Littérature scientifique sur le sujet « Machine Learning Model Robustness »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Machine Learning Model Robustness ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Machine Learning Model Robustness"
Arslan, Ayse. « Rethinking Robustness in Machine Learning : Use of Generative Adversarial Networks for Enhanced Robustness ». Scholars Journal of Engineering and Technology 10, no 3 (28 mars 2022) : 9–15. http://dx.doi.org/10.36347/sjet.2022.v10i03.001.
Texte intégralEinziger, Gil, Maayan Goldstein, Yaniv Sa’ar et Itai Segall. « Verifying Robustness of Gradient Boosted Models ». Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 juillet 2019) : 2446–53. http://dx.doi.org/10.1609/aaai.v33i01.33012446.
Texte intégralThapa, Chandra, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe et Lichao Sun. « SplitFed : When Federated Learning Meets Split Learning ». Proceedings of the AAAI Conference on Artificial Intelligence 36, no 8 (28 juin 2022) : 8485–93. http://dx.doi.org/10.1609/aaai.v36i8.20825.
Texte intégralBalakrishnan, Charumathi, et Mangaiyarkarasi Thiagarajan. « CREDIT RISK MODELLING FOR INDIAN DEBT SECURITIES USING MACHINE LEARNING ». Buletin Ekonomi Moneter dan Perbankan 24 (8 mars 2021) : 107–28. http://dx.doi.org/10.21098/bemp.v24i0.1401.
Texte intégralNguyen, Ngoc-Kim-Khanh, Quang Nguyen, Hai-Ha Pham, Thi-Trang Le, Tuan-Minh Nguyen, Davide Cassi, Francesco Scotognella, Roberto Alfierif et Michele Bellingeri. « Predicting the Robustness of Large Real-World Social Networks Using a Machine Learning Model ». Complexity 2022 (9 novembre 2022) : 1–16. http://dx.doi.org/10.1155/2022/3616163.
Texte intégralWu, Zhijing, et Hua Xu. « A Multi-Task Learning Machine Reading Comprehension Model for Noisy Document (Student Abstract) ». Proceedings of the AAAI Conference on Artificial Intelligence 34, no 10 (3 avril 2020) : 13963–64. http://dx.doi.org/10.1609/aaai.v34i10.7254.
Texte intégralChuah, Joshua, Uwe Kruger, Ge Wang, Pingkun Yan et Juergen Hahn. « Framework for Testing Robustness of Machine Learning-Based Classifiers ». Journal of Personalized Medicine 12, no 8 (14 août 2022) : 1314. http://dx.doi.org/10.3390/jpm12081314.
Texte intégralSepulveda, Natalia Espinoza, et Jyoti Sinha. « Parameter Optimisation in the Vibration-Based Machine Learning Model for Accurate and Reliable Faults Diagnosis in Rotating Machines ». Machines 8, no 4 (23 octobre 2020) : 66. http://dx.doi.org/10.3390/machines8040066.
Texte intégralZhang, Lingwen, Ning Xiao, Wenkao Yang et Jun Li. « Advanced Heterogeneous Feature Fusion Machine Learning Models and Algorithms for Improving Indoor Localization ». Sensors 19, no 1 (2 janvier 2019) : 125. http://dx.doi.org/10.3390/s19010125.
Texte intégralDrews, Samuel, Aws Albarghouthi et Loris D'Antoni. « Proving Data-Poisoning Robustness in Decision Trees ». Communications of the ACM 66, no 2 (20 janvier 2023) : 105–13. http://dx.doi.org/10.1145/3576894.
Texte intégralThèses sur le sujet "Machine Learning Model Robustness"
Adams, William A. « Analysis of Robustness in Lane Detection using Machine Learning Models ». Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1449167611.
Texte intégralLundström, Linnea. « Formally Verifying the Robustness of Machine Learning Models : A Comparative Study ». Thesis, Linköpings universitet, Programvara och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-167504.
Texte intégralMAURI, LARA. « DATA PARTITIONING AND COMPENSATION TECHNIQUES FOR SECURE TRAINING OF MACHINE LEARNING MODELS ». Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/932387.
Texte intégralRado, Omesaad A. M. « Contributions to evaluation of machine learning models. Applicability domain of classification models ». Thesis, University of Bradford, 2019. http://hdl.handle.net/10454/18447.
Texte intégralMinistry of Higher Education in Libya
Cherief-Abdellatif, Badr-Eddine. « Contributions to the theoretical study of variational inference and robustness ». Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAG001.
Texte intégralThis PhD thesis deals with variational inference and robustness. More precisely, it focuses on the statistical properties of variational approximations and the design of efficient algorithms for computing them in an online fashion, and investigates Maximum Mean Discrepancy based estimators as learning rules that are robust to model misspecification.In recent years, variational inference has been extensively studied from the computational viewpoint, but only little attention has been put in the literature towards theoretical properties of variational approximations until very recently. In this thesis, we investigate the consistency of variational approximations in various statistical models and the conditions that ensure the consistency of variational approximations. In particular, we tackle the special case of mixture models and deep neural networks. We also justify in theory the use of the ELBO maximization strategy, a model selection criterion that is widely used in the Variational Bayes community and is known to work well in practice.Moreover, Bayesian inference provides an attractive online-learning framework to analyze sequential data, and offers generalization guarantees which hold even under model mismatch and with adversaries. Unfortunately, exact Bayesian inference is rarely feasible in practice and approximation methods are usually employed, but do such methods preserve the generalization properties of Bayesian inference? In this thesis, we show that this is indeed the case for some variational inference algorithms. We propose new online, tempered variational algorithms and derive their generalization bounds. Our theoretical result relies on the convexity of the variational objective, but we argue that our result should hold more generally and present empirical evidence in support of this. Our work presents theoretical justifications in favor of online algorithms that rely on approximate Bayesian methods. Another point that is addressed in this thesis is the design of a universal estimation procedure. This question is of major interest, in particular because it leads to robust estimators, a very hot topic in statistics and machine learning. We tackle the problem of universal estimation using a minimum distance estimator based on the Maximum Mean Discrepancy. We show that the estimator is robust to both dependence and to the presence of outliers in the dataset. We also highlight the connections that may exist with minimum distance estimators using L2-distance. Finally, we provide a theoretical study of the stochastic gradient descent algorithm used to compute the estimator, and we support our findings with numerical simulations. We also propose a Bayesian version of our estimator, that we study from both a theoretical and a computational points of view
Ilyas, Andrew. « On practical robustness of machine learning systems ». Thesis, Massachusetts Institute of Technology, 2018. https://hdl.handle.net/1721.1/122911.
Texte intégralThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 71-79).
We consider the importance of robustness in evaluating machine learning systems, an in particular systems involving deep learning. We consider these systems' vulnerability to adversarial examples--subtle, crafted perturbations to inputs which induce large change in output. We show that these adversarial examples are not only theoretical concern, by desigining the first 3D adversarial objects, and by demonstrating that these examples can be constructed even when malicious actors have little power. We suggest a potential avenue for building robust deep learning models by leveraging generative models.
by Andrew Ilyas.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Ishii, Shotaro, et David Ljunggren. « A Comparative Analysis of Robustness to Noise in Machine Learning Classifiers ». Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302532.
Texte intégralData som härstammar från verkliga mätningar innehåller ofta förvrängningar i viss utsträckning. Sådana förvrängningar kan i vissa fall leda till försämrad klassificeringsnoggrannhet. I den här studien jämförs tre klassificeringsalgoritmer med avseende på hur pass robusta de är när den data de presenteras innehåller syntetiska förvrängningar. Mer specifikt så tränades och jämfördes slumpskogar, stödvektormaskiner och artificiella neuronnät på fyra olika mängder data med varierande nivåer av syntetiska förvrängningar. Sammanfattningsvis så presterade slumpskogen bäst, och var den mest robusta klassificeringsalgoritmen på åtta av tio förvrängningsnivåer, tätt följt av det artificiella neuronnätet. På de två återstående förvrängningsnivåerna presterade stödvektormaskinen med linjär kärna bäst och var den mest robusta klassificeringsalgoritmen.
Ebrahimi, Javid. « Robustness of Neural Networks for Discrete Input : An Adversarial Perspective ». Thesis, University of Oregon, 2019. http://hdl.handle.net/1794/24535.
Texte intégralFagogenis, Georgios. « Increasing the robustness of autonomous systems to hardware degradation using machine learning ». Thesis, Heriot-Watt University, 2016. http://hdl.handle.net/10399/3378.
Texte intégralHaussamer, Nicolai Haussamer. « Model Calibration with Machine Learning ». Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29451.
Texte intégralLivres sur le sujet "Machine Learning Model Robustness"
Mohamed, Khaled Salah. Machine Learning for Model Order Reduction. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75714-8.
Texte intégralSubrahmanian, V. S., Chiara Pulice, James F. Brown et Jacob Bonen-Clark. A Machine Learning Based Model of Boko Haram. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60614-5.
Texte intégralSturm, Jürgen. Approaches to Probabilistic Model Learning for Mobile Manipulation Robots. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013.
Trouver le texte intégralWidjanarko, Bambang. Pengembangan model model machine learning ketahanan pangan melalui pembentukan zona musim (ZOM) suatu wilayah : Laporan akhir hibah kompetitif penelitian sesuai prioritas nasional tahun I. Surabaya : Lembaga Penelitian dan Pengabdian Kepada Masyarakat, Institut Teknologi Sepuluh Nopember, 2010.
Trouver le texte intégralAdversarial Robustness for Machine Learning Models. Elsevier Science & Technology Books, 2022.
Trouver le texte intégralAdversarial Robustness for Machine Learning Models. Elsevier Science & Technology, 2022.
Trouver le texte intégralAdversarial Robustness for Machine Learning. Elsevier, 2023. http://dx.doi.org/10.1016/c2020-0-01078-9.
Texte intégralMachine Learning Algorithms : Adversarial Robustness in Signal Processing. Springer International Publishing AG, 2022.
Trouver le texte intégralWinn, John Michael. Model-Based Machine Learning. Taylor & Francis Group, 2021.
Trouver le texte intégralMohamed, Khaled Salah. Machine Learning for Model Order Reduction. Springer, 2019.
Trouver le texte intégralChapitres de livres sur le sujet "Machine Learning Model Robustness"
Bunse, Mirko, et Katharina Morik. « Certification of Model Robustness in Active Class Selection ». Dans Machine Learning and Knowledge Discovery in Databases. Research Track, 266–81. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86520-7_17.
Texte intégralGuan, Ji, Wang Fang et Mingsheng Ying. « Robustness Verification of Quantum Classifiers ». Dans Computer Aided Verification, 151–74. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81685-8_7.
Texte intégralBartz-Beielstein, Thomas, et Martin Zaefferer. « Models ». Dans Hyperparameter Tuning for Machine and Deep Learning with R, 27–69. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5170-1_3.
Texte intégralMancino, Alberto Carlo Maria, et Tommaso Di Noia. « Towards Differentially Private Machine Learning Models and Their Robustness to Adversaries ». Dans Lecture Notes in Computer Science, 455–61. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09917-5_35.
Texte intégralJohnson, Patricia M., Geunu Jeong, Kerstin Hammernik, Jo Schlemper, Chen Qin, Jinming Duan, Daniel Rueckert et al. « Evaluation of the Robustness of Learned MR Image Reconstruction to Systematic Deviations Between Training and Test Data for the Models from the fastMRI Challenge ». Dans Machine Learning for Medical Image Reconstruction, 25–34. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88552-6_3.
Texte intégralLehrer, Steven F., Tian Xie et Guanxi Yi. « Do the Hype of the Benefits from Using New Data Science Tools Extend to Forecasting Extremely Volatile Assets ? » Dans Data Science for Economics and Finance, 287–330. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66891-4_13.
Texte intégralHan, Bo, Bo He, Mengmeng Ma, Tingting Sun, Tianhong Yan et Amaury Lendasse. « RMSE-ELM : Recursive Model Based Selective Ensemble of Extreme Learning Machines for Robustness Improvement ». Dans Proceedings of ELM-2014 Volume 1, 273–92. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14063-6_24.
Texte intégralConrad, F., E. Boos, M. Mälzer, H. Wiemer et S. Ihlenfeldt. « Impact of Data Sampling on Performance and Robustness of Machine Learning Models in Production Engineering ». Dans Lecture Notes in Production Engineering, 463–72. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18318-8_47.
Texte intégralDeng, Lirui, Youjian Zhao et Heng Bao. « A Self-supervised Adversarial Learning Approach for Network Intrusion Detection System ». Dans Communications in Computer and Information Science, 73–85. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-8285-9_5.
Texte intégralLabaca Castro, Raphael. « Towards Robustness ». Dans Machine Learning under Malware Attack, 83–91. Wiesbaden : Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-40442-0_11.
Texte intégralActes de conférences sur le sujet "Machine Learning Model Robustness"
Zhou, Zhengbo, et Jianfei Yang. « Attentive Manifold Mixup for Model Robustness ». Dans ICMLSC 2022 : 2022 The 6th International Conference on Machine Learning and Soft Computing. New York, NY, USA : ACM, 2022. http://dx.doi.org/10.1145/3523150.3523164.
Texte intégralSivaslioglu, Samed, Ferhat Ozgur Catak et Ensar Gul. « Incrementing Adversarial Robustness with Autoencoding for Machine Learning Model Attacks ». Dans 2019 27th Signal Processing and Communications Applications Conference (SIU). IEEE, 2019. http://dx.doi.org/10.1109/siu.2019.8806432.
Texte intégralJeanselme, V., A. Wertz, G. Clermont, M. R. Pinsky et A. Dubrawski. « Robustness of Machine Learning Models for Hemorrhage Detection ». Dans American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a6320.
Texte intégralIzmailov, Rauf, Sridhar Venkatesan, Achyut Reddy, Ritu Chadha, Michael De Lucia et Alina Oprea. « Poisoning attacks on machine learning models in cyber systems and mitigation strategies ». Dans Security, Robustness, and Trust in Artificial Intelligence and Distributed Architectures, sous la direction de Misty Blowers, Russell D. Hall et Venkateswara R. Dasari. SPIE, 2022. http://dx.doi.org/10.1117/12.2622112.
Texte intégralBharitkar, Sunil. « Generative Feature Models and Robustness Analysis for Multimedia Content Classification ». Dans 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, 2019. http://dx.doi.org/10.1109/icmla.2019.00025.
Texte intégralShi, Ziqiang, Chaoliang Zhong, Yasuto Yokota, Wensheng Xia et Jun Sun. « Robustness Evaluation of Deep Learning Models Based on Local Prediction Consistency ». Dans 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, 2019. http://dx.doi.org/10.1109/icmla.2019.00224.
Texte intégralReshytko, A., D. Egorov, A. Klenitskiy et A. Shchepetnov. « WellNet : improvement of machine learning models robustness via comprehensive multi oilfield dataset ». Dans EAGE Subsurface Intelligence Workshop. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.2019x610116.
Texte intégralZhang, Yu-Nong, Zhen Li, Dong-Sheng Guo, Ke Chen et Pei Chen. « Superior robustness of using power-sigmoid activation functions in Z-type models for time-varying problems solving ». Dans 2013 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2013. http://dx.doi.org/10.1109/icmlc.2013.6890387.
Texte intégralSun, Haotian, Wenxing Zhou et Jidong Kang. « Development of a Near-Neutral pH Stress Corrosion Cracking Growth Model for Pipelines Using Machine Learning Algorithms ». Dans 2022 14th International Pipeline Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/ipc2022-87207.
Texte intégralAlbeanu, Grigore, et Alexandra stefania Moloiu. « LEARNING METHODS AND TRANSFERABLE APPROACHES ». Dans eLSE 2021. ADL Romania, 2021. http://dx.doi.org/10.12753/2066-026x-21-082.
Texte intégralRapports d'organisations sur le sujet "Machine Learning Model Robustness"
Perdigão, Rui A. P. Information physics and quantum space technologies for natural hazard sensing, modelling and prediction. Meteoceanics, septembre 2021. http://dx.doi.org/10.46337/210930.
Texte intégralRduner, Tim G. J., et Helen Toner. Key Concepts in AI Safety : Specification in Machine Learning. Center for Security and Emerging Technology, décembre 2021. http://dx.doi.org/10.51593/20210031.
Texte intégralRudner, Tim, et Helen Toner. Key Concepts in AI Safety : Interpretability in Machine Learning. Center for Security and Emerging Technology, mars 2021. http://dx.doi.org/10.51593/20190042.
Texte intégralBajari, Patrick, Denis Nekipelov, Stephen Ryan et Miaoyu Yang. Demand Estimation with Machine Learning and Model Combination. Cambridge, MA : National Bureau of Economic Research, février 2015. http://dx.doi.org/10.3386/w20955.
Texte intégralMueller, Juliane, Charuleka Varadharajan, Erica Siirila-Woodburn et Charles Koven. Machine Learning for Adaptive Model Refinement to Bridge Scales. Office of Scientific and Technical Information (OSTI), avril 2021. http://dx.doi.org/10.2172/1769741.
Texte intégralRudner, Tim, et Helen Toner. Key Concepts in AI Safety : Robustness and Adversarial Examples. Center for Security and Emerging Technology, mars 2021. http://dx.doi.org/10.51593/20190041.
Texte intégralHamann, Hendrik F. A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting Technology. Office of Scientific and Technical Information (OSTI), mai 2017. http://dx.doi.org/10.2172/1395344.
Texte intégralGeza, Mangistu, T. Tesfa, Liangping Li et M. Qiao. Toward Hybrid Physics -Machine Learning to improve Land Surface Model predictions. Office of Scientific and Technical Information (OSTI), avril 2021. http://dx.doi.org/10.2172/1769785.
Texte intégralTebaldi, Claudia, Zhangshuan Hou, Abigail Snyder et Kalyn Dorheim. Machine Learning for a-posteriori model-observed data fusion to enhance predictive value of ESM output. Office of Scientific and Technical Information (OSTI), avril 2021. http://dx.doi.org/10.2172/1769740.
Texte intégralTang, Jinyun, William Riley, Qing Zhu et Trevor Keenan. Using machine learning and artificial intelligence to improve model-data integrated earth system model predictions of water and carbon cycle extremes. Office of Scientific and Technical Information (OSTI), avril 2021. http://dx.doi.org/10.2172/1769794.
Texte intégral