magnetic conductive material can obtain the greatly prediction of cutting depth, but fluid flow shear force is smaller than the material yield force . The cutting mechanism of the overall role is bad, can not achieve the desired effect of cutting. On the other hand, cutting depth is low in the polishing non-magnetic conductive material, because surface shear force rise since the velocity field distribution, by the Lorentz force action influence, cause better cutting effect of prediction. Finally, we can derive cutting depth equations and surface roughness quality equations from all of the parameter analysis in this research. The research results will be helpful that someone could blend magnetorheological fluid in further, prediction cutting depth and roughness quality of work piece surface in research matrix range.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Singh, Anant Kumar. « Experimental investigations and modeling of ball end magnetorheological finishing process ». Thesis, 2013. http://localhost:8080/iit/handle/2074/5323.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

SHARMA, VIPIN KUMAR. « Modeling and Analysis of Rotational Magnetorheological Abrasive Flow Finishing Process ». Thesis, 2015. http://dspace.dtu.ac.in:8080/jspui/handle/repository/14308.

Texte intégral
Résumé :
Magneto rheological abrasive flow finishing (MRAFF) is used to finish complex internal and external geometries with the help of magnetorheological polishing fluid. Such finishing operations play a crucial role in manufacturing process of machine parts. The cost escalates sharply when the requirement is to achieve surface roughness values near nano levels. The need for finishing is to avoid power losses due to friction, increase the wear resistance and to provide a long serviceable life to the equipment. MRAFF is a time consuming process and any effort to reduce the process time even marginally saves production time and cost of the finished product. Researchers have often strived to improve finishing rate and MRR. An attempt has been made to overcome the said limitations, a new finishing process called rotational magneto rheological abrasive flow finishing (R-MRAFF) is developed, which is a combination of rotational abrasive flow machining (R-AFM) and magneto rheological finishing (MRF), for nano finishing of parts even with complicated geometry for a wide range of industrial applications. Rotational magneto rheological abrasive flow finishing (R-MRAFF) process provides better control over rheological properties of abrasive laden magneto rheological finishing medium. Magneto rheological (MR) polishing fluid comprises of carbonyl iron powder and silicon carbide abrasives dispersed in the viscoplastic base of grease and mineral oil. It exhibits change in rheological behaviour in presence of external magnetic field. This smart behaviour of MR-polishing fluid and centrifugal force due to rotation of rams is utilized to precisely control the finishing forces, hence final surface finish. In the present work, an attempt has been made to analyze the total force acting on the single grain at different magnetic field strength and rotational speed and a model for the prediction of volumetric material removal and surface roughness has also been presented. A three dimensional modeling is done to calculate force acting on the single grain. In order to rotate the magnetoreheological polishing fluid (MRPF), rams of the machining system are joined together with the help of a connecting rod. Modeling was done on brass work piece at different magnetic field strengths and at different rotational speeds to observe its effect on final surface roughness and volumetric material removal. No measurable changes in surface roughness a observed after finishing at zero magnetic field and at zero rotational speed. However, for the same number of cycles, the roughness reduces gradually with the increase of magnetic field and rotational speed. This validates the role of centrifugal force and rheological behaviour of magneto rheological polishing fluid in performing finishing action. The present study shows that with the rotation of MR polishing fluid, an extra component of centrifugal force (Fc) adds up to the resultant force which increases the volumetric removal rate and surface finish as compared to other finishing processes.
Mr. M.S. NIRANJAN (Asst. Professor) Mechanical Engineering Department Delhi College of Engineering, Delhi
Styles APA, Harvard, Vancouver, ISO, etc.
7

KRISHNA, KUNAL. « SELECTION OF OPTIMUM DESIGN OF MR FINISHING TOOL AND ITS ANALYSIS FOR FINISHING OF EN-31 WORKPIECE SURFACE ». Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19977.

Texte intégral
Résumé :
Magneto-rheological finishing (MRF) is a novel and promising technique used for precision machining and polishing of various workpiece materials. Present work is aimed to design MR finishing tool in ANSYS Maxwell 3D simulation software for finishing variety of workpiece materials. Design of experiment has been used with two parameters such as bush height and number of turns to develop the experimental plan using design expert software. Modelled MR finishing tool has been tested with different experimental run to observe the shape and intensity of magnetic field at MR finishing tool tip. Statistical analysis has been done to see the effect of bush height and number of turns on magnetic field intensity at MR finishing tool tip. Linear model has been selected in the analysis and analysis of variance (ANOVA) has been done with model p values less than 0.0001 along with F value 566.41 which indicates that the model selected is significant and lack of fit with p value 0.1265 indicates insignificant. Regression equation has been obtained in coded form as well as actual form to see the effect of bush height and number of turns on response intensity of magnetic field at MR finishing tool tip. It has been observed that the predicted intensity of magnetic field at tool tip is found 1.99885 T for bush height 6.63 mm and number of turns 2133. After obtaining predicted intensity of magnetic field, numerical optimization has been carried out and found that maximum intensity of magnetic field is obtained 1.999 T for bush height 6.628 mm and number of turns 2132 which is very close to the predicted value of magnetic field intensity.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Niranjan, Mahendra Singh. « Experimental investigations into polishing fluid synthesis for ball end magnetorheological finishing ». Thesis, 2015. http://localhost:8080/iit/handle/2074/6950.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ho, Zhong-Zhe, et 何仲哲. « Study on surface finishing of mold steel machined using magnetorheological fluid and magnetic force ». Thesis, 2013. http://ndltd.ncl.edu.tw/handle/14397180085555139904.

Texte intégral
Résumé :
碩士
東南科技大學
機械工程研究所
101
In this study, mold steel SKD 11 is machined using magnetorheological (MR) fluid under an external magnetic field. The MR fluid comprises silicone oil with pure water as the based fluid for alumina, ferric ferrous oxide, carbonyl iron powder and silane coupling agent. The external magnetic field whose force is controlled by a permanent magnet changes the viscosity of the MR fluid. The grinding mechanism installed on a machine table is under computer numerical control and the surface quality of the workpiece is measured by a 3D surface roughness profilometer. The effects of various machining parameters on surface roughness are examined to determine the optimal machining conditions. Experimental results show that the optimal machining conditions are spindle rotational speed, 100 rpm; axial loading, 14 kg; magnetic flux, 199 mT; and processing time, 11 min, which yielded mirror surface quality with surface roughness of 0.03 μm.Experimental results show that the optimal machining conditions are spindle rotational speed, 100 rpm; axial loading, 14 kg; magnetic flux, 199 mT; and processing time, 11 min, which yielded mirror surface quality with surface roughness of 0.03 μm.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "MAGNETORHEOLOGICAL FINISHING"

1

Khan, Dilshad Ahmad, Zafar Alam et Faiz Iqbal. « Magnetorheological Finishing ». Dans Magnetic Field Assisted Finishing, 51–76. Boca Raton : CRC Press, 2021. http://dx.doi.org/10.1201/9781003228776-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Khan, Dilshad Ahmad, Zafar Alam et Faiz Iqbal. « Magnetorheological Abrasive Flow Finishing ». Dans Magnetic Field Assisted Finishing, 77–98. Boca Raton : CRC Press, 2021. http://dx.doi.org/10.1201/9781003228776-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kang, Gui Wen, et Fei Hu Zhang. « Research on Material Removal of Magnetorheological Finishing ». Dans Advances in Abrasive Technology IX, 285–90. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-416-2.285.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kang, Gui Wen, et Fei Hu Zhang. « Research on Material Removal Mechanism of Magnetorheological Finishing ». Dans Materials Science Forum, 133–36. Stafa : Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-421-9.133.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Vaishya, Rahul, Vivek Sharma, Vikas Kumar et Rajeev Verma. « Smart Magnetorheological (MR) Finishing Technology and Its Applications ». Dans Lecture Notes on Multidisciplinary Industrial Engineering, 677–85. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73495-4_46.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Qidwai, Mohammad Owais, Faiz Iqbal et Zafar Alam. « Thermal Analysis Of Ball-End Magnetorheological Finishing Tool ». Dans Optimization Methods for Engineering Problems, 199–214. New York : Apple Academic Press, 2023. http://dx.doi.org/10.1201/9781003300731-14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Iqbal, F., Z. Alam, D. A. Khan et S. Jha. « Part Program-Based Process Control of Ball-End Magnetorheological Finishing ». Dans Lecture Notes on Multidisciplinary Industrial Engineering, 503–14. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9471-4_41.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chen, Feng Jun, Shao Hui Yin, Jian Wu Yu, Hitoshi Ohmori, Wei Min Lin et Yoshihiro Uehara. « A Mechanistic Model of Material Removal in Magnetorheological Finishing (MRF) ». Dans Advances in Grinding and Abrasive Technology XIV, 384–88. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-459-6.384.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kumar, Manjesh, Abhinav Kumar, Hari Narayan Singh Yadav et Manas Das. « Gear Profile Polishing Using Rotational Magnetorheological Abrasive Flow Finishing Process ». Dans Lecture Notes in Mechanical Engineering, 565–76. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3266-3_44.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kumar, Vikas, Rajesh Kumar et Harmesh Kumar. « Rheological Characterization and Finishing Performance Evaluation of Vegetable Oil-Based Bi-dispersed Magnetorheological Finishing Fluid ». Dans Lecture Notes in Mechanical Engineering, 407–15. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1071-7_34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "MAGNETORHEOLOGICAL FINISHING"

1

Harris, Daniel C. « History of magnetorheological finishing ». Dans SPIE Defense, Security, and Sensing, sous la direction de Randal W. Tustison. SPIE, 2011. http://dx.doi.org/10.1117/12.882557.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kordonski, William I., Aric B. Shorey et Marc Tricard. « Magnetorheological (MR) Jet Finishing Technology ». Dans ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61214.

Texte intégral
Résumé :
Conformal (or freeform) and steep concave optics are important classes of optics that are difficult to finish using conventional techniques due to mechanical interferences and steep local slopes. One suitable way to polish these classes of optics is by using a jet of abrasive/fluid mixture. In doing so, the energy required for polishing may be supplied by the radial spread of a liquid jet, which impinges a surface to be polished. Such fluid flow may generate sufficient surface shear stress to provide material removal in the regime of chemical mechanical polishing. Once translated into a polishing technique, this unique tool may resolve a challenging problem of finishing steep concave surfaces and cavities. A fundamental property of a fluid jet is that it begins to lose its coherence as the jet exits a nozzle. This is due to a combination of abruptly imposed longitudinal and lateral pressure gradients, surface tension forces, and aerodynamic disturbance. This results in instability of the flow over the impact zone and consequently polishing spot instability. To be utilized in deterministic high precision finishing of remote objects, a stable, relatively high-speed, low viscosity fluid jet, which remains collimated and coherent before it impinges the surface to be polished, is required. A method of jet stabilization has been proposed, developed and demonstrated whereby the round jet of magnetorheological fluid is magnetized by an axial magnetic field when it flows out of the nozzle. It has been experimentally shown that a magnetically stabilized round jet of MR polishing fluid generates a reproducible material removal function (polishing spot) at a distance of several tens of centimeters from the nozzle. In doing so, the interferometrically derived distribution of material removal for an axisymmetric MR Jet, which impinges normal to a plane glass surface, coincides well with the radial distribution of rate of work calculated using computational fluid dynamics (CFD) modeling. Polishing results support the assertion that the MR Jet finishing process may produce high precision surfaces on glasses and single crystals. The technology is most attractive for the finishing of complex shapes like freeform optics, steep concaves and cavities.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Jacobs, Stephen D., Fuqian Yang, Edward M. Fess, J. B. Feingold, Birgit E. Gillman, William I. Kordonski, Harold Edwards et Donald Golini. « Magnetorheological finishing of IR materials ». Dans Optical Science, Engineering and Instrumentation '97, sous la direction de H. Philip Stahl. SPIE, 1997. http://dx.doi.org/10.1117/12.295132.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhang, Fengdong, Xuejun Zhang et Jingchi Yu. « Mathematics model of magnetorheological finishing ». Dans International Topical Symposium on Advanced Optical Manufacturing and Testing Technology, sous la direction de Li Yang, Harvey M. Pollicove, Qiming Xin et James C. Wyant. SPIE, 2000. http://dx.doi.org/10.1117/12.402796.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kordonski, William I., Donald Golini, Paul Dumas, Stephen J. Hogan et Stephen D. Jacobs. « Magnetorheological-suspension-based finishing technology ». Dans 5th Annual International Symposium on Smart Structures and Materials, sous la direction de Janet M. Sater. SPIE, 1998. http://dx.doi.org/10.1117/12.310670.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Messner, Bill, Andrew Jones, Bob Hallock et Christopher Hall. « Magnetorheological Finishing of freeform optics ». Dans Optifab 2007. SPIE, 2007. http://dx.doi.org/10.1117/12.719886.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Shorey, Aril B., Leslie L. Gregg, Henry J. Romanofsky, Steven R. Arrasmith, Irina A. Kozhinova, Joshua Hubregsen et Stephen D. Jacobs. « Material removal during magnetorheological finishing (MRF) ». Dans SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, sous la direction de H. Philip Stahl. SPIE, 1999. http://dx.doi.org/10.1117/12.369176.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Golini, Donald, Stephen D. Jacobs, William I. Kordonski et Paul Dumas. « Precision optics fabrication using magnetorheological finishing ». Dans Critical Review Collection. SPIE, 1997. http://dx.doi.org/10.1117/12.279809.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

KORDONSKI, WILLIAM. « MAGNETORHEOLOGICAL FLUIDS IN HIGH PRECISION FINISHING ». Dans Proceedings of the 12th International Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814340236_0004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

KORDONSKI, W., et A. SHOREY. « MAGNETORHEOLOGICAL (MR) JET™ FINISHING TECHNOLOGY ». Dans Proceedings of the 10th International Conference on ERMR 2006. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812771209_0048.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "MAGNETORHEOLOGICAL FINISHING"

1

Hubregsen, J. A study of material removal during magnetorheological finishing. 1998 summer research program for high school juniors at the Univ. of Rochester`s Laboratory for Laser Energetics : Student research reports. Office of Scientific and Technical Information (OSTI), mars 1999. http://dx.doi.org/10.2172/362524.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie