Articles de revues sur le sujet « Magnetic Resonance I »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Magnetic Resonance I.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Magnetic Resonance I ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Teraoka, Kunihiko. « Cardiac magnetic resonace : stress perfusion magnetic resonance imaging and coronary magnetic resonance angiography ». Journal of the Japanese Coronary Association 20, no 2 (2014) : 148–51. http://dx.doi.org/10.7793/jcoron.20.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yılmaz, Güliz, Işıl Başara, Gülgün Yılmaz Ovalı, Serdar Tarhan, Yüksel Pabuşcu et Hatice Mavioğlu. « Magnetic resonance imaging findings of Susac syndrome ». Cumhuriyet Medical Journal 36, no 1 (28 mars 2014) : 96–100. http://dx.doi.org/10.7197/1305-0028.1215.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dilbar, Khodjieva. « Magnetic Resonance Imaging of Cerebral Hemorrhagic Stroke ». International Journal of Psychosocial Rehabilitation 24, no 02 (20 février 2020) : 434–38. http://dx.doi.org/10.37200/ijpr/v24i2/pr200354.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ünver, Mahmut, et Atilla Ergüzen. « Compressing of Magnetic Resonance Images with Cuda ». International Journal of Trend in Scientific Research and Development Volume-3, Issue-1 (31 décembre 2018) : 1140–45. http://dx.doi.org/10.31142/ijtsrd20209.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kikuchi, Hiroyuki, Toshiyuki Kikuchi, Hiroshi Yamamoto, Toru Nagashima et Kaichi Isono. « Magnetic resonance imaging for biliary cancer ». Japanese Journal of Gastroenterological Surgery 25, no 3 (1992) : 938. http://dx.doi.org/10.5833/jjgs.25.938.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

MIYAZAWA, TATSUO. « Nuclear Magnetic Resonance in Biochemistry ». YAKUGAKU ZASSHI 105, no 11 (1985) : 1009–18. http://dx.doi.org/10.1248/yakushi1947.105.11_1009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

WATANABE, Hidehiro. « Magnetic Resonance Spectroscopy VI. Magnetic Resonance Imaging ». Journal of the Spectroscopical Society of Japan 55, no 6 (2006) : 408–19. http://dx.doi.org/10.5111/bunkou.55.408.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kuzniecky, Ruben. « Magnetic resonance and functional magnetic resonance imaging ». Current Opinion in Neurology 10, no 2 (avril 1997) : 88–91. http://dx.doi.org/10.1097/00019052-199704000-00003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Tatarsky D. A., Skorokhodov E. V., Mironov V. L. et Gusev S. A. « Ferromagnetic resonance in exchange-coupled magnetic vortices ». Physics of the Solid State 64, no 9 (2022) : 1319. http://dx.doi.org/10.21883/pss.2022.09.54174.40hh.

Texte intégral
Résumé :
The results of a study of low-frequency ferromagnetic resonance in a system of two overlapping permalloy disks by magnetic resonance force spectroscopy are presented. It is shown that the resonant frequency of the gyrotropic mode of oscillations of magnetic vortices in this system significantly depends on the vorticity of their shells. The experimental dependences of the resonant frequencies of various states on the external magnetic field are qualitatively consistent with the results of micromagnetic modeling. Keywords: ferromagnetic resonance, magnetic resonance force spectroscopy, magnetic vortices.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Карпунин, В. В., et В. А. Маргулис. « Резонансное поглощение электромагнитного излучения в монослое фосфорена ». Журнал технической физики 53, no 4 (2019) : 474. http://dx.doi.org/10.21883/ftp.2019.04.47443.8944.

Texte intégral
Résumé :
AbstractThe absorption coefficient of the electromagnetic radiation in a phosphorene single layer placed in a magnetic field is found. A degenerate and nondegenerate electron gas is considered. The resonant dependences of the absorptance on the radiation frequency and applied magnetic field are found. Taking into account electron scattering at an ionized impurity leads to oscillation dependences of the absorption coefficient on the radiation frequency and external magnetic field. The resonance character of the absorption curve is shown. The conditions of resonances and position of resonance peaks are found.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Vujović, Željko. « Magnetic resonance signal ». Tehnika 74, no 3 (2019) : 415–21. http://dx.doi.org/10.5937/tehnika1903415v.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Barman, Elisabeth. « Magnetic resonance ». Nursing Standard 6, no 44 (22 juillet 1992) : 52–53. http://dx.doi.org/10.7748/ns.6.44.52.s63.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Ehman, R. L., R. N. Bryan, J. V. Crues, H. Hricak, H. Y. Kressel, R. E. Lenkinski, D. G. Mitchell, M. E. Moseley, S. J. Riederer et J. R. Ross. « Magnetic resonance. » Radiology 178, no 3 (mars 1991) : 907–10. http://dx.doi.org/10.1148/radiology.178.3.1994448.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Ehman, R. L., M. W. Anderson, J. V. Crues, R. J. Herfkens, H. Hricak, R. E. Lenkinski, D. J. Lomas, D. G. Mitchell, S. J. Riederer et J. R. Ross. « Magnetic resonance. » Radiology 190, no 3 (mars 1994) : 938–44. http://dx.doi.org/10.1148/radiology.190.3.8115660.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Ehman, R. L., J. V. Crues, R. E. Lenkinski, D. J. Lomas, E. R. McVeigh, D. G. Mitchell, E. M. Outwater, R. I. Pettigrew et J. R. Ross. « Magnetic resonance. » Radiology 198, no 3 (mars 1996) : 920–26. http://dx.doi.org/10.1148/radiology.198.3.8628896.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Grattan-Smith, J. Damien, Jeanne Chow, Sila Kurugol et Richard Alan Jones. « Quantitative renal magnetic resonance imaging : magnetic resonance urography ». Pediatric Radiology 52, no 2 (13 janvier 2022) : 228–48. http://dx.doi.org/10.1007/s00247-021-05264-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

MD, Dr Prashanth Kumar K. S. « Magnetic Resonance Myelography in Evaluation of Degenerative Disc Disease of Lumbar Spine in Comparision with Conventional Magnetic Resonance Imaging of Lumbar Spine ». Journal of Medical Science And clinical Research 04, no 11 (20 novembre 2016) : 14018–27. http://dx.doi.org/10.18535/jmscr/v4i11.84.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Gentile, Julie P. « Reactive Lymphadenopathy : Triggering False Positives on Magnetic Resonance Imaging ». Journal of Quality in Health Care & ; Economics 5, no 3 (2022) : 1–3. http://dx.doi.org/10.23880/jqhe-16000270.

Texte intégral
Résumé :
There are numerous etiologies of reactive lymphadenopathy on radiological imaging. Lymph node evaluation is critical for screening high risk patients for new pathology, and for the planning of systemic chemotherapy and radiation therapy. Although ultrasonography (US) is useful for screening and staging illness, it is not completely reliable. In addition to being subjective, there is also poor accessibility of deeply located lymph nodes. Breast Magnetic Resonance Imaging (MRI) offers the advantages of provision of a larger field of view, increased capability of comparison of right and left axillary areas, and increased sensitivity and specificity. It is reported that pandemic H1N1v and seasonal influenza vaccinations cause alteration in fluorodeoxyglucose avidity in positron emission tomography (PET)/CT scans. There were no identified scientific publications documenting the possibility of false positives on MRI due to the Shingrix vaccine, nor any universal recommendations for patients to avoid vaccinations for a specified period of time prior to imaging. The following is a case report of false positive reactive lymphadenopathy found in a healthy patient during breast MRI screening due to high risk status.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Demirci, Deniz, Yonca Anik, Ahmet Kaya, Bahar O. Ozgur, Ali Demirci et Turgay Ozgur. « Magnetic resonance spectroscopy of gastrocinemius muscle in running exercise ». International Journal of Academic Research 5, no 6 (10 décembre 2013) : 72–77. http://dx.doi.org/10.7813/2075-4124.2013/5-6/a.10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Nam, Myung Jin. « A Review on Nuclear Magnetic Resonance Logging : Data Interpretation ». Journal of the Korean Society of Mineral and Energy Resources Engineers 50, no 1 (2013) : 144. http://dx.doi.org/10.12972/ksmer.2013.50.1.144.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Hsu, Yuan-Yu, An-Tao Du, Norbert Schuff et Michael W. Weiner. « Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Dementias ». Journal of Geriatric Psychiatry and Neurology 14, no 3 (septembre 2001) : 145–66. http://dx.doi.org/10.1177/089198870101400308.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

SARGSYAN, A., G. HAKHUMYAN, R. MIRZOYAN, A. PAPOYAN, D. SARKISYAN, C. LEROY et Y. PASHAYAN-LEROY. « SELECTIVE AMPLIFICATION OF NARROW RESONANCE FORMED IN TRANSMISSION SPECTRUM OF Rb NANO-CELL IN MAGNETIC FIELD ». International Journal of Modern Physics : Conference Series 15 (janvier 2012) : 9–15. http://dx.doi.org/10.1142/s2010194512006897.

Texte intégral
Résumé :
Recently it was shown that "λ-Zeeman Technique" (λ-ZT) is a convenient tool to study individual transitions between the Zeeman sublevels of hyperfine levels in an external magnetic field. λ-ZT is based on resonant transmission spectrum of nanometric thin cell (NTC) of thickness L = λ, where λ is the resonant wavelength 794 nm for Rb D1 line. Narrow velocity selective optical pumping (VSOP) resonances in the transmission spectrum of the NTC are split into several components in a magnetic field. Examination of VSOP resonances allows one to identify and investigate an atomic transition in the range of magnetic fields 10 - 5000 G. Here we present a new method for selective addressing of VSOP resonance amplification (more than 10 times).
Styles APA, Harvard, Vancouver, ISO, etc.
23

Paetsch, I., C. Jahnke, A. Wahl, R. Gebker, M. Neuss, E. Fleck et E. Nagel. « Comparison of Dobutamine Stress Magnetic Resonance, Adenosine Stress Magnetic Resonance, and Adenosine Stress Magnetic Resonance Perfusion ». Circulation 110, no 7 (17 août 2004) : 835–42. http://dx.doi.org/10.1161/01.cir.0000138927.00357.fb.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Brody, Alan S., et Charles A. Gooding. « Magnetic Resonance Imaging ». Pediatrics In Review 8, no 3 (1 septembre 1986) : 87–92. http://dx.doi.org/10.1542/pir.8.3.87.

Texte intégral
Résumé :
Magnetic resonance imaging is the newest of the imaging modalities available for the diagnosis of diseases of children. No ionizing radiation is used and most studies are performed without the administration of contrast material. FUNDAMENTALS OF MAGNETIC RESONANCE IMAGE FORMATION Physics The physics of magnetic resonance imaging is only accurately explained by complex mathematics, but analogy can serve as a rough guide. When placed in a strong magnetic field, atomic nuclei containing odd numbers of protons and neutrons align along the lines of magnetic force. The magnetic fields used are in the range of 6,000 to 15,000 G. (The earth's magnetic field measures 5 G.) Although many kinds of nuclei can be used, current magnetic resonance imaging systems image hydrogen nuclei.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Yan, Fei, Qi Li, Hao Hu, Ze Wen Wang, Hao Tian, Li Li, Yu Luo et Qi Jie Wang. « Terahertz high-Q magnetic dipole resonance induced by coherent Fano interactions ». Applied Physics Letters 121, no 20 (14 novembre 2022) : 201704. http://dx.doi.org/10.1063/5.0112993.

Texte intégral
Résumé :
High Q-factor resonance holds great promise for bio-chemical sensing and enhanced light–matter interaction. However, terahertz (THz) magnetic resonances usually demonstrate low Q-factors, resulting in huge energy radiation loss particularly in high frequency bands. Here, we show that high Q-factor magnetic dipole resonance at THz frequencies can be achieved by exploiting the coherent Fano interactions with strong field enhancements in an array composed of single metallic split-ring resonators, working at Wood–Rayleigh anomalies. It can give rise to ultrahigh Q-factor beyond 104 in the THz regime. Experimentally, the measured Q-factor of dominant magnetic dipole resonance can achieve no less than a level of ∼261 by Lorentzian fitting to the experimental data. In addition, a high Q-factor of the fundamental-order magnetic dipole resonance is demonstrated beyond 30. High- Q magnetic dipole resonance is closely associated with ultralow-damping and negative permeability in the THz band. The measurements of magnetic dipole resonances are in good agreement with the theoretical analyses. Our scheme suggests a feasible route to suppress radiative loss for enhanced THz field-matter interaction.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Rhodes, Christopher J. « Magnetic Resonance Spectroscopy ». Science Progress 100, no 3 (septembre 2017) : 241–92. http://dx.doi.org/10.3184/003685017x14993478654307.

Texte intégral
Résumé :
Since the original observation by Zeeman, that spectral lines can be affected by magnetic fields, ‘magnetic spectroscopy’ has evolved into the broad arsenal of techniques known as ‘magnetic resonance’. This review focuses on nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and muon spin resonance (μSR): methods which have provided unparalleled insight into the structures, reactivity and dynamics of molecules, and thereby contributed to a detailed understanding of important aspects of chemistry, and the materials, biomedical, and environmental sciences. Magnetic resonance imaging (MRI), in vivo magnetic resonance spectroscopy (MRS) and functional magnetic resonance spectroscopy (fMRS) are also described. EPR is outlined as a principal method for investigating free radicals, along with biomedical applications, and mention is given to the more recent innovation of pulsed EPR techniques. In the final section of the article, the various methods known as μSR are collected under the heading ‘muon spin resonance’, in order to emphasise their complementarity with the more familiar NMR and EPR.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Nishanova, Yulduz, Marat Khodjibekov, Igor Juravlev et Sevinch Kurbanova. « Magnetic – Resonance Imaging in the Early Diagnosis of Breast Cancer ». International Journal of Psychosocial Rehabilitation 24, Special Issue 1 (28 février 2020) : 899–918. http://dx.doi.org/10.37200/ijpr/v24sp1/pr201234.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Parida, Kalyani. « Magnetic Resonance Spectroscopy — Revisiting the Imaging Aspects of Brain Tumors ». Journal of Medical Science And clinical Research 05, no 04 (30 avril 2017) : 24205. http://dx.doi.org/10.18535/jmscr/v5i6.226.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Sakata, M., T. Kawasaki, T. Shibue, S. Tsuruta, H. Yoshimura et H. Namiki. « 3P135 Magnetic tests and ferromagnetic resonance on Daphnia resting eggs ». Seibutsu Butsuri 45, supplement (2005) : S237. http://dx.doi.org/10.2142/biophys.45.s237_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Jingjing Yu, Jingjing Yu, Huajin Chen Huajin Chen, Xinning Yu Xinning Yu et Shiyang Liu Shiyang Liu. « Unidirectional perfect magnetic metamaterial absorber based on nonreciprocal mie resonance ». Chinese Optics Letters 12, s1 (2014) : S11301–311304. http://dx.doi.org/10.3788/col201412.s11301.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Raj, Abhishek, Alankrita, Akansha Srivastava et Vikrant Bhateja. « Computer Aided Detection of Brain Tumor in Magnetic Resonance Images ». International Journal of Engineering and Technology 3, no 5 (2011) : 523–32. http://dx.doi.org/10.7763/ijet.2011.v3.280.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Brody, A. S., et C. A. Gooding. « Magnetic Resonance Imaging ». Pediatrics in Review 8, no 3 (1 septembre 1986) : 87–92. http://dx.doi.org/10.1542/pir.8-3-87.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Hinkle, Janice. « Magnetic Resonance Imaging ». American Journal of Nursing 99, no 11 (novembre 1999) : 24CC. http://dx.doi.org/10.2307/3521719.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

TANOUE, TSUKASA. « Magnetic resonance imaging. » Journal of the Japan Society for Precision Engineering 53, no 4 (1987) : 518–21. http://dx.doi.org/10.2493/jjspe.53.518.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Meakem, Thomas J., et Mitchell D. Schnall. « MAGNETIC RESONANCE CHOLANGIOGRAPHY ». Gastroenterology Clinics of North America 24, no 2 (juin 1995) : 221–38. http://dx.doi.org/10.1016/s0889-8553(21)00191-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kim, E. E. « Magnetic Resonance Tomography ». Journal of Nuclear Medicine 50, no 2 (21 janvier 2009) : 325. http://dx.doi.org/10.2967/jnumed.108.056473.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

DeLano, Mark C. « Magnetic Resonance Imaging ». American Journal of Roentgenology 177, no 1 (juillet 2001) : 44. http://dx.doi.org/10.2214/ajr.177.1.1770044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Bronskill, M. J. « Magnetic Resonance Procedures ». American Journal of Roentgenology 177, no 6 (décembre 2001) : 1264. http://dx.doi.org/10.2214/ajr.177.6.1771264.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Article, Editorial. « MAGNETIC RESONANCE IMAGING ». Diagnostic radiology and radiotherapy, no 1 (26 avril 2018) : 170–74. http://dx.doi.org/10.22328/2079-5343-2018-9-1-170-174.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Spritzer, Charles E. « Cardiovascular Magnetic Resonance ». American Journal of Roentgenology 179, no 5 (novembre 2002) : 1204. http://dx.doi.org/10.2214/ajr.179.5.1791204.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Babic, Rade, Strahinja Babic, Aleksandra Marjanovic, Dimitrije Pavlovic, Milorad Pavlovic et Gordana Stankovic-Babic. « The magnetic resonance ». Materia Medica 30, no 2 (2014) : 1121–30. http://dx.doi.org/10.5937/matmed1402121b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Watanabe, Takashi, et Yasuyo Sekiyama. « Magnetic Resonance Imaging ». Nippon Shokuhin Kagaku Kogaku Kaishi 68, no 5 (15 mai 2021) : 225. http://dx.doi.org/10.3136/nskkk.68.225.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Hogg, J. I. C. « Magnetic Resonance Imaging ». Journal of The Royal Naval Medical Service 80, no 2 (1994) : 51–54. http://dx.doi.org/10.1136/jrnms-80-51.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Ashraf, Yasma, Irum Iqbal et Shafaat Khatoon. « MAGNETIC RESONANCE IMAGING ; ». Professional Medical Journal 24, no 04 (6 avril 2017) : 560–64. http://dx.doi.org/10.29309/tpmj/2017.24.04.1512.

Texte intégral
Résumé :
Perianal fistula is defined as an abnormal communication channel between analcanal and perianal skin. Among all the imaging tools Magnetic resonance imaging (MRI) isof choice in the diagnosis and management of perianal fistulas. Objectives: “To determinethe diagnostic accuracy of MR imaging in detection of perianal fistulas and comparing it withper operative findings”. Peroperative findings are taken as gold standard. Place and Durationof Study: This study was carried out in Diagnostic Radiology, Pakistan Institute of MedicalSciences (P.I.M.S) Islamabad, over a period of nine months from 01-02-2012 to 31-10-2012. Forthis collaboration was made with the Department of General Surgery P.I.M.S and Departmentof gynecology (MCH center) PIMS and gastroenterology Department. Patients and Methods:A total of 95 patients were included in study having perianal fistulas on clinical examination.MRI was performed in the patients and T1-weighted fast spin echo (T1W FSE) images weretaken before and after gadolinium injection. Fat suppressed T2-weighted fast spin echo (T2WFSE) images were obtained in all three planes including transverse, sagittal and coronal. Allthe scans were viewed by a single consultant radiologist to avoid observer bias. Results: Outof 95, 81 patients (85.3%) were male and 14 (14.7%) were female. Sensitivity, specificity andaccuracy of magnetic resonance imaging (MRI) was 96.2%, 75.0% and 92.6%, respectively.Positive predictive value was 95.0% and negative predictive value was 80.0%. Conclusion: ourstudy proves that among imaging modalities MRI is of choice for preoperative assessment ofperianal fistulas. It provides highly accurate, noninvasive and relatively very less time consumingmeans of performing pre-operative evaluation, specially the complex, branching fistulas. Thisdiagnostic accuracy not only helps in surgical cure but avoids recurrence and post-operativecomplications like fecal incontinence
Styles APA, Harvard, Vancouver, ISO, etc.
45

Sanghvi, Darshana. « Magnetic Resonance Neurography ». Indian Journal of Radiology and Imaging 22, no 02 (avril 2012) : 121. http://dx.doi.org/10.1055/s-0041-1734379.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Pennell, Dudley. « Cardiovascular magnetic resonance ». Heart 85, no 5 (1 mai 2001) : 581–89. http://dx.doi.org/10.1136/hrt.85.5.581.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Knorr, John R. « Magnetic resonance angiography ». Journal of the American Osteopathic Association 93, no 10 (1 octobre 1993) : 1033. http://dx.doi.org/10.7556/jaoa.1993.93.10.1033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Fitzgerald, R. H., et T. H. Berquist. « Magnetic resonance imaging. » Journal of Bone & ; Joint Surgery 68, no 6 (juillet 1986) : 799–801. http://dx.doi.org/10.2106/00004623-198668060-00001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Robertson, Angus. « Magnetic resonance imaging ». Medical Journal of Australia 152, no 3 (février 1990) : 114–15. http://dx.doi.org/10.5694/j.1326-5377.1990.tb125115.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Levin, Leonard A., et Simmons Lessell. « Magnetic Resonance Angiography ». International Ophthalmology Clinics 34, no 3 (1994) : 293–303. http://dx.doi.org/10.1097/00004397-199403430-00027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie