Articles de revues sur le sujet « Localization density »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Localization density.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Localization density ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Gadre, Shridhar R., Sudhir A. Kulkarni et Rajeev K. Pathak. « Density‐based electron localization function via nonlocal density approximation ». Journal of Chemical Physics 98, no 4 (15 février 1993) : 3574–76. http://dx.doi.org/10.1063/1.464082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Movaghar, B. « Localization and the density of states ». Philosophical Magazine B 65, no 5 (mai 1992) : 1097–108. http://dx.doi.org/10.1080/13642819208217923.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Balan, Radu, Peter G. Casazza, Christopher Heil et Zeph Landau. « Density, overcompleteness, and localization of frames ». Electronic Research Announcements of the American Mathematical Society 12, no 10 (7 juillet 2006) : 71–86. http://dx.doi.org/10.1090/s1079-6762-06-00163-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hutník, Ondrej, Egor A. Maximenko et Anna Mišková. « Toeplitz Localization Operators : Spectral Functions Density ». Complex Analysis and Operator Theory 10, no 8 (20 mai 2016) : 1757–74. http://dx.doi.org/10.1007/s11785-016-0564-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Pilmé, Julien. « Electron localization function from density components ». Journal of Computational Chemistry 38, no 4 (17 novembre 2016) : 204–10. http://dx.doi.org/10.1002/jcc.24672.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Schroer, Bert. « Area density of localization entropy : I. The case of wedge localization ». Classical and Quantum Gravity 23, no 17 (7 août 2006) : 5227–48. http://dx.doi.org/10.1088/0264-9381/23/17/008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bouhdid, Badia, Wafa Akkari et Sofien Gannouni. « Low Cost Recursive Localization scheme for High Density Wireless Sensor Networks ». International Journal on Semantic Web and Information Systems 13, no 3 (juillet 2017) : 68–88. http://dx.doi.org/10.4018/ijswis.2017070104.

Texte intégral
Résumé :
While existing localization approaches mainly focus on enhancing the accuracy, particular attention has recently been given to reducing the localization algorithm implementation costs. To obtain a tradeoff between location accuracy and implementation cost, recursive localization approaches are being pursued as a cost-effective alternative to the more expensive localization approaches. In the recursive approach, localization information increases progressively as new nodes compute their positions and become themselves reference nodes. A strategy is then required to control and maintain the distribution of these new reference nodes. The lack of such a strategy leads, especially in high density networks, to wasted energy, important communication overhead and even impacts the localization accuracy. In this paper, the authors propose an efficient recursive localization approach that reduces the energy consumption, the execution time, and the communication overhead, yet it increases the localization accuracy through an adequate distribution of reference nodes within the network.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Suslov, Igor' M. « Density of states near the localization threshold ». Uspekhi Fizicheskih Nauk 166, no 8 (1996) : 907. http://dx.doi.org/10.3367/ufnr.0166.199608x.0907.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Marsh, Richard J., Karin Pfisterer, Pauline Bennett, Liisa M. Hirvonen, Mathias Gautel, Gareth E. Jones et Susan Cox. « Artifact-free high-density localization microscopy analysis ». Nature Methods 15, no 9 (30 juillet 2018) : 689–92. http://dx.doi.org/10.1038/s41592-018-0072-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Suslov, Igor' M. « Density of states near the localization threshold ». Physics-Uspekhi 39, no 8 (31 août 1996) : 848–49. http://dx.doi.org/10.1070/pu1996v039n08abeh001549.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Schroer, Bert. « Addendum to ‘Area density of localization entropy : I. The case of wedge localization’ ». Classical and Quantum Gravity 24, no 16 (31 juillet 2007) : 4239–49. http://dx.doi.org/10.1088/0264-9381/24/16/016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Gao, Ying, W. S. Zhao, C. Jing et Wei Zheng Ren. « WSN Node Localization Algorithm Based on Adaptive Particle Swarm Optimization ». Applied Mechanics and Materials 143-144 (décembre 2011) : 302–6. http://dx.doi.org/10.4028/www.scientific.net/amm.143-144.302.

Texte intégral
Résumé :
In order to overcome shortcomings of existing range-free wireless sensor network (WSN) node localization methods such as huge computation volume and great effect of node density on localization precision, a WSN localization algorithm based on adaptive particle swarm optimization (APSO) was put forward in combination with particle swarm theory and DV-Hop algorithm. This algorithm improved localization precision by more than 20%, and the effect of node density on localization precision was significantly less than DV-Hop algorithm without any addition of hardware facilities and communication load.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Fang, Sheng En, Ricardo Perera et Maria Consuelo Huerta. « Damage Localization Based on Power Spectral Density Analysis ». Key Engineering Materials 347 (septembre 2007) : 589–94. http://dx.doi.org/10.4028/www.scientific.net/kem.347.589.

Texte intégral
Résumé :
An environmental excitation having random characteristics may be more effective and cost-efficient than other excitation means for non-destructive damage identification purpose on most of the large-scale engineering structures under operation. In general, many existing damage indexes are constructed based on the modal properties derived firstly from the power spectral density (PSD) analysis of the structures under random excitation. However, the derivation procedures for the modal parameters usually introduce some extra errors into the indexes. This paper aims to propose a simple and feasible damage location index (DLI) constructed directly derived from the analysis results of the structural response PSD. The performance of DLI was verified using an aluminum beam with fixed ends and an experimental reinforced concrete (RC) beam under free boundary condition. Our results show that the damage location of the aluminum beam can be determined via the plot of DLI value by selecting the peaks with the amplitudes exceeding a predefined threshold value in both single- and multi-damaged scenarios. And the index may also predict the possible damage zones in the RC beam experimentally tested.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Miga, M. I., T. E. Kerner et T. M. Darcey. « Source localization using a current-density minimization approach ». IEEE Transactions on Biomedical Engineering 49, no 7 (juillet 2002) : 743–45. http://dx.doi.org/10.1109/tbme.2002.1010860.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

XiaoPing, Chen, et Shi BingRen. « Density Asymmetry and Marfe Localization in Tokamak Edge ». Communications in Theoretical Physics 31, no 4 (15 juin 1999) : 625–30. http://dx.doi.org/10.1088/0253-6102/31/4/625.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Balan, Radu, Peter G. Casazza, Christopher Heil et Zeph Landau. « Density, Overcompleteness, and Localization of Frames. I. Theory ». Journal of Fourier Analysis and Applications 12, no 2 (avril 2006) : 105–43. http://dx.doi.org/10.1007/s00041-006-6022-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Heer, C. V. « Orthopositronium localization in gases by density fluctuation scattering ». Physics Letters A 110, no 2 (juillet 1985) : 99–102. http://dx.doi.org/10.1016/0375-9601(85)90328-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Mukamel, Eran A., Hazen Babcock et Xiaowei Zhuang. « Sparse Statistical Deconvolution for High-Density Localization Microscopy ». Biophysical Journal 102, no 3 (janvier 2012) : 723a—724a. http://dx.doi.org/10.1016/j.bpj.2011.11.3927.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Bahi, Jacques M., Abdallah Makhoul et Ahmed Mostefaoui. « Localization and coverage for high density sensor networks ». Computer Communications 31, no 4 (mars 2008) : 770–81. http://dx.doi.org/10.1016/j.comcom.2007.10.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Ying, Yue, Fuqing Zhang et Jeffrey L. Anderson. « On the Selection of Localization Radius in Ensemble Filtering for Multiscale Quasigeostrophic Dynamics ». Monthly Weather Review 146, no 2 (février 2018) : 543–60. http://dx.doi.org/10.1175/mwr-d-17-0336.1.

Texte intégral
Résumé :
Covariance localization remedies sampling errors due to limited ensemble size in ensemble data assimilation. Previous studies suggest that the optimal localization radius depends on ensemble size, observation density and accuracy, as well as the correlation length scale determined by model dynamics. A comprehensive localization theory for multiscale dynamical systems with varying observation density remains an active area of research. Using a two-layer quasigeostrophic (QG) model, this study systematically evaluates the sensitivity of the best Gaspari–Cohn localization radius to changes in model resolution, ensemble size, and observing networks. Numerical experiment results show that the best localization radius is smaller for smaller-scale components of a QG flow, indicating its scale dependency. The best localization radius is rather insensitive to changes in model resolution, as long as the key dynamical processes are reasonably well represented by the low-resolution model with inflation methods that account for representation errors. As ensemble size decreases, the best localization radius shifts to smaller values. However, for nonlocal correlations between an observation and state variables that peak at a certain distance, decreasing localization radii further within this distance does not reduce analysis errors. Increasing the density of an observing network has two effects that both reduce the best localization radius. First, the reduced observation error spectral variance further constrains prior ensembles at large scales. Less large-scale contribution results in a shorter overall correlation length, which favors a smaller localization radius. Second, a denser network provides more independent pieces of information, thus a smaller localization radius still allows the same number of observations to constrain each state variable.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Jiang, Tao, Xin Guo, Yongpeng Zhang et Dongsheng Li. « Study and Quantitative Analysis of Mode Localization in Wind Turbine Blades ». Journal of Marine Science and Engineering 12, no 1 (27 décembre 2023) : 67. http://dx.doi.org/10.3390/jmse12010067.

Texte intégral
Résumé :
The study of damage mechanisms for wind turbine blades is important. Generally, modal localization tends to accelerate structural damage. This is a new approach to studying these damage mechanisms for wind turbine blades through modal localization theory. Therefore, this paper investigates whether modal localization phenomena exist in wind turbine blades, as well as the impact of different forms of detuning on modal localization. Based on perturbation theory, a mechanism for mode localization is described quantitatively using the degree of detuning, the degree of mode density, and the mode assurance criterion. A finite element model for wind turbine blades was established using ANSYS software (R15.0), and three detuning cases were simulated by changing the density, elastic modulus, and installation angles of the blades. Moreover, an improved mode localization factor is proposed to quantitatively evaluate the degree of mode localization in wind turbine blades. The numerical results indicate that the degree of modal localization increases with an increasing degree of detuning, but the increase in modal localization gradually slows. Finally, the detuning modal shape composition, which includes harmonic components, is analyzed. The results show that the closer the composition of the detuning modes is, the stronger the degree of mode localization.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Tjulin, A., A. I. Eriksson et M. André. « Localization of wave fields in lower hybrid cavities ». Annales Geophysicae 22, no 8 (7 septembre 2004) : 2951–59. http://dx.doi.org/10.5194/angeo-22-2951-2004.

Texte intégral
Résumé :
Abstract. We investigate lower hybrid wave trapping in cylindrically symmetric density depletions in the electrostatic approximation. Our investigation is inspired by previous observations of such trapping by spacecraft in the auroral region at altitudes up to about 2000km, and the recent discovery of this phenomenon at altitudes above 20000km in the inner magnetosphere. No particular shape is assumed for the density depletion, which need not be strictly zero outside some value of the radial coordinate r. Important previously known properties concerning parabolic density depletions extending to finite r are shown to hold also for arbitrary shapes and infinite extent: for a given parallel wave number kz, modes below the ambient lower hybrid frequency fLH are trapped in the density depletion (in the sense that they are evanescent outside the cavity), have a discrete spectrum and rotate in a left-handed sense, while there is a continuous spectrum of freely propagating right-handed rotating modes above fLH. New results are such that even though the density depletion may go to zero slowly with increasing r, and thus be essentially infinite in extent, there is a maximum distance within which a trapped mode with given kz and azimuthal mode number m may propagate. Furthermore, we find that for any monotonic density cavity and given kz, there is a local relation between plasma density gradient and the lowest possible frequency that can be trapped. We combine our theoretical results with spacecraft observations to find an upper bound on kz. Our examples indicate that the length of the cavities is larger than the width by a factor of at least 100.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Wang, Zhaoyang, Xuebo Jin, Xiaoyi Wang, Jiping Xu et Yuting Bai. « Hard Decision-Based Cooperative Localization for Wireless Sensor Networks ». Sensors 19, no 21 (27 octobre 2019) : 4665. http://dx.doi.org/10.3390/s19214665.

Texte intégral
Résumé :
Reliable and accurate localization of objects is essential for many applications in wireless networks. Especially for large-scale wireless sensor networks (WSNs), both low cost and high accuracy are targets of the localization technology. However, some range-free methods cannot be combined with a cooperative method, because these range-free methods are characterized by low accuracy of distance estimation. To solve this problem, we propose a hard decision-based cooperative localization method. For distance estimation, an exponential distance calibration formula is derived to estimate distance. In the cooperative phase, the cooperative method is optimized by outlier constraints from neighboring anchors. Simulations are conducted to verify the effectiveness of the proposed method. The results show that localization accuracy is improved in different scenarios, while high node density or anchor density contributes to the localization. For large-scale WSNs, the hard decision-based cooperative localization is proved to be effective.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Seijas, Luis E., Angel Lunar, Luis Rincón et Rafael Almeida. « On the electron density localization in HF cyclic clusters ». Journal of Computational Methods in Sciences and Engineering 17, no 1 (9 mars 2017) : 5–18. http://dx.doi.org/10.3233/jcm-160656.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Rinawa, Motilal, Prashant Chauhan, Sintu Kumar, Manoj Kumar Singh, Hari Kumar Singh, Amit Sharma et R. P. Sharma. « Field Localization and Density Cavitation in Low-Beta Plasmas ». Laser and Particle Beams 2021 (28 novembre 2021) : 1–9. http://dx.doi.org/10.1155/2021/2891080.

Texte intégral
Résumé :
In the present paper, filamentous structure formation, associated turbulent spectrum, and density cavity formation phenomena have been investigated for low- β plasma β ≪ m e / m i applicable to the auroral region. A set of dimensionless equations governing the dynamics of three dimensionally propagating inertial Alfvén wave (3D-IAW) and perpendicularly propagating magnetosonic wave (PMSW) has been developed. Ponderomotive force due to 3D-IAW has been included in the dynamics of the PMSW. Numerical simulation has been performed to study the nonlinear coupling of these two waves. From the obtained results, we found that the field intensity localization takes place which may further lead to the additional dissipation/turbulence process for particle heating and acceleration in space plasma. The associated turbulent spectrum is obtained with scaling nearly k − 4.28 at smaller scales (in the dissipation range). Relevance of the obtained results with the observations reported by various spacecrafts such as Hawkeye and Heos 2 has been discussed. Also, density fluctuations (depletion) of ∼ 0.10 n 0 are calculated, which are consistent with the FAST spacecraft observation reported.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Zhao, Qing, Dong Wang, Yuehui Chen et Xumi Qu. « Multisite protein subcellular localization prediction based on entropy density ». Bio-Medical Materials and Engineering 26, s1 (17 août 2015) : S2003—S2009. http://dx.doi.org/10.3233/bme-151504.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Sharma, S. C. « Positronium Localization in Spontaneous Density Fluctuations in Molecular Gases ». Materials Science Forum 105-110 (janvier 1992) : 451–58. http://dx.doi.org/10.4028/www.scientific.net/msf.105-110.451.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Ovesný, Martin, Pavel Křížek, Zdeněk Švindrych et Guy M. Hagen. « High density 3D localization microscopy using sparse support recovery ». Optics Express 22, no 25 (10 décembre 2014) : 31263. http://dx.doi.org/10.1364/oe.22.031263.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Legant, Wesley R., Lin Shao, Jonathan B. Grimm, Timothy A. Brown, Daniel E. Milkie, Brian B. Avants, Luke D. Lavis et Eric Betzig. « High-density three-dimensional localization microscopy across large volumes ». Nature Methods 13, no 4 (7 mars 2016) : 359–65. http://dx.doi.org/10.1038/nmeth.3797.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Svane, A., et O. Gunnarsson. « Localization in the self-interaction-corrected density-functional formalism ». Physical Review B 37, no 16 (1 juin 1988) : 9919–22. http://dx.doi.org/10.1103/physrevb.37.9919.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Song, Jasmine, Colin Davey, Catherine Poulsen, Phan Luu, Sergei Turovets, Erik Anderson, Kai Li et Don Tucker. « EEG source localization : Sensor density and head surface coverage ». Journal of Neuroscience Methods 256 (décembre 2015) : 9–21. http://dx.doi.org/10.1016/j.jneumeth.2015.08.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Tsirelson, Vladimir, et Adam Stash. « Determination of the electron localization function from electron density ». Chemical Physics Letters 351, no 1-2 (janvier 2002) : 142–48. http://dx.doi.org/10.1016/s0009-2614(01)01361-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Svane, A., et O. Gunnarson. « Localization in the self-interaction corrected density functional formalism ». Journal de Chimie Physique 86 (1989) : 823–30. http://dx.doi.org/10.1051/jcp/1989860823.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Balan, Radu, Peter G. Casazza, Christopher Heil et Zeph Landau. « Density, Overcompleteness, and Localization of Frames. II. Gabor Systems ». Journal of Fourier Analysis and Applications 12, no 3 (16 mai 2006) : 307–44. http://dx.doi.org/10.1007/s00041-005-5035-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Kong, Youngbae, Younggoo Kwon, Jeungwon Choi, Jonghwan Ko et Gwitae Park. « Density adaptive localization for irregularly deployed wireless sensor networks ». AEU - International Journal of Electronics and Communications 66, no 12 (décembre 2012) : 1026–31. http://dx.doi.org/10.1016/j.aeue.2012.05.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Surj�n, P�ter R., J�nos Pipek et B�la Paizs. « Localization maps by orbital partitioning of the electron density ». Theoretica Chimica Acta 86, no 5 (octobre 1993) : 379–89. http://dx.doi.org/10.1007/bf01122430.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Borghesani, A. F., et M. Santini. « Electron localization-delocalization transition in high-density neon gas ». Physical Review A 45, no 12 (1 juin 1992) : 8803–10. http://dx.doi.org/10.1103/physreva.45.8803.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Ikuta, Togo, Yasuhito Kobayashi et Kaname Kawajiri. « Cell Density Regulates Intracellular Localization of Aryl Hydrocarbon Receptor ». Journal of Biological Chemistry 279, no 18 (25 février 2004) : 19209–16. http://dx.doi.org/10.1074/jbc.m310492200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Mahajan, Swadesh M., et Nana L. Shatashvili. « Wave localization and density bunching in pair ion plasmas ». Physics of Plasmas 15, no 10 (octobre 2008) : 100701. http://dx.doi.org/10.1063/1.3005382.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

DiGiuseppe, Nicholas, et James A. Jones. « Fault density, fault types, and spectra-based fault localization ». Empirical Software Engineering 20, no 4 (18 mars 2014) : 928–67. http://dx.doi.org/10.1007/s10664-014-9304-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Andrade, José E., et Ronaldo I. Borja. « Capturing strain localization in dense sands with random density ». International Journal for Numerical Methods in Engineering 67, no 11 (2006) : 1531–64. http://dx.doi.org/10.1002/nme.1673.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Sedelnikova, Olga V., Lyubov G. Bulusheva et Alexander V. Okotrub. « Localization of π-electron density in twisted bilayer graphene ». physica status solidi (RRL) - Rapid Research Letters 11, no 2 (14 décembre 2016) : 1600367. http://dx.doi.org/10.1002/pssr.201600367.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Bera, Soumya, Thomas Martynec, Henning Schomerus, Fabian Heidrich-Meisner et Jens H. Bardarson. « One-particle density matrix characterization of many-body localization ». Annalen der Physik 529, no 7 (6 février 2017) : 1600356. http://dx.doi.org/10.1002/andp.201600356.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Wang, Yina, Tingwei Quan, Shaoqun Zeng et Zhen-Li Huang. « PALMER : a method capable of parallel localization of multiple emitters for high-density localization microscopy ». Optics Express 20, no 14 (29 juin 2012) : 16039. http://dx.doi.org/10.1364/oe.20.016039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Santana-Carrillo, R., Roberto de J. León-Montiel, Guo-Hua Sun et Shi-Hai Dong. « Quantum Information Entropy for Another Class of New Proposed Hyperbolic Potentials ». Entropy 25, no 9 (5 septembre 2023) : 1296. http://dx.doi.org/10.3390/e25091296.

Texte intégral
Résumé :
In this work, we investigate the Shannon entropy of four recently proposed hyperbolic potentials through studying position and momentum entropies. Our analysis reveals that the wave functions of the single-well potentials U0,3 exhibit greater localization compared to the double-well potentials U1,2. This difference in localization arises from the depths of the single- and double-well potentials. Specifically, we observe that the position entropy density shows higher localization for the single-well potentials, while their momentum probability density becomes more delocalized. Conversely, the double-well potentials demonstrate the opposite behavior, with position entropy density being less localized and momentum probability density showing increased localization. Notably, our study also involves examining the Bialynicki–Birula and Mycielski (BBM) inequality, where we find that the Shannon entropies still satisfy this inequality for varying depths u¯. An intriguing observation is that the sum of position and momentum entropies increases with the variable u¯ for potentials U1,2,3, while for U0, the sum decreases with u¯. Additionally, the sum of the cases U0 and U3 almost remains constant within the relative value 0.01 as u¯ increases. Our study provides valuable insights into the Shannon entropy behavior for these hyperbolic potentials, shedding light on their localization characteristics and their relation to the potential depths. Finally, we extend our analysis to the Fisher entropy F¯x and find that it increases with the depth u¯ of the potential wells but F¯p decreases with the depth.
Styles APA, Harvard, Vancouver, ISO, etc.
46

González-García, Luis Antonio, Héctor Alva-Sánchez et Rosario Paredes. « Localization in Two-Dimensional Quasicrystalline Lattices ». Entropy 24, no 11 (10 novembre 2022) : 1628. http://dx.doi.org/10.3390/e24111628.

Texte intégral
Résumé :
We investigate the emergence of localization in a weakly interacting Bose gas confined in quasicrystalline lattices with three different rotational symmetries: five, eight, and twelve. The analysis, performed at a mean field level and from which localization is detected, relies on the study of two observables: the inverse participation ratio (IPR) and the Shannon entropy in the coordinate space. Those physical quantities were determined from a robust statistical study for the stationary density profiles of the interacting condensate. Localization was identified for each lattice type as a function of the potential depth. Our analysis revealed a range of the potential depths for which the condensate density becomes localized, from partially at random lattice sites to fully in a single site. We found that localization in the case of five-fold rotational symmetry appears for (6ER,9ER), while it occurs in the interval (12ER,15ER) for octagonal and dodecagonal symmetries.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Torres-Vega, Juan J., Diego R. Alcoba, Ofelia B. Oña, Alejandro Vásquez-Espinal, Rodrigo Báez-Grez, Luis Lain, Alicia Torre, Víctor García et William Tiznado. « Analysis of Local and Global Aromaticity in Si3C5 and Si4C8 Clusters. Aromatic Species Containing Planar Tetracoordinate Carbon ». Chemistry 3, no 4 (25 septembre 2021) : 1101–12. http://dx.doi.org/10.3390/chemistry3040080.

Texte intégral
Résumé :
The minimum energy structures of the Si3C5 and Si4C8 clusters are planar and contain planar tetracoordinate carbons (ptCs). These species have been classified, qualitatively, as global (π) and local (σ) aromatics according to the adaptive natural density partitioning (AdNDP) method, which is an orbital localization method. This work evaluates these species’ aromaticity, focusing on confirming and quantifying their global and local aromatic character. For this purpose, we use an orbital localization method based on the partitioning of the molecular space according to the topology of the electronic localization function (LOC-ELF). In addition, the magnetically induced current density is analyzed. The LOC-ELF-based analysis coincides with the AdNDP study (double aromaticity, global, and local). Moreover, the current density analysis detects global and local ring currents. The strength of the global and local current circuit is significant, involving 4n + 2 π- and σ-electrons, respectively. The latter implicates the Si-ptC-Si fragment, which would be related to the 3c-2e σ-bond detected by the orbital localization methods in this fragment.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Lu, Kezhong, Xiaohua Xiang, Dian Zhang, Rui Mao et Yuhong Feng. « Localization Algorithm Based on Maximum a Posteriori in Wireless Sensor Networks ». International Journal of Distributed Sensor Networks 8, no 1 (15 décembre 2011) : 260302. http://dx.doi.org/10.1155/2012/260302.

Texte intégral
Résumé :
Many applications and protocols in wireless sensor networks need to know the locations of sensor nodes. A low-cost method to localize sensor nodes is to use received signal strength indication (RSSI) ranging technique together with the least-squares trilateration. However, the average localization error of this method is large due to the large ranging error of RSSI ranging technique. To reduce the average localization error, we propose a localization algorithm based on maximum a posteriori. This algorithm uses the Baye's formula to deduce the probability density of each sensor node's distribution in the target region from RSSI values. Then, each sensor node takes the point with the maximum probability density as its estimated location. Through simulation studies, we show that this algorithm outperforms the least-squares trilateration with respect to the average localization error.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Bathgate, R. A. D., et C. Sernia. « Characterization and localization of oxytocin receptors in the rat testis ». Journal of Endocrinology 141, no 2 (mai 1994) : 343–52. http://dx.doi.org/10.1677/joe.0.1410343.

Texte intégral
Résumé :
Abstract In this study oxytocin (OT) receptors have been characterized and localized in the testis of the rat using the radioiodinated OT receptor antagonist 125I-labelled d(CH2)5 [Tyr(Me)2,Thr4,Tyr9-NH2]-vasotocin (OTA). Receptor density and localization have been compared with the rat testis arginine vasopressin (AVP) receptor using the radioiodinated AVP V1a receptor antagonist 125I-labelled d(CH2)5Sar7-AVP and the radioiodinated linear AVP V1a antagonist 125I-labelled [(C6H5-CH2CO)-O-methyl-d-Tyr-Phe-Gln-Asn-Arg-Pro-Arg-Tyr-NH2]. 125I-labelled OTA bound with high affinity to membrane fractions of the rat testis (Ka = 13·8 ± 1·25 litres/nmol), mammary tissue (Ka=20·3± 4·36 litres/nmol) and uterus (Ka=27·8±0·74 litres/nmol). Competition studies with various OT and AVP receptor agonists and antagonists confirmed that the binding was to OT receptors. AVP receptors in the testis were found to be identical to AVP V1a receptors in the liver. The AVP receptor density in the testis was much higher than the OT receptor density (109 ±12·3 vs 5·2 ±0·79 (mean ± s.e.m.) fmol/mg protein). Autoradiographical localization showed that both OT and AVP receptors were present in the interstitial spaces in the testis consistent with binding to Leydig cells. AVP receptors were also localized on the epithelial surfaces of the seminiferous tubules and on testicular blood vessels. This study has, for the first time, found OT receptors in the testis of the rat which have similar ligand-binding characteristics to mammary and uterine OT receptors. The receptor localizations are consistent with binding to Leydig cells. Journal of Endocrinology (1994) 141, 343–352
Styles APA, Harvard, Vancouver, ISO, etc.
50

Ferreira, David, Richard Souza et Celso Carvalho. « QA-kNN : Indoor Localization Based on Quartile Analysis and the kNN Classifier for Wireless Networks ». Sensors 20, no 17 (21 août 2020) : 4714. http://dx.doi.org/10.3390/s20174714.

Texte intégral
Résumé :
Considering the variation of the received signal strength indicator (RSSI) in wireless networks, the objective of this study is to investigate and propose a method of indoor localization in order to improve the accuracy of localization that is compromised by RSSI variation. For this, quartile analysis is used for data pre-processing and the k-nearest neighbors (kNN) classifier is used for localization. In addition to the tests in a real environment, simulations were performed, varying many parameters related to the proposed method and the environment. In the real environment with reference points of 1.284 density per unit area (RPs/m2), the method presents zero-mean error in the localization in test points (TPs) coinciding with the RPs. In the simulated environment with a density of 0.327 RPs/m2, a mean error of 0.490 m for the localization of random TPs was achieved. These results are important contributions and allow us to conclude that the method is promising for locating objects in indoor environments.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie