Littérature scientifique sur le sujet « LSPR TUNING »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « LSPR TUNING ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "LSPR TUNING"

1

Balitskii, Olexiy, Oleksandr Mashkov, Anastasiia Barabash, Viktor Rehm, Hany A. Afify, Ning Li, Maria S. Hammer et al. « Ligand Tuning of Localized Surface Plasmon Resonances in Antimony-Doped Tin Oxide Nanocrystals ». Nanomaterials 12, no 19 (4 octobre 2022) : 3469. http://dx.doi.org/10.3390/nano12193469.

Texte intégral
Résumé :
Aliovalent-doped metal oxide nanocrystals exhibiting localized surface plasmons (LSPRs) are applied in systems that require reflection/scattering/absorption in infrared and optical transparency in visible. Indium tin oxide (ITO) is currently leading the field, but indium resources are known to be very restricted. Antimony-doped tin oxide (ATO) is a cheap candidate to substitute the ITO, but it exhibits less advantageous electronic properties and limited control of the LSPRs. To date, LSPR tuning in ATO NCs has been achieved electrochemically and by aliovalent doping, with a significant decrease in doping efficiency with an increasing doping level. Here, we synthesize plasmonic ATO nanocrystals (NCs) via a solvothermal route and demonstrate ligand exchange to tune the LSPR energies. Attachment of ligands acting as Lewis acids and bases results in LSPR peak shifts with a doping efficiency overcoming those by aliovalent doping. Thus, this strategy is of potential interest for plasmon implementations, which are of potential interest for infrared upconversion, smart glazing, heat absorbers, or thermal barriers.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lopatynskyi, A. M. « Smart nanocarriers for drug delivery : controllable LSPR tuning ». Semiconductor Physics Quantum Electronics and Optoelectronics 19, no 4 (5 décembre 2016) : 358–65. http://dx.doi.org/10.15407/spqeo19.04.358.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Chen, Chih-Yao, Ching-Yun Chien, Chih-Ming Wang, Rong-Sheng Lin et I.-Chen Chen. « Plasmon Tuning of Liquid Gallium Nanoparticles through Surface Anodization ». Materials 15, no 6 (15 mars 2022) : 2145. http://dx.doi.org/10.3390/ma15062145.

Texte intégral
Résumé :
In this work, tunable plasmonic liquid gallium nanoparticles (Ga NPs) were prepared through surface anodizing of the particles. Shape deformation of the Ga NPs accompanied with dimpled surface topographies could be induced during electrochemical anodization, and the formation of the anodic oxide shell helps maintain the resulting change in the particle shape. The nanoscale dimple-like textures led to changes in the localized surface plasmon resonance (LSPR) wavelength. A maximal LSPR red-shift of ~77 nm was preliminarily achieved using an anodization voltage of 0.7 V. The experimental results showed that an increase in the oxide shell thickness yielded a negligible difference in the observed LSPR, and finite-difference time-domain (FDTD) simulations also suggested that the LSPR tunability was primarily determined by the shape of the deformed particles. The extent of particle deformation could be adjusted in a very short period of anodization time (~7 s), which offers an efficient way to tune the LSPR response of Ga NPs.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Demydov, P. V., A. M. Lopatynskyi, І. І. Hudzenko et V. I. Chegel. « The approaches for localized surface plasmon resonance wavelength position tuning. Short review ». Semiconductor Physics, Quantum Electronics and Optoelectronics 24, no 3 (26 août 2021) : 304–11. http://dx.doi.org/10.15407/spqeo24.03.304.

Texte intégral
Résumé :
A unique feature of nanoparticles made from highly conductive materials (plasmonic nanoparticles) is that their localized surface plasmon resonance (LSPR) wavelength position can be tuned by changing the shape, size, composition and environment in accordance with the purpose of the application. In this paper, the main mechanisms of LSPR tuning that are available at the present time are reviewed. In particular, a widely used method for tuning the LSPR wavelength position is based on selecting the type of a plasmonic nanoparticle material such as gold, silver, copper, aluminum and gold-silver alloy. The examples of changing the resonance absorption position by using nanoparticles with different shapes and dimensions have been аlso demonstrated. Furthermore, works with less used LSPR tuning methods, such as controlled regulation of the distance between nanoparticles in one and two dimensions have been considered. The number of works is given, where the LSPR wavelength position can be also controlled by changing the environment in the vicinity of plasmonic nanoparticle: the substrate thickness, the thickness and dielectric parameters of the layer on the surface of the nanoparticle. Examples of active influence on the change in the wave position of LSPR by applying an electric potential and regulating plasma modes have been also discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Piantanida, Luca, Denys Naumenko, Emanuela Torelli, Monica Marini, Dennis M. Bauer, Ljiljana Fruk, Giuseppe Firrao et Marco Lazzarino. « Plasmon resonance tuning using DNA origami actuation ». Chemical Communications 51, no 23 (2015) : 4789–92. http://dx.doi.org/10.1039/c5cc00778j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ye, Shuai, Jun Song, Yuliang Tian, Linchun Chen, Dong Wang, Hanben Niu et Junle Qu. « Photochemically grown silver nanodecahedra with precise tuning of plasmonic resonance ». Nanoscale 7, no 29 (2015) : 12706–12. http://dx.doi.org/10.1039/c5nr03652f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Li, Wei, Chao Ma, Ling Zhang, Bin Chen, Luyang Chen et Heping Zeng. « Tuning Localized Surface Plasmon Resonance of Nanoporous Gold with a Silica Shell for Surface Enhanced Raman Scattering ». Nanomaterials 9, no 2 (12 février 2019) : 251. http://dx.doi.org/10.3390/nano9020251.

Texte intégral
Résumé :
We report the tuning of localized surface plasmon resonance (LSPR) of nanoporous gold (NPG) by silica coating, which also affects the surface enhanced Raman scattering (SERS) of NPG. In this study, controllable silica shell is assembled on the NPG surface, and a fully silica thin layer causes more than 50 nm red-shift of LSPR band due to dielectric medium dependence. Additionally, ~1 nm silica coated NPG film shows excellent SERS enhancement, which is due to electromagnetic coupling between ligaments and local surface plasmon field enhancement within pores, and theoretical analysis indicates that silica coating further improves the coupling effect, which demonstrates the electromagnetic origin of the tuning of SERS effect.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hou, Hui, Limei Chen, Haili He, Lizhen Chen, Zhenlu Zhao et Yongdong Jin. « Fine-tuning the LSPR response of gold nanorod–polyaniline core–shell nanoparticles with high photothermal efficiency for cancer cell ablation ». Journal of Materials Chemistry B 3, no 26 (2015) : 5189–96. http://dx.doi.org/10.1039/c5tb00556f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mahapatra, Niharendu, et Mintu Halder. « Facile reversible LSPR tuning through additive-induced self-aggregation and dissemination of Ag NPs : role of cyclodextrins and surfactants ». RSC Adv. 4, no 36 (2014) : 18724–30. http://dx.doi.org/10.1039/c4ra01523a.

Texte intégral
Résumé :
An easy and economical protocol for the reversible LSPR tuning of Ag NPs through cyclodextrin-induced self-aggregation and color fading, followed by surfactant-induced dissemination of self-assembly and consequent color reappearance.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lie, Shao Qing, Hong Yan Zou, Yong Chang et Cheng Zhi Huang. « Tuning of the near-infrared localized surface plasmon resonance of Cu2−xSe nanoparticles with lysozyme-induced selective aggregation ». RSC Adv. 4, no 98 (2014) : 55094–99. http://dx.doi.org/10.1039/c4ra05828c.

Texte intégral
Résumé :
Poly(styrene sulfonic acid)sodium stabilized Cu2−xSe nanoparticles (PSS–Cu2−xSe NPs) with localized surface plasmon resonance (LSPR) absorption centered at 980 nm can be selectively aggregated by lysozyme (Lys) through the electrostatic attraction, giving rise to a red shift of the LSPR in the near-infrared (NIR) region.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "LSPR TUNING"

1

Piantanida, Luca. « DNA ORIGAMI ACTUATION AS A POWERFUL DYNAMIC AND TUNABLE ARCHITECTURE FOR PLASMONIC STRUCTURE ». Doctoral thesis, Università degli studi di Trieste, 2015. http://hdl.handle.net/10077/11133.

Texte intégral
Résumé :
2013/2014
In questa tesi presento il mio lavoro di ricerca di Dottorato in Nanotecnologie. Questo studio è concentrato sull'uso di nanotecnologia a DNA come strumento per la creazione di strutture nano-biologiche e funzionalizzazione di particelle d'oro. Le nano-particelle d'oro sono state largamente studiate e le loro proprietà sono state sfruttate per importanti applicazioni come la spettroscopia Raman, la rilevazione biologica e la terapia medica. Queste nano-particelle sono caratterizzate da una risonanza ottica plasmonica e proprietà di dispersione della luce ben definite ed esistono numerosi protocolli di provata efficienza per la loro funzionalizzazione chimica. Tra questi, il protocollo di auto-assemblaggio di DNA si è dimostrato eccellente nel comporre strutture di nano-particelle con dimensioni e forma controllate. Questo approccio è stato impiegato per l'ingegnerizzazione di proprietà ottiche, per la creazione di "hot spot” nel campo plasmonico in aggregati di nano-particelle e anche per la formazione di righelli plasmonici con dimeri di nano-particelle nei quali la loro spaziatura è controllata con precisione nanometrica. In questo studio confronto due strategie per la formazione di dimeri di nano-particelle d'oro usando l'ibridizzazione del DNA. Una di queste strategie mi ha permesso di raggiungere una al resa del 26% di formazioni di dimeri rispetto al totale delle AuNP, senza ulteriori procedure di filtrazione, dato che rappresenta il valore più alto riportato in letteratura; inoltre questo dato è stato replicato utilizzando sequenze di DNA molto corte, fino ad 11 nucleotidi, condizione che normalmente riduce l’efficienza del processo. Nella seconda parte della mia tesi, ho combinato le proprietà plasmoniche delle nano-particelle d'oro con strutture a DNA origami in modo da creare sistemi ibridi tra di loro. Questa combinazione mi ha permesso di esplorare architetture innovative per la il controllo della plasmonica con la prospettiva di essere un punto di partenza per lo sviluppo di biosensori. Ho sviluppato una strategia per un controllo innovativo, reversibile e continuo della risonanza plasmonica usando un'attuazione basata su DNA origami. Il meccanismo di attuazione è basato sull'ibridizzazione del DNA, in particolare si è visto uno spostamento del picco di risonanza fino a 6 nm utilizzando tre sequenza di DNA diverse. Il sistema proposto è potrà essere utilizzato per lo studio dei meccanismi di ibridazione di DNA in condizioni di stress controllato, oppure potrà essere usato come piattaforma per un controllo continuo della posizione della risonanza plasmonica o in spettroscopia Raman.
XXVII Ciclo
1986
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "LSPR TUNING"

1

Demydov, P. V., V. K. Lytvyn, A. M. Lopatynskyi, I. I. Hudzenko et V. I. Chegel. « LSPR Tuning by Variable Morphology of Gold Nanoshells ». Dans 2021 IEEE 11th International Conference Nanomaterials : Applications & Properties (NAP). IEEE, 2021. http://dx.doi.org/10.1109/nap51885.2021.9568515.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kumar, Devender, Saroj Bala, Heena Wadhwa, Geeta Kandhol, Suman Mahendia, Fakir Chand et Shyam Kumar. « Tuning of LSPR of gold-silver alloy nanoparticles with their composition ». Dans PROCEEDINGS OF THE NATIONAL CONFERENCE ON RECENT ADVANCES IN CONDENSED MATTER PHYSICS : RACMP-2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5097117.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hui, Gong Li, et Lyu Xian Yang. « The Method and Mechanism of Tuning LSPR on The Biased Metallic Nanosphere ». Dans Frontiers in Optics. Washington, D.C. : OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jw3a.105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Anthonysamy, Baskar, Arun Kumar Prasad et Babasaheb Shinde. « Tuning of Brake Force Distribution for Pickup Truck Vehicle LSPV Brake System During Cornering Maneuver ». Dans Brake Colloquium & Exhibition - 35th Annual. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 2017. http://dx.doi.org/10.4271/2017-01-2491.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie