Littérature scientifique sur le sujet « Machine Learning Informé »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Machine Learning Informé ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Machine Learning Informé"
Shoureshi, R., D. Swedes et R. Evans. « Learning Control for Autonomous Machines ». Robotica 9, no 2 (avril 1991) : 165–70. http://dx.doi.org/10.1017/s0263574700010201.
Texte intégralPateras, Joseph, Pratip Rana et Preetam Ghosh. « A Taxonomic Survey of Physics-Informed Machine Learning ». Applied Sciences 13, no 12 (7 juin 2023) : 6892. http://dx.doi.org/10.3390/app13126892.
Texte intégralMinasny, Budiman, Toshiyuki Bandai, Teamrat A. Ghezzehei, Yin-Chung Huang, Yuxin Ma, Alex B. McBratney, Wartini Ng et al. « Soil Science-Informed Machine Learning ». Geoderma 452 (décembre 2024) : 117094. http://dx.doi.org/10.1016/j.geoderma.2024.117094.
Texte intégralXypakis, Emmanouil, Valeria deTurris, Fabrizio Gala, Giancarlo Ruocco et Marco Leonetti. « Physics-informed machine learning for microscopy ». EPJ Web of Conferences 266 (2022) : 04007. http://dx.doi.org/10.1051/epjconf/202226604007.
Texte intégralZhao, Hefei, Yinglun Zhan, Joshua Nduwamungu, Yuzhen Zhou, Changmou Xu et Zheng Xu. « Machine learning-driven Raman spectroscopy for rapidly detecting type, adulteration, and oxidation of edible oils ». INFORM International News on Fats, Oils, and Related Materials 31, no 4 (1 avril 2020) : 12–15. http://dx.doi.org/10.21748/inform.04.2020.12.
Texte intégralSerre, Thomas. « Deep Learning : The Good, the Bad, and the Ugly ». Annual Review of Vision Science 5, no 1 (15 septembre 2019) : 399–426. http://dx.doi.org/10.1146/annurev-vision-091718-014951.
Texte intégralArundel, Samantha T., Gaurav Sinha, Wenwen Li, David P. Martin, Kevin G. McKeehan et Philip T. Thiem. « Historical maps inform landform cognition in machine learning ». Abstracts of the ICA 6 (11 août 2023) : 1–2. http://dx.doi.org/10.5194/ica-abs-6-10-2023.
Texte intégralKarimpouli, Sadegh, et Pejman Tahmasebi. « Physics informed machine learning : Seismic wave equation ». Geoscience Frontiers 11, no 6 (novembre 2020) : 1993–2001. http://dx.doi.org/10.1016/j.gsf.2020.07.007.
Texte intégralZhang, Xi. « Application of Machine Learning in Stock Price Analysis ». Highlights in Science, Engineering and Technology 107 (15 août 2024) : 143–49. http://dx.doi.org/10.54097/tjhsx998.
Texte intégralLiu, Yang, Ruo Jia, Jieping Ye et Xiaobo Qu. « How machine learning informs ride-hailing services : A survey ». Communications in Transportation Research 2 (décembre 2022) : 100075. http://dx.doi.org/10.1016/j.commtr.2022.100075.
Texte intégralThèses sur le sujet "Machine Learning Informé"
Guimbaud, Jean-Baptiste. « Enhancing Environmental Risk Scores with Informed Machine Learning and Explainable AI ». Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10188.
Texte intégralFrom conception onward, environmental factors such as air quality or dietary habits can significantly impact the risk of developing various chronic diseases. Within the epidemiological literature, indicators known as Environmental Risk Scores (ERSs) are used not only to identify individuals at risk but also to study the relationships between environmental factors and health. A limit of most ERSs is that they are expressed as linear combinations of a limited number of factors. This doctoral thesis aims to develop ERS indicators able to investigate nonlinear relationships and interactions across a broad range of exposures while discovering actionable factors to guide preventive measures and interventions, both in adults and children. To achieve this aim, we leverage the predictive abilities of non-parametric machine learning methods, combined with recent Explainable AI tools and existing domain knowledge. In the first part of this thesis, we compute machine learning-based environmental risk scores for mental, cardiometabolic, and respiratory general health for children. On top of identifying nonlinear relationships and exposure-exposure interactions, we identified new predictors of disease in childhood. The scores could explain a significant proportion of variance and their performances were stable across different cohorts. In the second part, we propose SEANN, a new approach integrating expert knowledge in the form of Pooled Effect Sizes (PESs) into the training of deep neural networks for the computation of extit{informed environmental risk scores}. SEANN aims to compute more robust ERSs, generalizable to a broader population, and able to capture exposure relationships that are closer to evidence known from the literature. We experimentally illustrate the approach's benefits using synthetic data, showing improved prediction generalizability in noisy contexts (i.e., observational settings) and improved reliability of interpretation using Explainable Artificial Intelligence (XAI) methods compared to an agnostic neural network. In the last part of this thesis, we propose a concrete application for SEANN using data from a cohort of Spanish adults. Compared to an agnostic neural network-based ERS, the score obtained with SEANN effectively captures relationships more in line with the literature-based associations without deteriorating the predictive performances. Moreover, exposures with poor literature coverage significantly differ from those obtained with the agnostic baseline method with more plausible directions of associations.In conclusion, our risk scores demonstrate substantial potential for the data-driven discovery of unknown nonlinear environmental health relationships by leveraging existing knowledge about well-known relationships. Beyond their utility in epidemiological research, our risk indicators are able to capture holistic individual-level non-hereditary risk associations that can inform practitioners about actionable factors in high-risk individuals. As in the post-genetic era, personalized medicine prevention will focus more and more on modifiable factors, we believe that such approaches will be instrumental in shaping future healthcare paradigms
Mack, Jonas. « Physics Informed Machine Learning of Nonlinear Partial Differential Equations ». Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-441275.
Texte intégralLeung, Jason W. « Application of machine learning : automated trading informed by event driven data ». Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105982.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 61-65).
Models of stock price prediction have traditionally used technical indicators alone to generate trading signals. In this paper, we build trading strategies by applying machine-learning techniques to both technical analysis indicators and market sentiment data. The resulting prediction models can be employed as an artificial trader used to trade on any given stock exchange. The performance of the model is evaluated using the S&P 500 index.
by Jason W. Leung.
M. Eng.
Wu, Jinlong. « Predictive Turbulence Modeling with Bayesian Inference and Physics-Informed Machine Learning ». Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85129.
Texte intégralPh. D.
Reynolds-Averaged Navier–Stokes (RANS) simulations are widely used for engineering design and analysis involving turbulent flows. In RANS simulations, the Reynolds stress needs closure models and the existing models have large model-form uncertainties. Therefore, the RANS simulations are known to be unreliable in many flows of engineering relevance, including flows with three-dimensional structures, swirl, pressure gradients, or curvature. This lack of accuracy in complex flows has diminished the utility of RANS simulations as a predictive tool for engineering design, analysis, optimization, and reliability assessments. Recently, data-driven methods have emerged as a promising alternative to develop the model of Reynolds stress for RANS simulations. In this dissertation I explore two physics-informed, data-driven frameworks to improve RANS modeled Reynolds stresses. First, a Bayesian inference framework is proposed to quantify and reduce the model-form uncertainty of RANS modeled Reynolds stress by leveraging online sparse measurement data with empirical prior knowledge. Second, a machine-learning-assisted framework is proposed to utilize offline high fidelity simulation databases. Numerical results show that the data-driven RANS models have better prediction of Reynolds stress and other quantities of interest for several canonical flows. Two metrics are also presented for an a priori assessment of the prediction confidence for the machine-learning-assisted RANS model. The proposed data-driven methods are also applicable to the computational study of other physical systems whose governing equations have some unresolved physics to be modeled.
Reichert, Nils. « CORRELATION BETWEEN COMPUTER RECOGNIZED FACIAL EMOTIONS AND INFORMED EMOTIONS DURING A CASINO COMPUTER GAME ». Thesis, Fredericton : University of New Brunswick, 2012. http://hdl.handle.net/1882/44596.
Texte intégralWang, Jianxun. « Physics-Informed, Data-Driven Framework for Model-Form Uncertainty Estimation and Reduction in RANS Simulations ». Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77035.
Texte intégralPh. D.
Cedergren, Linnéa. « Physics-informed Neural Networks for Biopharma Applications ». Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185423.
Texte intégralEmerson, Guy Edward Toh. « Functional distributional semantics : learning linguistically informed representations from a precisely annotated corpus ». Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284882.
Texte intégralGiuliani, Luca. « Extending the Moving Targets Method for Injecting Constraints in Machine Learning ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23885/.
Texte intégralAugustin, Lefèvre. « Méthodes d'apprentissage appliquées à la séparation de sources mono-canal ». Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00764546.
Texte intégralLivres sur le sujet "Machine Learning Informé"
Interpretable Machine Learning for the Analysis, Design, Assessment, and Informed Decision Making for Civil Infrastructure. Elsevier Science & Technology, 2023.
Trouver le texte intégralMadhu, G., Sandeep Kautish, A. Govardhan et Avinash Sharma, dir. Emerging Computational Approaches in Telehealth and Telemedicine : A Look at The Post-COVID-19 Landscape. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150792721220101.
Texte intégralSmith, Gary, et Jay Cordes. The 9 Pitfalls of Data Science. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198844396.001.0001.
Texte intégralAnderson, Raymond A. Credit Intelligence & ; Modelling. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844194.001.0001.
Texte intégralEl-Nasr, Magy Seif, Alessandro Canossa, Truong-Huy D. Nguyen et Anders Drachen. Game Data Science. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192897879.001.0001.
Texte intégralDowd, Cate. Digital Journalism, Drones, and Automation. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190655860.001.0001.
Texte intégralOulasvirta, Antti, Per Ola Kristensson, Xiaojun Bi et Andrew Howes, dir. Computational Interaction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198799603.001.0001.
Texte intégralGiudici, Paolo, et Giulio Mignola. Big Data & ; Advanced Analytics per il Risk Management. AIFIRM, 2022. http://dx.doi.org/10.47473/2016ppa00035.
Texte intégralDobson, James E. Critical Digital Humanities. University of Illinois Press, 2019. http://dx.doi.org/10.5622/illinois/9780252042270.001.0001.
Texte intégralChapitres de livres sur le sujet "Machine Learning Informé"
Neuer, Marcus J. « Physics-Informed Learning ». Dans Machine Learning for Engineers, 173–208. Berlin, Heidelberg : Springer Berlin Heidelberg, 2024. http://dx.doi.org/10.1007/978-3-662-69995-9_6.
Texte intégralBraga-Neto, Ulisses. « Physics-Informed Machine Learning ». Dans Fundamentals of Pattern Recognition and Machine Learning, 293–324. Cham : Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-60950-3_12.
Texte intégralWang, Sifan, et Paris Perdikaris. « Adaptive Training Strategies for Physics-Informed Neural Networks ». Dans Knowledge-Guided Machine Learning, 133–60. Boca Raton : Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003143376-6.
Texte intégralSimm, Jaak, Adam Arany, Edward De Brouwer et Yves Moreau. « Expressive Graph Informer Networks ». Dans Machine Learning, Optimization, and Data Science, 198–212. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95470-3_15.
Texte intégralAfroze, Lameya, Silke Merkelbach, Sebastian von Enzberg et Roman Dumitrescu. « Domain Knowledge Injection Guidance for Predictive Maintenance ». Dans Machine Learning for Cyber-Physical Systems, 75–87. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47062-2_8.
Texte intégralSun, Alexander Y., Hongkyu Yoon, Chung-Yan Shih et Zhi Zhong. « Applications of Physics-Informed Scientific Machine Learning in Subsurface Science : A Survey ». Dans Knowledge-Guided Machine Learning, 111–32. Boca Raton : Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003143376-5.
Texte intégralDani, Harsh, Jundong Li et Huan Liu. « Sentiment Informed Cyberbullying Detection in Social Media ». Dans Machine Learning and Knowledge Discovery in Databases, 52–67. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71249-9_4.
Texte intégralMumtaz, Zahid. « Machine Learning-Based Approach for Exploring the Household Survey Data ». Dans Informal Social Protection and Poverty, 141–200. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6474-9_7.
Texte intégralCross, Elizabeth J., S. J. Gibson, M. R. Jones, D. J. Pitchforth, S. Zhang et T. J. Rogers. « Physics-Informed Machine Learning for Structural Health Monitoring ». Dans Structural Integrity, 347–67. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81716-9_17.
Texte intégralSudarshan, Viswanath P., K. Pavan Kumar Reddy, Mohana Singh, Jayavardhana Gubbi et Arpan Pal. « Uncertainty-Informed Bayesian PET Image Reconstruction Using a Deep Image Prior ». Dans Machine Learning for Medical Image Reconstruction, 145–55. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17247-2_15.
Texte intégralActes de conférences sur le sujet "Machine Learning Informé"
Oneto, Luca, Nicolò Navarin, Alessio Micheli, Luca Pasa, Claudio Gallicchio, Davide Bacciu et Davide Anguita. « Informed Machine Learning for Complex Data ». Dans ESANN 2024, 1–10. Louvain-la-Neuve (Belgium) : Ciaco - i6doc.com, 2024. http://dx.doi.org/10.14428/esann/2024.es2024-1.
Texte intégralOneto, Luca, Davide Anguita et Sandro Ridella. « Informed Machine Learning : Excess Risk and Generalization ». Dans ESANN 2024, 11–16. Louvain-la-Neuve (Belgium) : Ciaco - i6doc.com, 2024. http://dx.doi.org/10.14428/esann/2024.es2024-20.
Texte intégralFarlessyost, William, et Shweta Singh. « Improving Mechanistic Model Accuracy with Machine Learning Informed Physics ». Dans Foundations of Computer-Aided Process Design, 275–82. Hamilton, Canada : PSE Press, 2024. http://dx.doi.org/10.69997/sct.121371.
Texte intégralZhu, Shijie, Hao Li, Yejie Jiang et Yingjun Deng. « Inner Defect Detection via Physics-Informed Machine Learning ». Dans 2024 6th International Conference on System Reliability and Safety Engineering (SRSE), 212–16. IEEE, 2024. https://doi.org/10.1109/srse63568.2024.10772527.
Texte intégralYu, Yue, Jiageng Tong, Jinhui Xia, Jinya Su et Shihua Li. « PMSM System Identification by Knowledge-informed Machine Learning ». Dans 2024 IEEE 22nd International Conference on Industrial Informatics (INDIN), 1–6. IEEE, 2024. https://doi.org/10.1109/indin58382.2024.10774223.
Texte intégralZhang, Tianren, Yuanbin Wang, Ruizhe Dong, Wenhu Wang, Zhongxue Yang et Mingzhu Zhu. « Informed Machine Learning for Real-time Grinding Force Prediction ». Dans 2024 30th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/m2vip62491.2024.10746047.
Texte intégralSurner, Martin, et Abdelmajid Khelil. « CIML-R : Causally Informed Machine Learning Based on Feature Relevance ». Dans 2024 11th IEEE Swiss Conference on Data Science (SDS), 68–75. IEEE, 2024. http://dx.doi.org/10.1109/sds60720.2024.00018.
Texte intégralFilipovic, Lado, Tobias Reiter, Julius Piso et Roman Kostal. « Equipment-Informed Machine Learning-Assisted Feature-Scale Plasma Etching Model ». Dans 2024 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/sispad62626.2024.10733099.
Texte intégralIto, Rikuto, Yasuhiro Oikawa et Kenji Ishikawa. « Tomographic Reconstruction of Sound Field From Optical Projections Using Physics-Informed Neural Networks ». Dans 2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/mlsp58920.2024.10734743.
Texte intégralWade, Daniel, Hieu Ngo, Frances Love, Jeremy Partain, Andrew Wilson, Matthew Statham et Perumal Shanthakumaran. « Measurement of Vibration Transfer Functions to Inform Machine Learning Based HUMS Diagnostics ». Dans Vertical Flight Society 72nd Annual Forum & Technology Display, 1–14. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11479.
Texte intégralRapports d'organisations sur le sujet "Machine Learning Informé"
Martinez, Carianne, Jessica Jones, Drew Levin, Nathaniel Trask et Patrick Finley. Physics-Informed Machine Learning for Epidemiological Models. Office of Scientific and Technical Information (OSTI), octobre 2020. http://dx.doi.org/10.2172/1706217.
Texte intégralMcDermott, Jason, Song Feng, Christine Chang, Darren Schmidt et Vincent Danna. Structural- and Functional-Informed Machine Learning for Protein Function Prediction. Office of Scientific and Technical Information (OSTI), septembre 2021. http://dx.doi.org/10.2172/1988630.
Texte intégralGuthrie, George Drake Jr, et Hari S. Viswanathan. Science-informed Machine Learning to Increase Recovery Efficiency in Unconventional Reservoirs. Office of Scientific and Technical Information (OSTI), avril 2020. http://dx.doi.org/10.2172/1614818.
Texte intégralWang, Jianxun, Jinlong Wu, Julia Ling, Gianluca Iaccarino et Heng Xiao. Physics-Informed Machine Learning for Predictive Turbulence Modeling : Towards a Complete Framework. Office of Scientific and Technical Information (OSTI), septembre 2016. http://dx.doi.org/10.2172/1562229.
Texte intégralBailey Bond, Robert, Pu Ren, James Fong, Hao Sun et Jerome F. Hajjar. Physics-informed Machine Learning Framework for Seismic Fragility Analysis of Steel Structures. Northeastern University, août 2024. http://dx.doi.org/10.17760/d20680141.
Texte intégralMueller, Juliane. Machine Learning to Enable Efficient Uncertainty Quantification, Data Assimilation, and Informed Data Acquisition. Office of Scientific and Technical Information (OSTI), mars 2021. http://dx.doi.org/10.2172/1769743.
Texte intégralAthon, Matthew, Danielle Ciesielski, Jordan Corbey, Shenyang Hu, Ethan King, Yulan Li, Jacqueline Royer, Panagiotis Stinis, Robert Surbella et Scott Swenson. Visualizing Uranium Crystallization from Melt : Experiment-Informed Phase Field Modeling and Machine Learning. Office of Scientific and Technical Information (OSTI), septembre 2023. http://dx.doi.org/10.2172/2338176.
Texte intégralUllrich, Paul, Tapio Schneider et Da Yang. Physics-Informed Machine Learning from Observations for Clouds, Convection, and Precipitation Parameterizations and Analysis. Office of Scientific and Technical Information (OSTI), avril 2021. http://dx.doi.org/10.2172/1769762.
Texte intégralGhanshyam, Pilania, Kenneth James McClellan, Christopher Richard Stanek et Blas P. Uberuaga. Physics-Informed Machine Learning for Discovery and Optimization of Materials : A Case Study of Scintillators. Office of Scientific and Technical Information (OSTI), août 2018. http://dx.doi.org/10.2172/1463529.
Texte intégralBao, Jie, Chao Wang, Zhijie Xu et Brian J. Koeppel. Physics-Informed Machine Learning with Application to Solid Oxide Fuel Cell System Modeling and Optimization. Office of Scientific and Technical Information (OSTI), septembre 2019. http://dx.doi.org/10.2172/1569289.
Texte intégral