Littérature scientifique sur le sujet « Low-rank adaptation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Low-rank adaptation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Low-rank adaptation"
Yang, Weiqi, et Michael Spece. « Implicit Adaptation to Low Rank Structure in Online Learning ». International Journal of Machine Learning and Computing 11, no 5 (septembre 2021) : 339–44. http://dx.doi.org/10.18178/ijmlc.2021.11.5.1058.
Texte intégralChen, Yanran. « A concise analysis of low-rank adaptation ». Applied and Computational Engineering 42, no 1 (23 février 2024) : 76–82. http://dx.doi.org/10.54254/2755-2721/42/20230688.
Texte intégralFilatov, N., et M. Kindulov. « Low Rank Adaptation for Stable Domain Adaptation of Vision Transformers ». Optical Memory and Neural Networks 32, S2 (28 novembre 2023) : S277—S283. http://dx.doi.org/10.3103/s1060992x2306005x.
Texte intégralXu, Bingrong, Jianhua Yin, Cheng Lian, Yixin Su et Zhigang Zeng. « Low-Rank Optimal Transport for Robust Domain Adaptation ». IEEE/CAA Journal of Automatica Sinica 11, no 7 (juillet 2024) : 1667–80. http://dx.doi.org/10.1109/jas.2024.124344.
Texte intégralHu, Yahao, Yifei Xie, Tianfeng Wang, Man Chen et Zhisong Pan. « Structure-Aware Low-Rank Adaptation for Parameter-Efficient Fine-Tuning ». Mathematics 11, no 20 (17 octobre 2023) : 4317. http://dx.doi.org/10.3390/math11204317.
Texte intégralLi, Wen, Zheng Xu, Dong Xu, Dengxin Dai et Luc Van Gool. « Domain Generalization and Adaptation Using Low Rank Exemplar SVMs ». IEEE Transactions on Pattern Analysis and Machine Intelligence 40, no 5 (1 mai 2018) : 1114–27. http://dx.doi.org/10.1109/tpami.2017.2704624.
Texte intégralJaech, Aaron, et Mari Ostendorf. « Low-Rank RNN Adaptation for Context-Aware Language Modeling ». Transactions of the Association for Computational Linguistics 6 (décembre 2018) : 497–510. http://dx.doi.org/10.1162/tacl_a_00035.
Texte intégralRuff, Douglas A., Cheng Xue, Lily E. Kramer, Faisal Baqai et Marlene R. Cohen. « Low rank mechanisms underlying flexible visual representations ». Proceedings of the National Academy of Sciences 117, no 47 (23 novembre 2020) : 29321–29. http://dx.doi.org/10.1073/pnas.2005797117.
Texte intégralJeong, Y., et H. S. Kim. « Speaker adaptation using generalised low rank approximations of training matrices ». Electronics Letters 46, no 10 (2010) : 724. http://dx.doi.org/10.1049/el.2010.0466.
Texte intégralKim, Juhyeong, Gyunyeop Kim et Sangwoo Kang. « Lottery Rank-Pruning Adaptation Parameter Efficient Fine-Tuning ». Mathematics 12, no 23 (28 novembre 2024) : 3744. http://dx.doi.org/10.3390/math12233744.
Texte intégralThèses sur le sujet "Low-rank adaptation"
Grativol, Ribeiro Lucas. « Neural network compression in the context of federated learning and edge devices ». Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0444.
Texte intégralFederated learning is a collaborative, decentralized machine learning framework driven by growing concerns about data privacy. By shifting model training to local nodes and keeping data local, it enables more privacy-conscious training. However, this approach imposes additional communication and computation overhead on those who adopt it. In this manuscript, we examine the key challenges in federated learning and propose solutions to increase efficiency and reduce hardware requirements. Specifically, we explore classic compression techniques, such as pruning, and low-rank approximations to lower the costs associated with federated learning. For scenarios where participants have limited communication capabilities, we introduce a co-design methodology for an embedded few-shot learning algorithm. Our proposed solution integrates hardware constraints into a deployment pipeline for FPGA platforms, resulting in a low-latency algorithm that can also be leveraged to implement post-federated learning models
Breloy, Arnaud. « Algorithmes d’estimation et de détection en contexte hétérogène rang faible ». Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLN021/document.
Texte intégralOne purpose of array processing is the detection and location of a target in a noisy environment. In most cases (as RADAR or active SONAR), statistical properties of the noise, especially its covariance matrix, have to be estimated using i.i.d. samples. Within this context, several hypotheses are usually made: Gaussian distribution, training data containing only noise, perfect hardware. Nevertheless, it is well known that a Gaussian distribution doesn’t provide a good empirical fit to RADAR clutter data. That’s why noise is now modeled by elliptical process, mainly Spherically Invariant Random Vectors (SIRV). In this new context, the use of the SCM (Sample Covariance Matrix), a classical estimate of the covariance matrix, leads to a loss of performances of detectors/estimators. More efficient estimators have been developed, such as the Fixed Point Estimator and M-estimators.If the noise is modeled as a low-rank clutter plus white Gaussian noise, the total covariance matrix is structured as low rank plus identity. This information can be used in the estimation process to reduce the number of samples required to reach acceptable performance. Moreover, it is possible to estimate the basis vectors of the clutter-plus-noise orthogonal subspace rather than the total covariance matrix of the clutter, which requires less data and is more robust to outliers. The orthogonal projection to the clutter plus noise subspace is usually calculated from an estimatd of the covariance matrix. Nevertheless, the state of art does not provide estimators that are both robust to various distributions and low rank structured.In this Thesis, we therefore develop new estimators that are fitting the considered context, to fill this gap. The contributions are following three axes :- We present a precise statistical model : low rank heterogeneous sources embedded in a white Gaussian noise.We express the maximum likelihood estimator for this context.Since this estimator has no closed form, we develop several algorithms to reach it effitiently.- For the considered context, we develop direct clutter subspace estimators that are not requiring an intermediate Covariance Matrix estimate.- We study the performances of the proposed methods on a Space Time Adaptive Processing for airborne radar application. Tests are performed on both synthetic and real data
Combernoux, Alice. « Détection et filtrage rang faible pour le traitement d'antenne utilisant la théorie des matrices aléatoires en grandes dimensions ». Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC016/document.
Texte intégralNowadays, more and more applications deal with increasing dimensions. Thus, it seems relevant to exploit the appropriated tools as the random matrix theory in the large dimensional regime. More particularly, in the specific array processing applications as the STAP and MIMO-STAP radar applications, we were interested in the treatment of a signal of interest corrupted by an additive noise composed of a low rang noise and a white Gaussian. Therefore, the aim of this thesis is to study the low rank filtering and detection (function of projectors) in the large dimensional regime for array processing with random matrix theory tools.This thesis has three main contributions in the context of asymptotic analysis of projector functionals. Thus, the large dimensional regime first allows to determine an approximation/prediction of theoretical non asymptotic performance, much more precise than the literature in the classical asymptotic regime (when the number of estimation data tends to infinity at a fixed dimension). Secondly, two new low rank adaptive filters and detectors have been proposed and it has been shown that they have better performance as a function of the system parameters, in terms of SINR loss, false alarm probability and detection probability. Finally, the results have been validated on a jamming application and have been secondly applied to the STAP and sparse MIMO-STAP processings. Hence, the study highlighted a noticeable difference with the jamming application, related to the covariance matrix models concerned by this thesis
Chapitres de livres sur le sujet "Low-rank adaptation"
Raab, Christoph, et Frank-Michael Schleif. « Low-Rank Subspace Override for Unsupervised Domain Adaptation ». Dans Lecture Notes in Computer Science, 132–47. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58285-2_10.
Texte intégralBenaglia, Riccardo, Angelo Porrello, Pietro Buzzega, Simone Calderara et Rita Cucchiara. « Trajectory Forecasting Through Low-Rank Adaptation of Discrete Latent Codes ». Dans Lecture Notes in Computer Science, 236–51. Cham : Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78444-6_16.
Texte intégralFang, Zhengyi, Yue Wang, Ran Yi et Lizhuang Ma. « Dropout Mixture Low-Rank Adaptation for Visual Parameters-Efficient Fine-Tuning ». Dans Lecture Notes in Computer Science, 369–86. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72667-5_21.
Texte intégralParanjape, Jay N., Shameema Sikder, S. Swaroop Vedula et Vishal M. Patel. « Low-Rank Adaptation of Segment Anything Model for Surgical Scene Segmentation ». Dans Lecture Notes in Computer Science, 187–202. Cham : Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78198-8_13.
Texte intégralCappelletti, Silvia, Lorenzo Baraldi, Federico Cocchi, Marcella Cornia, Lorenzo Baraldi et Rita Cucchiara. « Adapt to Scarcity : Few-Shot Deepfake Detection via Low-Rank Adaptation ». Dans Lecture Notes in Computer Science, 111–26. Cham : Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78305-0_8.
Texte intégralPark, Dongwon, Hayeon Kim et Se Young Chun. « Contribution-Based Low-Rank Adaptation with Pre-training Model for Real Image Restoration ». Dans Lecture Notes in Computer Science, 87–105. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-73039-9_6.
Texte intégralLotey, Taveena, Aman Verma et Partha Pratim Roy. « EEG-Based Mental Imagery Task Adaptation via Ensemble of Weight-Decomposed Low-Rank Adapters ». Dans Lecture Notes in Computer Science, 309–24. Cham : Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78195-7_21.
Texte intégralChari, Martin Munashe, Hamisai Hamandawana et Leocadia Zhou. « Socioeconomically Informed Use of Geostatistics to Track Adaptation of Resource-Poor Communities to Climate Change ». Dans African Handbook of Climate Change Adaptation, 1555–81. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_122.
Texte intégralWang, Meng, Tian Lin, Ting Xu, Ke Zou, Haoyu Chen, Huazhu Fu et Ching-Yu Cheng. « Enhancing Large Foundation Models to Identify Fundus Diseases Based on Contrastive Enhanced Low-Rank Adaptation Prompt ». Dans Lecture Notes in Computer Science, 157–66. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-73119-8_16.
Texte intégralZhu, Vince, Zhanghexuan Ji, Dazhou Guo, Puyang Wang, Yingda Xia, Le Lu, Xianghua Ye, Wei Zhu et Dakai Jin. « Low-Rank Continual Pyramid Vision Transformer : Incrementally Segment Whole-Body Organs in CT with Light-Weighted Adaptation ». Dans Lecture Notes in Computer Science, 371–81. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72111-3_35.
Texte intégralActes de conférences sur le sujet "Low-rank adaptation"
Wu, Taiqiang, Jiahao Wang, Zhe Zhao et Ngai Wong. « Mixture-of-Subspaces in Low-Rank Adaptation ». Dans Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 7880–99. Stroudsburg, PA, USA : Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-main.450.
Texte intégralGrativol, Lucas, Mathieu Léonardon, Guillaume Muller, Virginie Fresse et Matthieu Arzel. « FLoCoRA : Federated Learning Compression with Low-Rank Adaptation ». Dans 2024 32nd European Signal Processing Conference (EUSIPCO), 1786–90. IEEE, 2024. http://dx.doi.org/10.23919/eusipco63174.2024.10715461.
Texte intégralLiang, Yan-Shuo, et Wu-Jun Li. « InfLoRA : Interference-Free Low-Rank Adaptation for Continual Learning ». Dans 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 23638–47. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.02231.
Texte intégralZanella, Maxime, et Ismail Ben Ayed. « Low-Rank Few-Shot Adaptation of Vision-Language Models ». Dans 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1593–603. IEEE, 2024. http://dx.doi.org/10.1109/cvprw63382.2024.00166.
Texte intégralFerreira-Caballero, Sebastián, Diego P. Pinto-Roa, José Luis Vázquez Noguera, Jordan Ayala, Pedro E. Gardel-Sotomayor et Pastor Pérez-Estigarribia. « Low-Rank Adaptation Applied to Multiclass Diabetic Retinopathy Classification ». Dans 2024 L Latin American Computer Conference (CLEI), 1–9. IEEE, 2024. http://dx.doi.org/10.1109/clei64178.2024.10700586.
Texte intégralLi, Yinqiao, Linqi Song et Hanxu Hou. « LoRAN : Improved Low-Rank Adaptation by a Non-Linear Transformation ». Dans Findings of the Association for Computational Linguistics : EMNLP 2024, 3134–43. Stroudsburg, PA, USA : Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-emnlp.177.
Texte intégralZhang, Yiwei, Kun Li, Liang Yuan, Jiawen Cheng, Yunquan Zhang, Ting Cao et Mao Yang. « LoRAStencil : Low-Rank Adaptation of Stencil Computation on Tensor Cores ». Dans SC24 : International Conference for High Performance Computing, Networking, Storage and Analysis, 1–17. IEEE, 2024. https://doi.org/10.1109/sc41406.2024.00059.
Texte intégralAgiza, Ahmed, Marina Neseem et Sherief Reda. « MTLoRA : A Low-Rank Adaptation Approach for Efficient Multi-Task Learning ». Dans 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 16196–205. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.01533.
Texte intégralLi, Linfeng, et Lei Guo. « Dynamic Low-Rank Adaptation Based Pruning Algorithm for Large Language Models ». Dans 2024 7th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), 1094–99. IEEE, 2024. https://doi.org/10.1109/prai62207.2024.10826600.
Texte intégralYang, Peng, Hong Ying, Jianxin Duan, Linyue Shi et Chen Yang. « Quantized Low-Rank Adaptation Based Parameter-efficient Tuning for Low-resource Visual Question Answering ». Dans 2024 6th International Conference on Electronic Engineering and Informatics (EEI), 1318–22. IEEE, 2024. http://dx.doi.org/10.1109/eei63073.2024.10696314.
Texte intégral