Articles de revues sur le sujet « Magnetic microrheology »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Magnetic microrheology.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Magnetic microrheology ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Peredo-Ortíz, R., et M. Hernández-Contreras. « Diffusion microrheology of ferrofluids ». Revista Mexicana de Física 64, no 1 (8 février 2018) : 82. http://dx.doi.org/10.31349/revmexfis.64.82.

Texte intégral
Résumé :
We provide a statistical mechanics approach to study the linear microrheology of thermally equilibrated and homogeneous ferrofluids. Theexpressions for the elastic and loss moduli depend on the bulk microstructure of the magnetic fluid determined by the structure factor of thesuspension of magnetic particles. The comparison of the predicted microrheology with computer simulations confirms that as a function ofrelaxation frequency of thermal fluctuations of the particle concentration both theory and simulations have the same trends. At very shortfrequencies the viscous modulus relates to the translational and rotational self-diffusion coefficients of a ferro-particle.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kim, Jin Chul, Myungeun Seo, Marc A. Hillmyer et Lorraine F. Francis. « Magnetic Microrheology of Block Copolymer Solutions ». ACS Applied Materials & ; Interfaces 5, no 22 (14 novembre 2013) : 11877–83. http://dx.doi.org/10.1021/am403569f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wang, Hanqing, Tomaž Mohorič, Xianren Zhang, Jure Dobnikar et Jürgen Horbach. « Active microrheology in two-dimensional magnetic networks ». Soft Matter 15, no 22 (2019) : 4437–44. http://dx.doi.org/10.1039/c9sm00085b.

Texte intégral
Résumé :
We study active microrheology in 2D with Langevin simulations of tracer particles pulled through magnetic networks by a constant force. While non-magnetic tracers strongly deform the network in order to be able to move through, the magnetic tracers can do so by deforming the structure only slightly.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Brasovs, Artis, Jānis Cīmurs, Kaspars Ērglis, Andris Zeltins, Jean-Francois Berret et Andrejs Cēbers. « Magnetic microrods as a tool for microrheology ». Soft Matter 11, no 13 (2015) : 2563–69. http://dx.doi.org/10.1039/c4sm02454k.

Texte intégral
Résumé :
The protocol of microrheological measurements consists of recording the dynamics of the orientation of the rod when the magnetic field is applied at an angle to the rod and observing its relaxation after the field is switched off.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Raikher, Yu L., et V. V. Rusakov. « Magnetic rotary microrheology in a Maxwell fluid ». Journal of Magnetism and Magnetic Materials 300, no 1 (mai 2006) : e229-e233. http://dx.doi.org/10.1016/j.jmmm.2005.10.086.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Berezney, John P., et Megan T. Valentine. « A compact rotary magnetic tweezers device for dynamic material analysis ». Review of Scientific Instruments 93, no 9 (1 septembre 2022) : 093701. http://dx.doi.org/10.1063/5.0090199.

Texte intégral
Résumé :
Here we present a new, compact magnetic tweezers design that enables precise application of a wide range of dynamic forces to soft materials without the need to raise or lower the magnet height above the sample. This is achieved through the controlled rotation of the permanent magnet array with respect to the fixed symmetry axis defined by a custom-built iron yoke. These design improvements increase the portability of the device and can be implemented within existing microscope setups without the need for extensive modification of the sample holders or light path. This device is particularly well-suited to active microrheology measurements using either creep analysis, in which a step force is applied to a micron-sized magnetic particle that is embedded in a complex fluid, or oscillatory microrheology, in which the particle is driven with a periodic waveform of controlled amplitude and frequency. In both cases, the motions of the particle are measured and analyzed to determine the local dynamic mechanical properties of the material.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Radiom, Milad, Romain Hénault, Salma Mani, Aline Grein Iankovski, Xavier Norel et Jean-François Berret. « Magnetic wire active microrheology of human respiratory mucus ». Soft Matter 17, no 32 (2021) : 7585–95. http://dx.doi.org/10.1039/d1sm00512j.

Texte intégral
Résumé :
Micrometer-sized magnetic wires are used to study the mechanical properties of human mucus collected after surgery. Our work shows that mucus has the property of a high viscosity gel characterized by large spatial viscoelastic heterogeneities.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Liu, Wei, Xiangjun Gong, To Ngai et Chi Wu. « Near-surface microrheology reveals dynamics and viscoelasticity of soft matter ». Soft Matter 14, no 48 (2018) : 9764–76. http://dx.doi.org/10.1039/c8sm01886c.

Texte intégral
Résumé :
We report the development of a microrheology technique that incorporates a magnetic-field-induced simulator on total internal reflection microscopy (TIRM) to probe the near-surface dynamics and viscoelastic behaviors of soft matter like polymer solution/gels and colloidal dispersions.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Preece, Daryl, Rebecca Warren, R. M. L. Evans, Graham M. Gibson, Miles J. Padgett, Jonathan M. Cooper et Manlio Tassieri. « Optical tweezers : wideband microrheology ». Journal of Optics 13, no 4 (4 mars 2011) : 044022. http://dx.doi.org/10.1088/2040-8978/13/4/044022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Berret, Jean François. « Microrheology of viscoelastic solutions studied by magnetic rotational spectroscopy ». International Journal of Nanotechnology 13, no 8/9 (2016) : 597. http://dx.doi.org/10.1504/ijnt.2016.079661.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Rebêlo, L. M., J. S. de Sousa, J. Mendes Filho, J. Schäpe, H. Doschke et M. Radmacher. « Microrheology of cells with magnetic force modulation atomic force microscopy ». Soft Matter 10, no 13 (9 décembre 2013) : 2141–49. http://dx.doi.org/10.1039/c3sm52045e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Lin, Jun, et Megan T. Valentine. « Ring-shaped NdFeB-based magnetic tweezers enables oscillatory microrheology measurements ». Applied Physics Letters 100, no 20 (14 mai 2012) : 201902. http://dx.doi.org/10.1063/1.4717988.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Besseris, George J., et Donovan B. Yeates. « Rotating magnetic particle microrheometry in biopolymer fluid dynamics : Mucus microrheology ». Journal of Chemical Physics 127, no 10 (14 septembre 2007) : 105106. http://dx.doi.org/10.1063/1.2766947.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Behrend, Caleb J., Jeffrey N. Anker, Brandon H. McNaughton et Raoul Kopelman. « Microrheology with modulated optical nanoprobes (MOONs) ». Journal of Magnetism and Magnetic Materials 293, no 1 (mai 2005) : 663–70. http://dx.doi.org/10.1016/j.jmmm.2005.02.072.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Helseth, L. E., et T. M. Fischer. « Fundamental limits of optical microrheology ». Journal of Colloid and Interface Science 275, no 1 (juillet 2004) : 322–27. http://dx.doi.org/10.1016/j.jcis.2004.01.052.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Lin, Jun, et Megan T. Valentine. « High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments ». Review of Scientific Instruments 83, no 5 (mai 2012) : 053905. http://dx.doi.org/10.1063/1.4719916.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Kollmannsberger, Philip, Claudia Mierke et Ben Fabry. « Nonlinear mechanical response of adherent cells measured by magnetic bead microrheology ». Bone 46 (mars 2010) : S50—S51. http://dx.doi.org/10.1016/j.bone.2010.01.115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Rich, Jason P., Jan Lammerding, Gareth H. McKinley et Patrick S. Doyle. « Nonlinear microrheology of an aging, yield stress fluid using magnetic tweezers ». Soft Matter 7, no 21 (2011) : 9933. http://dx.doi.org/10.1039/c1sm05843f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Puig-De-Morales, Marina, Mireia Grabulosa, Jordi Alcaraz, Joaquim Mullol, Geoffrey N. Maksym, Jeffrey J. Fredberg et Daniel Navajas. « Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation ». Journal of Applied Physiology 91, no 3 (1 septembre 2001) : 1152–59. http://dx.doi.org/10.1152/jappl.2001.91.3.1152.

Texte intégral
Résumé :
Magnetic twisting cytometry (MTC) (Wang N, Butler JP, and Ingber DE, Science260: 1124–1127, 1993) is a useful technique for probing cell micromechanics. The technique is based on twisting ligand-coated magnetic microbeads bound to membrane receptors and measuring the resulting bead rotation with a magnetometer. Owing to the low signal-to-noise ratio, however, the magnetic signal must be modulated, which is accomplished by spinning the sample at ∼10 Hz. Present demodulation approaches limit the MTC range to frequencies <0.5 Hz. We propose a novel demodulation algorithm to expand the frequency range of MTC measurements to higher frequencies. The algorithm is based on coherent demodulation in the frequency domain, and its frequency range is limited only by the dynamic response of the magnetometer. Using the new algorithm, we measured the complex modulus of elasticity (G*) of cultured human bronchial epithelial cells (BEAS-2B) from 0.03 to 16 Hz. Cells were cultured in supplemented RPMI medium, and ferromagnetic beads (∼5 μm) coated with an RGD peptide were bound to the cell membrane. Both the storage (G′, real part of G*) and loss (G", imaginary part of G*) moduli increased with frequency as ωα (2π × frequency) with α ≈ ¼. The ratio G"/G′ was ∼0.5 and varied little with frequency. Thus the cells exhibited a predominantly elastic behavior with a weak power law of frequency and a nearly constant proportion of elastic vs. frictional stresses, implying that the mechanical behavior conformed to the so-called structural damping (or constant-phase) law (Maksym GN, Fabry B, Butler JP, Navajas D, Tschumperlin DJ, LaPorte JD, and Fredberg JJ, J Appl Physiol 89: 1619–1632, 2000). We conclude that frequency domain demodulation dramatically increases the frequency range that can be probed with MTC and reveals that the mechanics of these cells conforms to constant-phase behavior over a range of frequencies approaching three decades.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Huang, Derek E., et Roseanna N. Zia. « Sticky, active microrheology : Part 1. Linear-response ». Journal of Colloid and Interface Science 554 (octobre 2019) : 580–91. http://dx.doi.org/10.1016/j.jcis.2019.07.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Sohn, I. S., R. Rajagopalan et A. C. Dogariu. « Spatially resolved microrheology through a liquid/liquid interface ». Journal of Colloid and Interface Science 269, no 2 (janvier 2004) : 503–13. http://dx.doi.org/10.1016/s0021-9797(03)00728-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Wu, Chenjun, Qingxu Zhang, Yihu Song et Qiang Zheng. « Microrheology of magnetorheological silicone elastomers during curing process under the presence of magnetic field ». AIP Advances 7, no 9 (septembre 2017) : 095004. http://dx.doi.org/10.1063/1.5002121.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Aprelev, Pavel, Bonni McKinney, Chadwick Walls et Konstanin G. Kornev. « Magnetic stage with environmental control for optical microscopy and high-speed nano- and microrheology ». Physics of Fluids 29, no 7 (juillet 2017) : 072001. http://dx.doi.org/10.1063/1.4989548.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Raikher, Yu L., et V. V. Rusakov. « Rotational Microrheology of Viscoelastic Fluid : Orientational Kinetics of Magnetic Particles in the Inertialess Approximation ». Colloid Journal 67, no 5 (septembre 2005) : 610–24. http://dx.doi.org/10.1007/s10595-005-0140-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

García Daza, Fabián A., Antonio M. Puertas, Alejandro Cuetos et Alessandro Patti. « Microrheology of colloidal suspensions via dynamic Monte Carlo simulations ». Journal of Colloid and Interface Science 605 (janvier 2022) : 182–92. http://dx.doi.org/10.1016/j.jcis.2021.07.088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Medronho, B., A. Filipe, C. Costa, A. Romano, B. Lindman, H. Edlund et M. Norgren. « Microrheology of novel cellulose stabilized oil-in-water emulsions ». Journal of Colloid and Interface Science 531 (décembre 2018) : 225–32. http://dx.doi.org/10.1016/j.jcis.2018.07.043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Gan, Tiansheng, Xiangjun Gong, Holger Schönherr et Guangzhao Zhang. « Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy ». Biointerphases 11, no 4 (décembre 2016) : 041005. http://dx.doi.org/10.1116/1.4968809.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Inoue, Masao, et Akira Yoshimori. « Effects of interactions between particles on dynamics in microrheology ». Journal of Molecular Liquids 200 (décembre 2014) : 81–84. http://dx.doi.org/10.1016/j.molliq.2014.05.029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Meng, Xianghe, Xiaomo Wu, Jianmin Song, Hao Zhang, Mingjun Chen et Hui Xie. « Quantification of the Microrheology of Living Cells Using Multi-Frequency Magnetic Force Modulation Atomic Force Microscopy ». IEEE Transactions on Instrumentation and Measurement 71 (2022) : 1–9. http://dx.doi.org/10.1109/tim.2022.3153994.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Malgaretti, Paolo, Antonio M. Puertas et Ignacio Pagonabarraga. « Active microrheology in corrugated channels : Comparison of thermal and colloidal baths ». Journal of Colloid and Interface Science 608 (février 2022) : 2694–702. http://dx.doi.org/10.1016/j.jcis.2021.10.193.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Liu, Wei, Yuwei Zhu, Tong Zhang, Hui Zhu, Chuanxin He et To Ngai. « Microrheology of thermoresponsive poly(N-isopropylacrylamide) microgel dispersions near a substrate surface ». Journal of Colloid and Interface Science 597 (septembre 2021) : 104–13. http://dx.doi.org/10.1016/j.jcis.2021.03.181.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Molaei, Mehdi, et John C. Crocker. « Interfacial microrheology and tensiometry in a miniature, 3-d printed Langmuir trough ». Journal of Colloid and Interface Science 560 (février 2020) : 407–15. http://dx.doi.org/10.1016/j.jcis.2019.09.112.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Bausch, Andreas R., Ulrike Hellerer, Markus Essler, Martin Aepfelbacher et Erich Sackmann. « Rapid Stiffening of Integrin Receptor-Actin Linkages in Endothelial Cells Stimulated with Thrombin : A Magnetic Bead Microrheology Study ». Biophysical Journal 80, no 6 (juin 2001) : 2649–57. http://dx.doi.org/10.1016/s0006-3495(01)76234-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Huang, Shilin, Kornelia Gawlitza, Regine von Klitzing, Laurent Gilson, Johannes Nowak, Stefan Odenbach, Werner Steffen et Günter K. Auernhammer. « Microgels at the Water/Oil Interface : In Situ Observation of Structural Aging and Two-Dimensional Magnetic Bead Microrheology ». Langmuir 32, no 3 (11 janvier 2016) : 712–22. http://dx.doi.org/10.1021/acs.langmuir.5b01438.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Aponte-Rivera, Christian, et Roseanna N. Zia. « The confined Generalized Stokes-Einstein relation and its consequence on intracellular two-point microrheology ». Journal of Colloid and Interface Science 609 (mars 2022) : 423–33. http://dx.doi.org/10.1016/j.jcis.2021.11.037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Chu, Henry C. W., et Roseanna N. Zia. « Toward a nonequilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions ». Journal of Colloid and Interface Science 539 (mars 2019) : 388–99. http://dx.doi.org/10.1016/j.jcis.2018.12.055.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Huang, Derek E., et Roseanna N. Zia. « Sticky-probe active microrheology : Part 2. The influence of attractions on non-Newtonian flow ». Journal of Colloid and Interface Science 562 (mars 2020) : 293–306. http://dx.doi.org/10.1016/j.jcis.2019.11.057.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Chen, Yin-Quan, Chia-Yu Kuo, Ming-Tzo Wei, Kelly Wu, Pin-Tzu Su, Chien-Shiou Huang et Arthur Chiou. « Intracellular viscoelasticity of HeLa cells during cell division studied by video particle-tracking microrheology ». Journal of Biomedical Optics 19, no 1 (17 juillet 2013) : 011008. http://dx.doi.org/10.1117/1.jbo.19.1.011008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Habibi, Ahlem, Christophe Blanc, Nadia Ben Mbarek et Taoufik Soltani. « Passive and active microrheology of a lyotropic chromonic nematic liquid crystal disodium cromoglycate ». Journal of Molecular Liquids 288 (août 2019) : 111027. http://dx.doi.org/10.1016/j.molliq.2019.111027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Moschakis, Thomas, Brent S. Murray et Eric Dickinson. « On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology ». Journal of Colloid and Interface Science 345, no 2 (mai 2010) : 278–85. http://dx.doi.org/10.1016/j.jcis.2010.02.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Neckernuss, T., L. K. Mertens, I. Martin, T. Paust, M. Beil et O. Marti. « Active microrheology with optical tweezers : a versatile tool to investigate anisotropies in intermediate filament networks ». Journal of Physics D : Applied Physics 49, no 4 (29 décembre 2015) : 045401. http://dx.doi.org/10.1088/0022-3727/49/4/045401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Alves, Luis, Bruno Medronho, Alexandra Filipe, Filipe E. Antunes, Björn Lindman, Daniel Topgaard, Irina Davidovich et Yeshayahu Talmon. « New Insights on the Role of Urea on the Dissolution and Thermally-Induced Gelation of Cellulose in Aqueous Alkali ». Gels 4, no 4 (11 décembre 2018) : 87. http://dx.doi.org/10.3390/gels4040087.

Texte intégral
Résumé :
The gelation of cellulose in alkali solutions is quite relevant, but still a poorly understood process. Moreover, the role of certain additives, such as urea, is not consensual among the community. Therefore, in this work, an unusual set of characterization methods for cellulose solutions, such as cryo-transmission electronic microscopy (cryo-TEM), polarization transfer solid-state nuclear magnetic resonance (PTssNMR) and diffusion wave spectroscopy (DWS) were employed to study the role of urea on the dissolution and gelation processes of cellulose in aqueous alkali. Cryo-TEM reveals that the addition of urea generally reduces the presence of undissolved cellulose fibrils in solution. These results are consistent with PTssNMR data, which show the reduction and in some cases the absence of crystalline portions of cellulose in solution, suggesting a pronounced positive effect of the urea on the dissolution efficiency of cellulose. Both conventional mechanical macrorheology and microrheology (DWS) indicate a significant delay of gelation induced by urea, being absent until ca. 60 °C for a system containing 5 wt % cellulose, while a system without urea gels at a lower temperature. For higher cellulose concentrations, the samples containing urea form gels even at room temperature. It is argued that since urea facilitates cellulose dissolution, the high entanglement of the cellulose chains in solution (above the critical concentration, C*) results in a strong three-dimensional network.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Jones, Dustin P., William Hanna, Gwendolyn M. Cramer et Jonathan P. Celli. « In situ measurement of ECM rheology and microheterogeneity in embedded and overlaid 3D pancreatic tumor stroma co-cultures via passive particle tracking ». Journal of Innovative Optical Health Sciences 10, no 06 (novembre 2017) : 1742003. http://dx.doi.org/10.1142/s1793545817420032.

Texte intégral
Résumé :
Tumor growth is regulated by a diverse set of extracellular influences, including paracrine crosstalk with stromal partners, and biophysical interactions with surrounding cells and tissues.Studies elucidating the role of physical force and the mechanical properties of the extracellular matrix (ECM) itself as regulators of tumor growth and invasion have been greatly catalyzed by the use of in vitro three-dimensional (3D) tumor models. These systems provide the ability to systematically isolate, manipulate, and evaluate impact of stromal components and extracellular mechanics in a platform that is both conducive to imaging and biologically relevant. However, recognizing that mechanoregulatory crosstalk is bi-directional and fully utilizing these models requires complementary methods for in situ measurements of the local mechanical environment. Here, in 3D tumor/fibroblast co-culture models of pancreatic cancer, a disease characterized by its prominent stromal involvement, we evaluate the use of particle-tracking microrheology to probe dynamic mechanical changes. Using videos of fluorescently labeled polystyrene microspheres embedded in collagen I ECM, we measure spatiotemporal changes in the Brownian motion of probes to report local ECM shear modulus and microheterogeneity. This approach reveals stiffening of collagen in fibroblast co-cultures relative to cultures with cancer cells only, which exhibit degraded ECM with heterogeneous microstructure. We further show that these effects are dependent on culture geometry with contrasting behavior for embedded and overlay cultures. In addition to potential application to screening stroma-targeted therapeutics, this work also provides insight into how the composition and plating geometry impact the mechanical properties of 3D cell cultures that are increasingly widely used in cancer biology.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Wilhelm, C., J. Browaeys, A. Ponton et J. C. Bacri. « Rotational magnetic particles microrheology : The Maxwellian case ». Physical Review E 67, no 1 (22 janvier 2003). http://dx.doi.org/10.1103/physreve.67.011504.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Mao, Yating, Paige Nielsen et Jamel Ali. « Passive and Active Microrheology for Biomedical Systems ». Frontiers in Bioengineering and Biotechnology 10 (5 juillet 2022). http://dx.doi.org/10.3389/fbioe.2022.916354.

Texte intégral
Résumé :
Microrheology encompasses a range of methods to measure the mechanical properties of soft materials. By characterizing the motion of embedded microscopic particles, microrheology extends the probing length scale and frequency range of conventional bulk rheology. Microrheology can be characterized into either passive or active methods based on the driving force exerted on probe particles. Tracer particles are driven by thermal energy in passive methods, applying minimal deformation to the assessed medium. In active techniques, particles are manipulated by an external force, most commonly produced through optical and magnetic fields. Small-scale rheology holds significant advantages over conventional bulk rheology, such as eliminating the need for large sample sizes, the ability to probe fragile materials non-destructively, and a wider probing frequency range. More importantly, some microrheological techniques can obtain spatiotemporal information of local microenvironments and accurately describe the heterogeneity of structurally complex fluids. Recently, there has been significant growth in using these minimally invasive techniques to investigate a wide range of biomedical systems both in vitro and in vivo. Here, we review the latest applications and advancements of microrheology in mammalian cells, tissues, and biofluids and discuss the current challenges and potential future advances on the horizon.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Berret, Jean-François. « Comment on “Bilayer aggregate microstructure determines viscoelasticity of lung surfactant suspensions” by C. O. Ciutara and J. A. Zasadzinski, Soft Matter, 2021, 17, 5170–5182 ». Soft Matter, 2022. http://dx.doi.org/10.1039/d2sm00653g.

Texte intégral
Résumé :
This note discusses the possible causes of the discrepancy between two studies and suggests that for pulmonary surfactant substitutes, the microrheology technique known as rotational magnetic spectroscopy can provide valuable results.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Wilhelm, C., F. Gazeau et J. C. Bacri. « Rotational magnetic endosome microrheology : Viscoelastic architecture inside living cells ». Physical Review E 67, no 6 (23 juin 2003). http://dx.doi.org/10.1103/physreve.67.061908.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

« Viscoelasticity of the bacteriophage Pf1 network measured by magnetic microrheology ». Magnetohydrodynamics 46, no 1 (mars 2010) : 23–30. http://dx.doi.org/10.22364/mhd.46.1.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Chevry, L., N. K. Sampathkumar, A. Cebers et J. F. Berret. « Magnetic wire-based sensors for the microrheology of complex fluids ». Physical Review E 88, no 6 (13 décembre 2013). http://dx.doi.org/10.1103/physreve.88.062306.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Wilhelm, Claire. « Effective temperature inside living cells ». MRS Proceedings 1227 (2009). http://dx.doi.org/10.1557/proc-1227-jj05-03.

Texte intégral
Résumé :
AbstractThe combination of active and passive microrheology using magnetic probes engulfed inside living cells demonstrates the violation of the fluctuation dissipation theorem in cells. It is proposed to quantify the deviation from the in equilibrium situation with an effective temperature. Each magnetic probe then serves as a local thermometer within the cells. The response of pairs of magnetic beads of two diameters (1 and 2.8 μm) to an oscillating magnetic field is analyzed to measure the viscoelastic complex modulus in the beads environment (active measurement). The spontaneous motion of the beads is tracked to compute their mean square displacements (passive measurement). The effective temperature is derived using an extension of the fluctuation dissipation theorem.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie