Littérature scientifique sur le sujet « Lunar wake plasma »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Lunar wake plasma ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Lunar wake plasma"

1

Yan, Bo, Punam K. Prasad, Sayan Mukherjee, Asit Saha et Santo Banerjee. « Dynamical Complexity and Multistability in a Novel Lunar Wake Plasma System ». Complexity 2020 (16 mars 2020) : 1–11. http://dx.doi.org/10.1155/2020/5428548.

Texte intégral
Résumé :
Dynamical complexity and multistability of electrostatic waves are investigated in a four-component homogeneous and magnetized lunar wake plasma constituting of beam electrons, heavier ions (alpha particles, He++), protons, and suprathermal electrons. The unperturbed dynamical system of the considered lunar wake plasma supports nonlinear and supernonlinear trajectories which correspond to nonlinear and supernonlinear electrostatic waves. On the contrary, the perturbed dynamical system of lunar wake plasma shows different types of coexisting attractors including periodic, quasiperiodic, and chaotic, investigated by phase plots and Lyapunov exponents. To confirm chaotic and nonchaotic dynamics in the perturbed lunar wake plasma, 0−1 chaos test is performed. Furthermore, a weighted recurrence-based entropy is implemented to investigate the dynamical complexity of the system. Numerical results show existence of chaos with variation of complexity in the perturbed dynamics.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Rasca, Anthony P., Shahab Fatemi et William M. Farrell. « Modeling the Lunar Wake Response to a CME Using a Hybrid PIC Model ». Planetary Science Journal 3, no 1 (1 janvier 2022) : 4. http://dx.doi.org/10.3847/psj/ac3fba.

Texte intégral
Résumé :
Abstract In the solar wind, a low-density wake region forms downstream of the nightside lunar surface. In this study, we use a series of 3D hybrid particle-in-cell simulations to model the response of the lunar wake to a passing coronal mass ejection (CME). Average plasma parameters are derived from the Wind spacecraft located at 1 au during three distinct phases of a passing halo (Earth-directed) CME on 2015 June 22. Each set of plasma parameters, representing the shock/plasma sheath, a magnetic cloud, and plasma conditions we call the mid-CME phase, are used as the time-static upstream boundary conditions for three separate simulations. These simulation results are then compared with results that use nominal solar wind conditions. Results show a shortened plasma void compared to nominal conditions and a distinctive rarefaction cone originating from the terminator during the CME’s plasma sheath phase, while a highly elongated plasma void reforms during the magnetic cloud and mid-CME phases. Developments of electric and magnetic field intensification are also observed during the plasma sheath phase along the central wake, while electrostatic turbulence dominates along the plasma void boundaries and 2–3 lunar radii R M downstream in the central wake during the magnetic cloud and mid-CME phases. The simulations demonstrate that the lunar wake responds in a dynamic way with the changes in the upstream solar wind during a CME.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sreeraj, T., S. V. Singh et G. S. Lakhina. « Electrostatic waves driven by electron beam in lunar wake plasma ». Physics of Plasmas 25, no 5 (mai 2018) : 052902. http://dx.doi.org/10.1063/1.5032141.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sreeraj, T., S. V. Singh et G. S. Lakhina. « Linear analysis of electrostatic waves in the lunar wake plasma ». Physica Scripta 95, no 4 (19 février 2020) : 045610. http://dx.doi.org/10.1088/1402-4896/ab7142.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Xu, Xiaojun, Qi Xu, Qing Chang, Jiaying Xu, Jing Wang, Yi Wang, Pingbing Zuo et Vassilis Angelopoulos. « ARTEMIS Observations of Well-structured Lunar Wake in Subsonic Plasma Flow ». Astrophysical Journal 881, no 1 (14 août 2019) : 76. http://dx.doi.org/10.3847/1538-4357/ab2e0a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Guo, Dawei, Xiaoping Zhang, Lianghai Xie, Xiaojun Xu, Aoao Xu, Qi Yan, Yi Xu et Fan Yang. « Diamagnetic Plasma Clouds in the Near Lunar Wake Observed by ARTEMIS ». Astrophysical Journal 883, no 1 (17 septembre 2019) : 12. http://dx.doi.org/10.3847/1538-4357/ab3652.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Halekas, J. S., S. D. Bale, D. L. Mitchell et R. P. Lin. « Correction to “Electrons and magnetic fields in the lunar plasma wake” ». Journal of Geophysical Research : Space Physics 116, A7 (juillet 2011) : n/a. http://dx.doi.org/10.1029/2011ja016929.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Xu, Xiaojun, Jiaying Xu, Qi Xu, Qing Chang et Jing Wang. « Rapid Refilling of the Lunar Wake under Transonic Plasma Flow : ARTEMIS Observations ». Astrophysical Journal 908, no 2 (1 février 2021) : 227. http://dx.doi.org/10.3847/1538-4357/abd6f1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Halekas, J. S., V. Angelopoulos, D. G. Sibeck, K. K. Khurana, C. T. Russell, G. T. Delory, W. M. Farrell et al. « First Results from ARTEMIS, a New Two-Spacecraft Lunar Mission : Counter-Streaming Plasma Populations in the Lunar Wake ». Space Science Reviews 165, no 1-4 (20 janvier 2011) : 93–107. http://dx.doi.org/10.1007/s11214-010-9738-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Yu, William, Joseph Wang et Kevin Chou. « Laboratory Measurement of Lunar Regolith Simulant Surface Charging in a Localized Plasma Wake ». IEEE Transactions on Plasma Science 43, no 12 (décembre 2015) : 4175–81. http://dx.doi.org/10.1109/tps.2015.2492551.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Lunar wake plasma"

1

Fatemi, Shahab. « Modeling the Lunar plasma wake ». Licentiate thesis, Luleå tekniska universitet, Rymdteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17543.

Texte intégral
Résumé :
This thesis discusses the solar wind interaction with the Moon and the formation of the lunar plasma wake from a kinetic perspective. The Moon is essentially a non-conducting body which has a tenuous atmosphere and no global magnetic fields. The solar wind plasma impacts directly the lunar day-side and is absorbed by the lunar surface. This creates a plasma void and forms a wake at the night side of the Moon.We study the properties and structure of the lunar wake for typical solar wind conditions using a three-dimensional hybrid plasma solver. Also, we study the solar wind proton velocity space distribution functions at close distances to the Moon in the lunar wake and investigate the effects of lunar surface plasma absorption and non-isothermal solar wind velocity space distribution functions on the solar wind protons there.Finally, we compare the simulation results with the observations and show that a hybrid model of plasma can explain the kinetic aspects of the lunar wake and we investigate the effects of the lunar surface plasma absorption and non-isothermal solar wind velocity distribution on the solar wind proton properties there.

Godkänd; 2011; 20111114 (shafat); LICENTIATSEMINARIUM Ämnesområde: Rymdteknik/Space Engineering Examinator: Docent Mats Holmström, IRF Kiruna Diskutant: Senior Scientist Bengt Eliasson, Institute for Theoretical Physics, Ruhr-University, Germany Tid: Måndag den 19 december 2011 kl 10.00 Plats: Sal C, Rymdcampus i Kiruna, Luleå tekniska universitet

Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Lunar wake plasma"

1

Long-Range Transhorizon Lunar Surface Radio Wave Propagation in the Presence of a Regolith and a Sparse Exospheric Plasma. Independently Published, 2020.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Lunar wake plasma"

1

Halekas, J. S., V. Angelopoulos, D. G. Sibeck, K. K. Khurana, C. T. Russell, G. T. Delory, W. M. Farrell et al. « First Results from ARTEMIS, a New Two-Spacecraft Lunar Mission : Counter-Streaming Plasma Populations in the Lunar Wake ». Dans The ARTEMIS Mission, 93–107. New York, NY : Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-9554-3_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Lunar wake plasma"

1

Nishino, Masaki N., Yoshifumi Saito, Yoshiya Kasahara, Yoshiharu Omura, Kozo Hashimoto, Takayuki Ono, Hideo Tsunakawa, Futoshi Takahashi, Shoichiro Yokota et Masaki Fujimoto. « Plasma and wave observations in the deep lunar wake ». Dans 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS). IEEE, 2014. http://dx.doi.org/10.1109/ursigass.2014.6929934.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Popel, Sergey I., Sergey I. Kopnin et A. Yu Dubinskii. « Dusty Plasmas over Hydrogen-Rich Areas of Lunar Surface ». Dans 2019 Russian Open Conference on Radio Wave Propagation (RWP). IEEE, 2019. http://dx.doi.org/10.1109/rwp.2019.8810249.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kassem, Attia Ibrahem, Sergey Popel, Yulya Izvekova et Lev Zelenyi. « LOWER-HYBRID WAVES IN THE EXOSPHERE OF THE MOON ». Dans ФУНДАМЕНТАЛЬНЫЕ И ПРИКЛАДНЫЕ КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ. ИКИ РАН, 2020. http://dx.doi.org/10.21046/kmu-2020-49-60.

Texte intégral
Résumé :
A description is given of the wave processes in the interaction of the tail of the Earth's magnetosphere with the dusty exosphere of the Moon. The significance of the lower-hybrid waves appears in this case. It is found that the development of linear hydrodynamic instability leads to the excitation of the lower-hybrid waves. Furthermore, the development of the instability is due to the relative motion of magnetosphere ions and charged dust particles. The processes of development of lower-hybrid turbulence, which is considered from the standpoint of strong turbulence, are investigated. Based on wave-ion interaction, the effective collision frequency which characterizes the anomalous loss of ion momentum is determined. Moreover, the electric fields which arise in the region of interaction of the dusty plasma near the Moon and the Earth's magnetosphere are evaluated. The excitation of the electric fields produced due to the development of lower-hybrid turbulence is thought to play a significant role from the viewpoint of the electric field pattern at the Moon. The effects of lower-hybrid turbulence in the near-surface lunar dusty plasma should be taken into account when interpreting the observational data.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie